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The maximum node clustering problem
G. Carello∗, F. Della Croce†, A. Grosso‡, M. Locatelli‡

Résumé

Dans cet article, nous introduisons un problème de graphes, appelé Maximum
Node Clustering (MNC). Nous prouvons que ce problème est fortementNP -complet
et montrons qu’il peut être approché en temps polynomial avec un rapport arbitrai-
rement proche de 2. Pour le cas particulier où le graphe est un arbre, nous prouvons
que le problème estNP -complet au sens faible puisqu’il généralise le problème du
sac-à-dos et qu’on peut le résoudre en temps pseudopolynomial par une approche de
programmation dynamique. Nous présentons également un FPTAS pour le cas des
arbres.

Mots-clefs : Maximum Node Clustering, Sac-à-dos, Complexité, Approximation

Abstract

In this paper we introduce a graph problem, called Maximum Node Clustering
(MNC). We prove that the problem is stronglyNP -complete and show that it can be
approximated in polynomial time within a ratio arbitrarily close to 2. For the special
case where the graph is a tree, we prove that the problem is weaklyNP -complete
as it generalizes the0/1 Knapsack problem and is solvable in pseudopolynomial
time by a dynamic programming approach. For this latter case an FPTAS is also
presented.
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The maximum node clustering problem

1 Introduction

We consider the following problem: an undirected graphG(V,E) is given, with nonnega-
tive node profitsπi, i ∈ V , edge weightswe, e = {i, j} ∈ E, and a given capacityB > 0;
determine a subsetS∗ ⊆ V such that the total profitπ(S∗) =

∑
i∈S∗ πi is maximum and

w(S∗) =
∑

e∈δ(S∗)

we ≤ B (1)

whereδ(S∗) is the set of all edges having at least one endpoint inS∗. In what follows
it is also assumed thatw({i}) ≤ B, ∀ i ∈ V, otherwise nodei could not be part of any
feasible solution and could be discarded in advance. We call such problem Maximum
Node Clustering (MNC). This problem generalizes the0/1 Knapsack problem (see the
reduction of Figure 1 in Section 3) and is strictly related to the Densek-Subgraph problem
[7, 1].

The problem models also a class of knapsack-like problems with quadratic capacity con-
straint, arising in some telecommunication network design problems ( see [2], [3], [9]
and [13]). In telecommunication networks with hierarchical architecture, terminal nodes
—terminals in what follows — representing origins and destinations of traffic demands,
are connected to hub nodes in charge of aggregating small flows into larger ones and route
them on intra-hub backbone links. Usually hubs have a limit,B, on the amount of traffic
they can handle — i.e. the amount of traffic they can aggregate/disaggregate and route.
The amount of traffic to be faced by a given hub is the sum of the traffic related to ter-
minals connected to it. Consider a set of terminalsV , a subsetS ⊆ V connected to the
considered hub and a traffic matrixtij, (i, j) ∈ V × V . The amount of traffic to be faced
by the hub is

∑
i∈S

∑
j∈V

tij +
∑
i∈S

∑
j∈V \S

tji =
∑
i∈S

[∑
j∈V

(tij + tji) −
∑
j∈S

tji

]
.

In certain environments we can specify meaningful “profits” coming from connecting a
terminali to the hub; this leads to a knapsack-like quadratic model

max
∑
i∈V

πixi (2)

subject to

∑
i∈V

[∑
j∈V

(tij + tji) xi −
∑
j∈V

tjixixj

]
≤ B (3)

xi ∈ {0, 1}, ∀i ∈ V, (4)
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wherexi = 1 iff the terminali is connected to the considered hub.

The profits assigned to the terminals may be different. With all equal profits we aim to
maximize the number of connected terminals. In another situation, suppose that a ter-
minal i∗ is considered and that the goal is to minimize the total amount of traffic that it
sends on the intra-hubs links — this helps in reducing network costs, since a flow de-
pending cost is usually given between every pair of hubs. Thus, the aim is to minimize∑

j∈V \S (ti∗j + tji∗). Since
∑

j∈V (ti∗j + tji∗) is a constant, this is equivalent to maxi-
mize

∑
j∈S (ti∗j + tji∗). This leads to a quadratic knapsack problem in which the profit

of an itemj is given byti∗j + tji∗. Finally,(2)–(4) is the pricing problem in a column
generation approach for a class of Bin Packing Problems with quadratic formulation of
the capacity constraint (see [2]). In this case, completely general profits are defined by
the simplex multipliers at each iteration. Model (2)–(4) defines a special case of MNC,
where terminals are mapped on graph nodes and weightswij = tij + tji are associated to
edges{i, j}: equation (1) enforces constraint (3).

In this work, we first show that the problem is stronglyNP -complete (even for bipartite
graphs) and that approximation ratios arbitrarily close to2 are attainable in polynomial
time. Then, we consider the weaklyNP -complete special case whereG is a tree and
show that it is solvable in pseudopolynomial time by a dynamic programming approach.
For this latter case an FPTAS is also provided.

