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Abstract
Biplane projection imaging is one of the primary methods for imaging and visualizing the
cardiovascular system in medicine. A key problem in such a technique is to determine the imaging
geometry (i.e., the relative rotation and translation) of two projections so that the interested 3-D
structures can be accurately reconstructed. Based on interesting observations and efficient geometric
techniques, we present in this paper new algorithmic solutions for this problem. Comparing with
existing optimization-based approaches, our techniques yield better accuracy, have bounded
execution time, and thus are more suitable for on-line applications. Our techniques can easily detect
outliers to further improve the accuracy.

1 Introduction
Cardiovascular diseases (such as vessel blockage and narrowing) have been major causes of
death in the United States for a long time. Effective treatment and diagnosis procedures for
this type of diseases heavily rely on accurate 3-D images of the interested vessel structure.
Tomographic techniques, such as magnetic resonance imaging (MRI) and computed
tomography (CT), although generate 3-D data sets for visualization and analysis (e.g.,
rendering), cannot yet provide the time resolution necessary for interventions and for dynamic
evaluations of rapidly moving structures such as heart. Thus, projection imaging generated by
image intensifier-TV (II-TV) systems is still the dominant form of imaging in this area, mainly
due to its rapid image acquisition and relatively larger field of view.

In projection imaging, 3-D structures are reconstructed from one or more 2-D projections. A
key problem in such reconstructions is to determine the relative translation and rotation, called
imaging geometry, of the coordinate system associated with one projection with respect to
those associated with other projections. Since the size of vessels in a vascular system is very
small, inaccurate imaging geometry may cause the reconstructed 3-D vessels located in totally
different positions.

As a promising approach, bi-plane imaging (in which each 3-D image is reconstructed from
two projections) has received considerable attention in recent years and a number of techniques
have been developed for its imaging geometry determination and 3-D reconstruction [5,6,11,
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12,16,21]. A common approach for determining image geometry in these techniques is to first
identify a set of corresponding pairs of points in the two projections, then convert the problem
to a certain non-linear optimization problem, and find a feasible solution by using greedy
algorithms or general optimization packages. Due to their heuristic nature, these approaches
guarantee neither the quality of solutions nor the time efficiency, and thus may not be suitable
for online applications.

We notice that in the field of Computer Vision, a similar problem, called Epipolar Geometry
Determination (or EGD), has been studied extensively [14,18,19,22]. The Epipolar Geometry
Determination problem tries to determine the epipolar geometry relating two images of a single
scene and plays an important role in many applications, such as scene modeling and vehicle
navigation. Quite a few interesting approaches were previously proposed for solving this
problem. (Excellent surveys on existing techniques can be found in articles [23,1,13].)
However, almost all of them are based on iterative numerical computation which in general
can not guarantee the converging speed and therefore are not suitable for online cardiovascular
applications. Further, the EGD problem is slightly more general than our problem. In the EGD
problem, the relative orientation of the two images could be arbitrary and unknown in advance.
But in our problem, rough estimation of the imaging geometry of the two projections can be
obtained from the imaging system. Consequently, algorithms for the EGD problem cannot
fully exploit the special geometric structures of cardiovascular images.

To provide better solutions, we reduce the imaging geometry determination problem to the
following geometric search problem: Given two sets of 2-D points A = {a1, a2, ···, an} and B
= {b1, b2, ···, bn} on two image screens (or planes) respectively with each pair of points ai and
bi (called a corresponding pair) being the approximate projections of an unknown 3-D point
pi, also given the 3-D coordinate system of A, find the most likely position of the origin oB and
the orientation of the 3-D coordinate system of B in the coordinate system of A. It is easy to
see that in an ideal situation where ai and bi are exact projections of pi, it is sufficient to consider
only a constant number of corresponding pairs. In practice, however, it is often difficult to find
the exact corresponding pairs as the correspondence is established manually. Thus, a number
of corresponding pairs are often considered in practice to ensure the accuracy.

In this paper, we present an efficient geometric approach to solve the above problem. Our
approach first reduces the imaging geometry determination problem to an optimal cell search
problem in an arrangement of surfaces in E6. Based on interesting observations, we then
simplify the rather complicated surfaces, which can not be analytically expressed, so that each
of them can be implicitly expressed by an equation. The simplified surfaces are in general non-
algebraic, indicating that directly computing the arrangement could be very challenging. To
overcome this difficulty, we study the error sensitivity of each variable in the imaging geometry
and use it to partition the feasible domain into smaller regions so that the topological structure
of the arrangement in each region can be effectively captured by some lower dimensional (e.g.,
2 or 3-D) arrangements. The curves and surfaces in these lower dimensional arrangements,
although are still non-algebraic, have “nice” properties and can be used to efficiently find the
optimal cell. Comparing with existing approaches, our techniques achieve better accuracy (as
suggested by our experimental results) and have bounded running time. Our techniques can
easily recognize outliers in A and B to further improve the accuracy.

The rest of this paper is organized as follows. Section 2 gives some preliminaries of the
problem. Section 3 shows that the imaging geometry problem can be reduced to solving an
arrangement search problem in E6 space. In Section 4, we discuss the major difficulties of the
arrangement search approach and our main ideas for overcoming them. In Section 5, we present
our algorithms for finding the maximum point in lower dimensional arrangements.
Experimental results and comparison with existing approach are given in Section 6.
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2 Preliminaries
In bi-plane imaging, two projections of the interested 3-D object are generated by shooting two
radiation (e.g., X-ray) beams (with cone shapes) from different angles. The radiation beams
penetrate the 3-D object and form two planar images on an image acquisition device (or screen)
which is away from the beam source by a fixed distance D. For each projection, a 3-D
coordinate system xyz can be defined in such a way that the origin is coincident with the beam
source, the z axis is orthogonal to the image screen, and the x and y axes are horizontal and
vertical, respectively (see Figure 1 for an example). Each image on a screen can also be
associated with another coordinate system uvw, with the u, v, and w axes parallel to the x, y,
and z axes, respectively, and the origin being the intersection of the z axis and the image screen.
It is easy to see that the coordinate system uvw can be related to the xyz coordinate system
through the following system.

(uv) = (x × D / z
y × D / z) (1)

To distinguish the two projections, we denote them as PA and PB, respectively, with PA
corresponding to the point set A and PB corresponding to B. Their associated image screens
are denoted as SA and SB, respectively. We call the coordinate systems associated with PA as
xyz and uvw, and the ones of PB as x′y′z′ and u′v′w′. The relation between the coordinate system
xyz and the system x′y′z′ can be specified as follows by the rotation matrix R and the translation
vector t,

(x ′

y ′

z ′
) = (r11 r12 r13

r21 r22 r23
r31 r32 r33

) (xy
z
) + (txty

tz
) (2)

To facilitate our computation and analysis, we use Euler angles to describe the relative rotation
in the rotation matrix R. Let θ, ψ and φ be the three Euler angles (see Figure 2). The entries of
the rotation matrix R can be represented by θ, ψ and φ as follows.

r11 = − sin ψ sin φ + cos θ cos ψ cos φ, r12 = sin θ cos φ, r13 = − cos ψ sin φ − cos θ sin ψ cos φ,

r21 = − sin θ cos ψ, r22 = cos θ, r23 = sin θ sin ψ,

r31 = sin ψ cos φ + cos θ cos ψ sin φ, r32 = sin θ sin φ, r33 = cos ψ cos φ − cos θ sin ψ sin φ.

Due to a variety of reasons (such as the movement of beam sources and data noise), the exact
rotation matrix R and translation vector t between the two coordinate systems xyz and x′y′z′ are
often unknown. Rough estimation can be obtained from the imaging system or computed by
using technique in [16]. To accurately reconstruct the 3-D structures of small vessels, high
precision imaging geometry is desired.

3 From Imaging Geometry to Arrangement Search
In this section, we show how to reduce the imaging geometry determination problem to an
optimal cell search problem in an arrangement of surfaces.

Let P = {p1, p2, ···, pn} be the set of to-be-determined 3-D points. Let pa
i and pb

i be the exact
projections (under the optimal or most likely imaging geometry) of pi on the image screens
SA and SB, respectively. We define

Δ = maxi=1
n max{dist(ai, pi

a), dist(bi, pi
b)},
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where dist(.) is the Euclidean distance of two points. Note that pa
i, pb

i and Δ are all unknowns.

To determine the best possible imaging geometry G for the point set B in the coordinate system
xyz, we first guess a possible value, say δ, for Δ. Clearly, if δ ≥ Δ, then there exists an imaging
geometry G such that each pa

i will be contained in the disk di (on SA) of radius δ centered at
ai. Thus pi is contained in the round cone Ci apexed at the origin oA and with di as the base
(see Figure 3). Under the same imaging geometry G, the projection of Ci on the screen SB of
B forms a sector SCi.

Observe that if G is optimal, then each bi will fall in its corresponding sector SCi. Thus, by
counting the number (called fall-in number and denoted by fin(A, B, G, δ)) of points in B which
are contained in their corresponding sectors, we are able to measure the quality of G. We say
an imaging geometry G is feasible with respect to (w.r.t.) δ, if fin(A, B, G, δ) = n. For a given
δ, if there exists at least one feasible imaging geometry, then δ is called feasible. Notice that
for each feasible δ, we may have infinitely many feasible solutions to G. Thus, to determine
the most likely imaging geometry G for B, we need not only to find a feasible solution to G,
but more importantly to minimize δ, as a minimized δ could consequently make G converge
to its optimum.

Hence, to efficiently determine the imaging geometry, three problems need to be considered:
(a) How to minimize δ; (b) How to determine the feasibility of δ; (c) How to find a feasible
G w.r.t. a given δ.

For (a), since the feasibility of δ is monotone in the increasing direction of δ, we can perform
a binary search or a parametric search [15] on δ to find the smallest feasible δ, provided that
we can determine the feasibility of G w.r.t. a fixed δ. For (b) and (c), we notice that for a fixed
δ, to determine the feasibility of δ and to find a feasible G w.r.t. δ, it is sufficient to find an
imaging geometry G which maximizes the value of fin(A, B, G, δ). Hence, our focus is hereafter
on this maximization problem.

Consider an arbitrary point bi ∈ B. Let ob
A be the projection of the origin oA on screen SB, and

oA
bbi

→
 be the ray emitting from ob

A and crossing bi. Let αbi be the angle between oA
bbi

→
 and the

horizontal line (i.e., the v′-axis). Denote the lower and upper bounding rays of SCi by rl
i and

ru
i, respectively. Each of the two bounding rays also forms an angle with the horizontal line,

and is denoted by αl
i and αu

i, respectively. In order for bi to be contained in its corresponding
sector SCi (i.e., bi contributes a “1” to fin(A, B, G, δ)), G must be in some positions so that
αbi is between αl

i and αu
i. Since both rl

i and ru
i can be parameterized by the six variables of

G, the constraints on the three angles define a (possibly unbounded) region Ri for G in E6 so
that when G is inside Ri, sector SCi contains bi. Thus, we can define in total n regions with
each corresponding to a point in B. To maximize the value of fin(A, B, G, δ), it is sufficient to
determine a point (called maximum point) for G in E6 contained by the most number of Ri’s.

To find such a maximum point, we need to first determine the bounding surface of each Ri.
Notice that the region Ri can be viewed as the loci of G in E6 while moving bi inside the sector
SCi, and similarly the bounding surfaces of Ri can be viewed as the loci of G while moving
bi on the two bounding rays, rl

i and ru
i, of SCi. Thus, the formula of the surface can be

determined by using the fact that bi is incident to either rl
i or ru

i.

Once all the surfaces (denoted by Γ) are obtained, a direct approach for computing the
maximum point of G is to first construct the arrangement A( Γ) of Γ, and for each cell c of
A( Γ) determine the value of fin(A, B, G, δ). Notice that, since all points in c are contained by
the same set of regions, their fall-in numbers are the same. Thus it is sufficient to consider only
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one point from each cell. The maximum point of G can then be determined by finding the cell
with the maximum fall-in number.

4 Main Difficulties and Ideas
To make the above arrangement-search approach work is actually quite difficult. The success
of this approach relies on two key conditions: (i) The intersections of surfaces should be easily
computed; (ii) The topological structure of the arrangement should be “simple” in a sense that
all the cells can be relatively easily detected. Unfortunately, neither one seems to be true. The
main reason is that the surfaces of Ri are determined by the two bounding rays, rl

i and ru
i,

which are projections of a pair of rays on the boundary of the round cone Ci. When G moves
in its domain, the two rays, say rcl

i and rcu
i, on Ci generating rl

i and ru
i, respectively, will

change accordingly. Thus, to compute rl
i and ru

i, we need to first determine rcl
i and rcu

i, and
then project them to SB to obtain rl

i and ru
i. But determining rcl

i and rcu
i has to find roots of a

polynomial of degree 6, which in general do not admit analytical solutions. Thus, the surfaces
of Ri cannot be analytically expressed by the six variables in G. Consequently, the intersections
of surfaces and the arrangement cannot be efficiently computed.

To overcome this difficulty, we observe that the problem is mainly caused by determining the
rays (i.e., rcl

i and rcu
i ) on Ci which generate rl

i and ru
i, respectively. Our idea is thus to

approximate each round cone Ci by a convex facet cone FCi with k facets for some small
constant k (e.g., 3, 4, 6) so that we only need to consider k rays on Ci as candidates for rcl

i and
rcu

i. Depending on the location of G, the projection of FCi will create up to O(k) sectors 1,
SC1

i, SC2
i, ···, SCO(k)

i, on the screen of SB, with each SCj
i, 1 ≤ j ≤ O(k), corresponding to and

generated by a pair of edges on FCi tangent to two planes crossing oB. The facet cone FCi also
partitions each region Ri into O(k) subregions R1

i, R2
i, ···, RO(k)

i, with each subregion Rj
i

generated by a sector SCj
i, 1 ≤ j ≤ O(k). Since the bounding rays of each sector SCj

i is simply
the projections of a pair of fixed edges on the facet cone, the surfaces of each Rj

i can be directly
determined and implicitly expressed by an equation. A typical form of the surfaces
corresponding to bi is f = 0, where f is the angular distance (i.e., angle) between ray oA

bbi

→
 and

one of the two bounding rays, rl
i and ru

i, of a sector SCi, and has the following form.

f =

r21(uai
± δ) + r22(vai

± δ) + r23D + ty

r31(uai
± δ) + r32(vai

± δ) + r33D + tz
−

ty
tz

r11(uai
± δ) + r12(vai

± δ) + r13D + tx

r31(uai
± δ) + r32(vai

± δ) + r33D + tz
−

tx
tz

−
v ′

bi
− tyD / tz

u ′
bi

− txD / tz
. (3)

Replacing the round cones with facet cones although simplifies the surfaces (called bounding
surfaces) of the regions corresponding to points in B, it introduces other difficulties for
searching the arrangement. For example, each region Ri is now partitioned into O(k) subregions
Rj

i by a set of surfaces, called separating surfaces, corresponding to the bounding rays for the
O(k) sectors. The separating surfaces are generated by comparing the angles of the projections
of the k edges of FCi on the screen SB, and have much more complicated form than the bounding
surfaces, thus dramatically increasing the difficulty of constructing the arrangement. In next
section, we will show that by using a different way to count the fall-in number for each cell in
the arrangement, we can actually remove the set of separating surfaces. Thus we can focus on
how to efficiently construct the arrangement of the bounding surfaces.

1Note that due to the fact that the beam source oB is often very far away from the 3-D points in P, the number of sectors is O(k) instead
of O(k2).
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Notice that all bounding surfaces are non-algebraic and have 6 tightly coupled variables.
Directly constructing the arrangement of those implicitly expressed surfaces in E6 would be
very difficult. One reason is that finding the intersections of these surfaces needs to solve high
degree non-linear systems. Another reason is that the topological structure of the arrangement
is rather complicated and thus it is challenging to find all cells of the arrangement.

To further simplify the problem, we study the error sensitivity of each variable in the imaging
geometry. The following lemma shows that when the 3-D object is roughly in the middle of
the image systems (which is typically the case in practice), error is much less sensitive to the
three translational variables than to the rotational variables.

Lemma 1
Let p be any point with coordinates (x, y, z)T and (x′, y′, z′)T, satisfying z and
z ′ ∈ D

4 , 3D
4 , | x | , | x ′ | , | y | and | y ′ | ≤ ∊0  for some small constant ∊0.

Assume that the xyz and x′y′z′ coordinate systems have the following relation: θ ≤ ∊1, ψ and φ
∈ [π/4, 3π/4], φ + ψ ∈ [π/4, 3π/4], tx, tz ∈ [D/4, 3D/4], and |ty| ≤ ∊0, where ∊1 is another small
constant. Then the partial derivatives of the angular distance f w.r.t. each variable has the
following orders:
∂ f
∂tx

= O( 1

D 2 ), ∂ f
∂ty

= O( 1
D ), ∂ f

∂tz
= O( 1

D 2 ), ∂ f
∂θ = O(1), ∂ f

∂φ = O( 1
D ), ∂ f

∂ψ = O( 1
D ),

where D > > ∊0 + ∊1 is the distance between the origins of the coordinate systems image
screens.

Proof—First, we list the inequalities obtained directly from the assumption.

D / 4 ≤ tx ≤ 3D / 4 (4)

| ty | ≤ ∊0 (5)

D / 4 ≤ tz ≤ 3D / 4 (6)

| u ′
bi | ≤ ∊0 (7)

| v ′
bi | ≤ ∊0 (8)

Next, we introduce three additional variables to simplify our proof. Let

T1 = r11(uai
± δ) + r12(vai

± δ) + r13D + tx,

T2 = r21(uai
± δ) + r22(vai

± δ) + r23D + ty,

T3 = r31(uai
± δ) + r32(vai

± δ) + r33D + tz.

Let pa and pb be the projections of p on screens SA and SB, respectively. Notice that T1 is the
x′ coordinate of pa in the x′y′z′ coordinate system. From the assumption about the position of
p, we have

− 3D / 4 ≤ T1 ≤ − D / 4. (9)
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Since T2 is the y′ coordinate of pa in the x′ y′ z′ coordinate system. From the assumption about
the position of p, we have

| T2 | ≤ 4∊0 . (10)

T3 is the z′ coordinate of pa, hence

D / 4 ≤ T3 ∈ 3D / 4. (11)

We begin with estimating ∂ f
∂tx

.

∂ f
∂tx

=

T2
T3

−
ty
tz

(
T1
T3

−
tx
tz

)
2 ( 1

T3
− 1

tz
) −

v ′
bi

− tyD / tz

(u ′
bi

− txD / tz)
2

D
tz

. (12)

From equations (4)–(11), the following estimations about the terms appeared in the expression
of ∂ f

∂tx
 can be easily obtained.

| T2
T3

| ≤
4∊0
D / 4 ≤

16∊0
D , | ty

tz
| ≤

∊0
D / 4 ≤

16∊0
D , − 3 ≤

T1
T3

≤ − 1 / 3, and 1 / 3 ≤
tx
tz

≤ 3

. Plugging these estimations into (12), we have

| ∂ f
∂tx | ≤

48∊0
D

3
2D +

5∊0
(D / 3 − ∊0 )2

4.

From the assumptions about ∊0 and D, we have D/6 ≤ D/3 − ∊0 ≤ D/3. Thus, we obtain the
desired estimation of ∂ f

∂tx
, i.e.,

| ∂ f
∂tx

| ≤
800∊0

D2 = O( 1

D2 ).

For ∂ f
∂ty

, we have the following equation.

∂ f
∂ty

=

1
T3

− 1
tz

T1
T3

−
tx
tz

−

D
tz

u
b′

i
−

txD

tz

. (13)

Inserting inequalities (4)–(11) into (13), we have | ∂ f
∂ty

| = O(1 / D).

For ∂ f
∂tz

, we have
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∂ f
∂tz

=
ty / tz

2 − T2 / T3
2

T1 / T3 − tx / tz
−

T2 / T3 − ty / tz
(T1 / T3 − tx / tz)

2 (tx / tz
2 − T1 / T3

2) −

tyD

tz
2

u ′
bi

−
txD

tz

+ (v ′
bi

− tyD / tz)
1

(u ′
bi

− txD / tz)
2

txD

tz
2 .

Inserting inequalities (4)–(11) into the above equation, we have | ∂ f
∂tz

| = O(1 / D 2).

For the rotational variables, we first estimate ∂ f
∂φ . From Equation (3), we have the following

equation.

∂ f
∂φ =

∂T2
∂φ

1
T3

–
T2

(T3)
2

∂T3
∂φ

T1
T3

–
tx
tz

–

T2
T3

–
ty
tz

(
T1
T3

–
tx
tz

)
2 (

∂T1
∂φ

1
T3

–
T1

T3
2

∂T3
∂φ ). (14)

In (14), we have two new terms, 
∂T2
∂φ

1
T3

–
T2

T3
2

∂T3
∂φ  and 

∂T1
∂φ

1
T3

–
T1

T3
2

∂T3
∂φ , to estimate.

∂T2
∂φ =

∂r21
∂φ (uai

± δ)
∂r22
∂φ (vai

± δ) +
∂r23
∂φ D.

From the definition of r21, r22 and r23, we have | ∂r21
∂φ | ≤ 3 | ∂r22

∂φ | ≤ 3, and
∂r23
∂φ = 0. Hence,

| ∂T2
∂φ | ≤ 6(∊0 + δ).

We also have

| ∂T3
∂φ | ≤ 2D + 6(∊0 + δ), and

| ∂T1
∂φ | ≤ 2D + 6(∊0 + δ).

Thus, | ∂T2
∂φ

1
T3

−
T2

T3
2

∂T3
∂φ | ≤ C(

∊0 + δ

D ) +
∊0

D2 (∊0 + δ + D) = O(1 / D).

Similarly, we can estimate 
∂T1
∂φ

1
T3

−
T1

T3
2

∂T3
∂φ  and have ∂ f

∂φ = O(1 / D).

For ∂ f
∂ψ , we have

Xu et al. Page 8

J Comb Optim. Author manuscript; available in PMC 2006 April 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



∂ f
∂ψ =

∂T2
∂ψ

1
T3

−
T2

T3
2

∂T3
∂ψ

T1
T3

−
tx
tz

−

T2
T3

−
ty
tz

(
T1
T3

−
tx
tz

)
2 (

∂T1
∂ψ

1
T3

−
T1

T3
2

∂T3
∂ψ ).

We get

∂ f
∂ψ = O(1 / D).

The estimation of ∂ f
∂θ  is somewhat different. First,

∂ f
∂θ =

∂T2
∂θ

1
T3

−
T2

T3
2

∂T3
∂θ

T1
T3

−
tx
tz

−

T2
T3

−
ty
tz

(
T1
T3

−
tx
tz

)
2 (

∂T1
∂θ

1
T3

−
T1

T3
2

∂T3
∂θ ).

By previous estimations, we have

T2
T3

−
ty
tz

(
T1
T3

−
tx
tz

)
2 (

∂T1
∂θ

1
T3

−
T1

T3
2

∂T3
∂θ ) ≤ C

∊0

D2 .

Since the dominating term of 
∂T2
∂θ

1
T3

−
T2

T3
2

∂T3
∂θ  is 

∂T2
∂θ

1
T3

, and 
∂T2
∂θ

1
T3

= O(1 / D), we obtain

∂ f
∂θ = O(1).

Remark—In the above lemma, all the assumptions on point p and on the relation of the two
coordinate systems hold in practice.

The above lemma shows that when p is well placed (i.e., in the middle of the two projections),
it is much easier for pb to move from inside to outside or from outside to inside of its
corresponding sector SC on SB, when G moves in the directions of the variables with larger
partial derivatives (such as θ ty, ψ, and φ) than it is in other directions This means that the
topological structure of the arrangement is more likely to change (i.e., crossing some bounding
surfaces) when G moves one unit of distance in these directions. Consequently, an error in the
computation of their corresponding variables is more likely to lead to an larger error for the
imaging geometry and 3-D reconstruction. Thus the partial derivatives of these varibales can
be viewed as a measure of their error sensitivities.

To compute the maximum point of G, we notice that we only need to find one point from each
possible cell in the arrangement. Thus, it is sufficient to consider a set of crossing sections (i.e.,
lower dimensional arrangements) of the 6-dimensional arrangement as long as the set of
crossing sections intersects every cell of the arrangement. For an error insensitive direction (or
variable), since the topological structure of the arrangement has less changes (within a unit
distance), we may select a few observing points and compute the crossing sections through the
selected points (i.e., using hyperplanes crossing these observing points and orthogonal to this
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direction to cut the arrangement). In this way, we may avoid considering this direction
continuously, and hence reduce the dimensions of the arrangement.

To implement this idea, we can select a few “good” variables with larger partial derivatives as
the variables of the arrangement, and place a grid in the subspace of the domain induced by
those unselected variables. We say a set of variables are good if the bounding surfaces induced
by setting other variables to constants has simple forms or nice structures. Notice that in the
imaging geometry determination problem, the domain can be assumed to be a small hyperbox
as a rough estimation of the optimal solution can be obtained by using some previous techniques
[16] or from the imaging system. The sizes of the grid may vary in different directions,
consistent with their partial derivatives.

Hence it is possible to compute the maximum point through traversing a set of lower
dimensional arrangements. Following is the main steps of our algorithm for computing the
maximum point.

1. Select 2 or 3 good variables, and place a grid in the subspace of the domain induced
by other variables.

2. For each grid point,

a. determine the expression of each bounding surface in the subspace induced
by the selected variables;

b. compute the maximum point in the arrangements of the set of lower
dimensional surfaces.

3. Return the maximum point found among all grid points.

5 Finding the Maximum Point in a Lower Dimensional Arrangement
To solve the maximum point problem, we need to first select the set of variables. By Lemma
1, we know that θ is the most error-sensitive variable, and thus should be chosen. Three other
variables, ty, ψ, and φ has the same order. Since ty is loosely coupled with θ, we pick ty over
the other two rotational variables.

To select other possible variables, we first observe that if two rotational variables are selected

simultaneously, the surfaces will be of the form 
g1(α1, α2)

g2(α1, α2)
+ c = 0, where, α1 and α2 are the

two rotational variables, and g1(), g2() are two functions containing products of trigonometric
functions of α1 and α 2. The surfaces will be rather complicated, and more importantly, their
intersections will not be easily computed. Hence, in our algorithm, we only select one rotational
variable.

Since our approach needs to traverse an arrangement on each grid point, the more variables
we select, the less grid points we need to consider. Thus on one hand, it is better to select more
variables to ensure time efficiency as long as the associated arrangements can still be easily
traversed. On the other hand, selecting more variables will complicate the surfaces and make
it harder to traverse the arrangement. Nevertheless, our analysis shows that it is possible to
select another translational variable tx and still obtain relatively simple surfaces.

With the selected variables, at each grid point the bounding surfaces have the following form.
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tx{v ′
bi

(r31(uai
± δ) + r32(vai

± δ) + r33D) − D(r21(uai
± δ) + r22(vai

± δ) + r23D)} +

ty{D(r11(uai
± δ) + r12(vai

± δ) + r13D) − u ′
bi

(r21(uai
± δ) + r22(vai

± δ) + r23D)} =

tz{v ′
bi

(r11(uai
± δ) + r12(vai

± δ) + r13D) − u ′
bi

(r31(uai
± δ) + r32(vai

± δ) + r33D)}.
(15)

In the above equation, those unselected variables are treated as constants. The following
lemmas show some nice properties of such surfaces.

Lemma 2
Let tx, ty  and α ɛ {θ, ψ, φ} be the three selected variables. Then, at any fixed grid point, each
bounding surface Si is monotone in the directions of tx and ty. Furthermore, the intersection
of Si and any plane parallel to the txty plane is a straight line.

Proof—Consider equation (15). Since there is only one selected rotational variable, (15) can
be rewritten as

c0(α)tx + c1(α)ty = c2(α)tz, (16)

where ci(α ) = mi cos α + ni sin α + li, i = 0, 1, 2 and mi, ni, li are constants depending on the
three fixed variables and the corresponding pair α i and bi. If α is fixed, the equation becomes
a linear equation of tx and ty. Thus, the intersection of Si and any plane parallel to txty plane is
a straight line. For each given value of ty and α , the equation becomes a linear equation of tx.
Thus, there is a unique solution to tx, and the surface is tx-monotone. Similarly, we can show
that the surface is ty-monotone.

Remarks—Although we select θ as the rotational variable, the above lemma holds for any
rotational variable. From Equation (16), we know that once the three rotational variables are
fixed, the three translational variables are linearly correlated. Thus, to find the maximum point,
we only need to place grid points in the subspace induced by the two non-selected rotational
variables.

Lemma 3
Let tx, ty and α be defined as in Lemma 2. Then each bounding surface Si is continuous in the
directions of tx, ty and α .

Proof—From Equation (16), we know that for each given α , the surface is a straight line and
thus is continuous in the directions of tx and ty. Since the coefficients of Equation (16) are all
continuous functions of α , Si is continuous at each α.

The above lemmas are keys for us to design efficient algorithms for computing a maximum
point in the arrangement.

Recall that to find a maximum point in the arrangement A(Γ), we can first use the technique
in [16] (or information from the imaging system) to obtain an approximation of G so that the
optimal solution to G is contained in an axis-aligned hyperbox H in E6 space. Thus our search
for the maximum point can be focused on the portion of A(Γ) inside H. At each grid point, the
three unselected variables become constants, and the hyperbox H is reduced to a 3-D axis-
aligned box. Without causing any ambiguity, we also call the 3-D box as H, the set of bounding
surfaces as Γ and the arrangement as A(Γ).
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Hence our task is to find the maximum point in A(Γ) ∩ H. As mentioned previously, all points
in each cell of A(Γ) share the same fall-in number. For two neighboring cells c1 and c2 separated
by a bounding surface Si, the two sets of fall-in points (i.e., the points of B contained in their
corresponding sectors) in the two cells differ only by one point bi, since crossing the surface
Si means turning bi from a fall-in point to a non-fall-in point (or vice versa). Hence the
difference of the fall-in numbers of the two cells is 1. To find the cell with the maximum fall-
in number, our main idea is to design a plane sweep algorithm which extracts one or more
points from each cell and efficiently determine their fall-in numbers.

To better illustrate our plane sweep algorithm, we first assume that there are only two bounding
surfaces generated from each facet cone FCi with each Si corresponding to a bounding ray of
the sector SCi. (Later on we will show how to remove this assumption.) Thus in the arrangement
A(Γ), when G crosses Si, its fall-in number either increases or decreases by 1. Equivalently,
each surface Si can be viewed as an oriented surface. When G crosses Si in the direction of its
orientation, the fall-in number of G increases by 1.

To efficiently search all cells in A(Γ) ∩ H, we sweep a plane P parallel to the txty-plane through
H. P starts from the bottom of H and moves in the increasing direction of θ (see Figure 5). Let
[θ0, θ1] be the range of θ in H, and let P θ be the intersection of P and A(Γ) n H when P moves
to the position of θ. By Lemma 2, we know that the intersections of Γ and P are a set of lines.
Hence Pθ is the portion of an arrangement of lines inside a rectangle. The following lemma
shows that the fall-in number of each cell in Pθ0 can be efficiently computed.

Lemma 4
The fall-in number of each cell in Pθ0 can be computed in O(n log n + K0) time, where K0 is
the number of cells in Pθ0.

Proof—Since Pθ0 is the portion of an arrangement of lines inside a convex polygon (e.g.,
rectangle), we can use topological peeling [4] (or topological walk [3]) to generate the set of
cells as well as the intersections of Pθ0 in O(n log n + K0) time. The fall-in number of the first
cell c encountered by topological peeling can be computed by first selecting an arbitrary point
in c as (a fixed) G and then checking whether each point in B is contained in its corresponding
sector. The time needed for checking each point is O(1) once G is fixed. Thus the total time
for computing the fall-in number of the first cell is O(n). For each later encountered cell (by
topological peeling), we can compute its fall-in number from its neighboring cell in O(1) time,
since topological peeling generates cells in a wave propagation fashion. Thus the total time
needed for computing all fall-in numbers is O(n + K0). Thus the lemma follows.

To compute the fall-in numbers for those cells in A(Γ) ∩ H which have not yet intersected by
P, we detect all the events in which P encounters a cell or finishes a cell while moving from
bottom to top. Notice that there are several types of events which could change the topological
structure of Pθ: (a) A surface which is previously outside of H enters H and generates a line
on P ∩ H; (b) A surface leaves H, and hence its corresponding line on P ∩ H moves outside
of H; (c) A new cell is encountered by P; (d) A cell is finished by P.

For type (a) and (b) events, we can compute for each surface Si ∈ Γ its intersections with the
boundary of H, and insert the events into an event queue (such as priority queue) for the plane
sweep. Since the intersections can be computed in constant time for each surface, and inserting
each event into an event queue takes O(log n) time, the total time for type (a) and (b) events is
O(n log n) time.

For type (c) and (d) events, we have the following lemma.
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Lemma 5
For each cell which is not discovered by a type (a) or (b) event, and does not intersect Pθ0, its
first intersection with P occurs at a vertex generated by three bounding surfaces or the
boundary of H.

Proof—By Lemma 2, we know that all surfaces in γ are monotone in tx and ty directions.
Suppose there is such a cell c which is first intersected by P at an interior point on one of its
bounding surfaces Si. By Lemma 3, we know Si is continuous. Thus if move P up slightly, say
by a sufficient small constant ∊, then Si will generate a closed curve on P, contradicting Lemma
2.

To efficiently detect all type (c) and (d) events, we consider a type (c) event (type (d) events
can be similarly handled). Let c be the cell encountered by P. By Lemma 5, the first encountered
point is a vertex v of c. Let S1, S2 and S3 be the three surfaces generating v. Consider the moment
just before P meets v. By Lemma 3, all the three surfaces S1, S2 and S3 are continuous. Thus
each of them produces a line on P. The three lines generate at least two vertices on P, say v1
and v2, which are neighboring to each other on one of three lines and converge to v when P
moves to v. Thus to detect this event, it is sufficient to compute v at the time when v1 and v2
becomes neighbors to each other at their first time.

To detect all such events, we can start from Pθ0 and compute for each pair of neighboring
vertices in Pθ0 the time when they converge (or merge) (if they do), and store such time in the
event queue if it is in the range of H. Then we use the event queue to sweep the arrangement.
When a new vertex is generated on P or two vertices become neighbors to each other at their
first time, we check whether there is a possible event. In this way, we can capture all the events
and thus detect all the cells in A(Γ)∩ H.

The following lemma shows that each type (c) or (d) event can be detected efficiently.

Lemma 6
The intersection of three bounding surfaces can be computed by solving a polynomial of
degree 6.

Proof—Followed from Equation (16) and Lemma 2.

The following lemma bounds the total time used for detecting all events.

Lemma 7
All events can be detected in O(n log n + K(T6 + log n)) time, where K is the total number of
vertices in A(Γ)∩ H, and T6 is the time needed for finding roots of a polynomial of degree 6.

Proof—From Lemma 4, we know that the total time for constructing the arrangement Pθ0 is
O(n log n+K0). In Pθ0, there are O(K0) pairs of neighboring vertices. Each pair of neighboring
vertices takes O(T6) time (by Lemma 6) to find the possible event and O(log n) time to insert
the event into the event queue. For each new vertex in A(Γ)∩ H, the plane sweep algorithm
takes O(T6 + log n) time to find the event, to insert into, and to delete from the event queue.
Thus the total time for generating all vertices is O(n log n + K(T6 + log n)), and the lemma
follows.

The fall-in number of each cell c can be computed in O(1) time at the moment when P intersects
c at the first time by using the already computed fall-in numbers of its neighboring cells.
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So far, we have assumed that each facet cone FCi contributes only two surfaces to Γ. For a k-
edge facet cone, it could generate k bounding surfaces, with each corresponding to the
projection (ray) of an edge of FCi. Let Sj

i, and rj
i, 1 ≤ j ≤ k, be the k surfaces and projection

rays, respectively. Depending on the position of G, each of the k rays could be a bounding ray
of the sector SCi. When computing fall-in numbers, we change the fall-in number only when
the surface corresponding to a bounding ray is crossed. Thus if a surface (called shadow
surface) whose corresponding ray is not a bounding ray of SCi is crossed, the fall-in number
need not be changed. As mentioned in last section, one way to solve this problem is to introduce
separating surfaces to partition each region Ri into several subregions and to consider a more
complicated arrangement. A better way is to keep the k surfaces simultaneously in γ, and change
the way of computing the fall-in number. During sweeping the arrangement, if a new cell
involves some shadow surfaces, then the fall-in numbers of the two cells separated by a shadow
surface should be the same. A shadow surface may become a bounding surface when its
corresponding ray exchanges its role with a bounding ray. This means the two straight lines
(corresponding to the two surfaces of the same facet cone) on the sweep plane P overlap with
each other. By checking the order of the two rays on SB, we can correctly determine which
surface is now the bounding surface and its orientation.

Computing the fall-in number in this way increases the number surfaces by a factor of k. Thus
the total time for finding the maximum point can be bounded by the following theorem.

Theorem 1
A maximum point in A(γ)∩ H can be computed by a plane sweep algorithm in O(nk log(nk) +
K(T6 + log(nk))) time, where k is the number of edges of a facet cone and K is the number of
vertices in the arrangement A(γ)∩ H of O(nk) surfaces, and T6 is the time needed for finding
roots of a polynomial of degree 6.

Proof—Followed from the above discussion.

5.1 Finding the Maximum Point in 2-D Arrangements
When the range of tx is small, we may also consider selecting only ty and θ as the variables so
that the arrangement is further simplified. The following lemma shows some nice structure of
the arrangement induced by two variables.

Lemma 8—Let ta, a ∈ {x, y, z} and α ∈ {θ, ψ, φ} be the two selected variables. Each bounding
curve Si is of the form

Ta =
ai cos (α) + bi sin (α) + ci
di cos (α) + ei sin (α) + f i

, (17)

where α ∈ [0, 2π] or [0, π], ai, bi, ci, di, ei and fi are constants, and can be break into up to 3
continuous pieces. Any pair of curves has no more than 4 intersections.

Proof: The form of the bounding curve Si follows from Equation (16). The denominator of the
right hand side of Equation (17) has up to two roots, say α1 and α2, which make Si non-
continuous. By breaking Si at these two points, Si can be partitioned into three continuous
pieces.

To determine the number of intersections between any pair of curves S1 and S2, we consider
the following equation.
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a1 cos (α) + b1 sin (α) + c1
d1 cos (α) + e1 sin (α) + f 1

=
a2 cos (α) + b2 sin (α) + c2
d2 cos (α) + e2 sin (α) + f 2

.

Replacing cos(α) by z and sin(α) by ± 1 − z 2, we can convert the above equation into a
polynomial equation of degree 4. Thus the number of intersections between S1 and S2 is at
most 4.

Lemma 8 enables us to find a maximum point at each grid point by using some 2-D arrangement
traversal algorithms [2]. The following lemma bounds the running time.

Lemma 9—The maximum point of a 2-D arrangement can be found in O(n log n + K) time,
where K is the number of vertices in the 2-D arrangement inside H.

Proof: By Lemma 8, we know that the pairwise intersections are no more than 4. Thus by using
the algorithm in [2], we can traverse the whole arrangement in O(n log n + K) time.

To find the “global” maximum in the 2-D or 3-D arrangements, we determine a maximum
point for each grid point and return the best as our solution.

5.2 Removing Outliers
After the binary search on δ has finished, the accuracy can be further improved by removing
a few outliers from the point sets A and B. Notice that the correspondence between A and B
are often established manually, and may not be consistent with each other. By removing a few
outliers, we could further reduce δ and consequently reduce the error of G. The main idea is
as follows. Once δ is reduced to be infeasible, we can find a maximum point for G, and check
which points in B are not contained in their corresponding sectors. If the number of such points
is small, we can just discard those non-fall-in points from A and B. By doing so, δ becomes
feasible again and therefore may be further reduced. Hence, the error of G could be decreased.

6 Experimental Results
To evaluate the performance of our technique, we implemented our algorithm using C++ and
LEDA 4.4 on a DELL OPTIPLEX GX260 PC with 2.26GHz running Redhat Linux 8.0, and
compare it with a well-recognized algorithm [11] in Cardiovascular community. We conduct
our experiment with the same configuration as those in [11]. Our experiment randomly
generates a biplane imaging geometry in a small neighborhood of the following settings: ψ =
π/2, θ = 0, φ = 0, |tx| = |tz| = 0.5D, ty = 0, D = 140cm; and the input noise (or image errors) for
image data are up to 0.15cm. A set of 3-D object points are placed close to the center of the
two coordinate systems. The object points are projected onto the screen SA and SB, respectively.
A and B are then chosen by adding random noise to the projections of P.

Our experiment shows that the absolute errors for the translational variables and the Euler
angles are either much smaller than or comparable with those in [11]. For instance, in most of
our examples, errors are as small as 0.05cm for the translational variables and 0.5° for the Euler
angles while the errors in [11] could be as much as 0.15cm for the translational variables and
3° for the rotational variables. Our experiments indicate that the errors are consistent with the
sensitivity analysis stated in Lemma 1. As expected, Figure 6(a) shows that the errors of ty tend
to decrease when there are more corresponding pairs. Figure 6(b) shows that the errors of ty
slowly increase with an increase in the input image errors.
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Figure 1.
Coordinate systems of bi-plane imaging.
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Figure 2.
The three Euler angles.
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Figure 3.
A corresponding pair, ai and bi, and the associated round cone.
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Figure 4.
Facet cone.
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Figure 5.
Sweep the arrangement A(Γ) ∩ H.
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Figure 6.
(a) Errors of ty vs. number of corresponding pairs (b) Errors of ty vs. input image errors
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