2 Results for the general problem

We first recall the following problems which are instrumental for the results.

0/1 KNAPSACK (KP ). Given itemsN = {1, 2, . . . , n}, item profitsp1, . . . , pn and
weightsW1, . . . ,Wn andb ≥ 0 determineS ⊆ N such thatW (S) =

∑
i∈S Wi ≤ b and∑

i∈S pi is maximum (decision version:
∑

i∈S pi ≥ K for a givenK).

DENSEK-SUBGRAPH (DKS). Given a graphG′(V ′, E ′), with edge weightsWij, k >
0 andQ > 0, determine anS′ ⊆ V ′ such that|S ′| = k and

∑
{i,j}∈E(S′)

Wij ≥ Q, (5)

whereE(S ′) = {{i, j} ∈ E ′ : i, j ∈ S}.

TheKP problem isNP -complete in the ordinary sense [8], while theDKS problem is
NP -complete in the strong sense even for unweighted bipartite graphs [4].
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The maximum node clustering problem

The decision version ofMNC calls for finding anS ⊆ V such thatw(S) ≤ B and
π(S) ≥ R for a givenR. The following proposition establishes the complexity ofMNC
even for the special case of bipartite graphs.

Proposition 1 MNC is strongly NP -complete.

Proof: Feasibility of anyS ⊆ V can be checked inO(|E|) time, henceMNC ∈ NP .
A reduction fromDKS ∝ MNC is immediate: setV ≡ V ′, E ≡ E ′, Wij ≡ wij,
πi = 1 for all i ∈ V, B =

∑
{i,j}∈E Wij − Q, R = |V | − k. An S ⊆ V exists such that

π(S) = |S| = R andw(S) ≤ B iff S′ = V \ S is ak-node subset satisfying (5).�

We now discuss approximate algorithms forMNC on arbitrary graphs. From now on we
denote bySA an approximate (heuristic) solution forMNC.

Proposition 2 An approximate solution SA such that

π(S∗)
π(SA)

≤ 3 + ε

is computable in polynomial time for each ε > 0, and this bound is tight.

Proof: Let I be an instance ofMNC with a graphG(V,E), profitsπi, i ∈ V , weights
wij, (i, j) ∈ E, and capacityB. We define an instanceI1 of KP as follows:

N = {1, 2, . . . , n} = V, (6)

pi = πi, i ∈ V, (7)

Wi =
∑

(i,j)∈E

wij, i ∈ V, (8)

b = B. (9)

As already remarked in the Introduction, we assumeWi ≤ B for all i (if not, nodei cannot
be part of the solution and can be eliminated updating accordingly the other nodes ). Any
S ⊆ N feasible forI1 is also a feasible solution forI, sinceW (S) =

∑
i∈S Wi ≥ w(S).

Let S∗
1 be an optimal solution ofI1; we now prove that

π(S∗)
π(S∗

1)
≤ 3. (10)

First note that, forS∗ being feasible forI, we must have

W (S∗) =
∑
i∈S

Wi ≤ 2B; (11)

110



Annales du LAMSADE n˚4-5

we introduce a second, restricted instance ofKP defined by

N = {i : i ∈ S∗} ,

pi = πi, i ∈ N,

Wi =
∑

(i,j)∈E

wij, i ∈ N,

b = B.

That is,I2 is I1 with the item set restricted to the (unknown) items inS∗; clearly,

π(S∗
1) ≥ π(S∗

2),

whereS∗
2 is an optimal solution forI2; for anyt ∈ S∗ \ S∗

2 we have

W (S∗
2) + Wt > B

(for optimality ofS∗
2 ). We combine this with (11) and get

W (S∗ \ (S∗
2 ∪ {t})) ≤ B. (12)

RecallingWt ≤ B, then both{t} andS∗ \ (S∗
2 ∪ {t}) are feasible forI2; hence, for the

optimality ofS∗
2 :

πt ≤ π(S∗
2), (13)

π[S∗ \ (S∗
2 ∪ {t})] ≤ π(S∗

2). (14)

Now, we have

π(S∗) = π(S∗
2) + πt + π [S∗ \ (S∗

2 ∪ {t})] ≤ 3π(S∗
2) ≤ 3π(S∗

1),

which proves (10).

Using (10), we define an approximation algorithm forI as follows: first, we constructI1

in linear time; then we compute an approximate solution forI1 with relative error at most

ε/3. SinceKP admits an FPTAS, the latter can be done in timeO
(

n3

ε

)
. Finally, we set

ourSA to the approximate solution forI1. The guaranteed approximation ratio is then

π(S∗)
π(SA)

=
π(S∗)
π(S∗

1)
· π(S∗

1)

π(SA)
≤ 3

(
1 +

ε

3

)
= 3 + ε.

For the bound tightness, consider any instance ofMNC whereV = {1, 2, 3}, E =
{(1, 2), (1, 3), (2, 3)}, π1 = π2 = π3 = 1, w12 = w13 = w23 = B

3
; then inI1 W1 = W2 =

W3 = 2
3
B, andπ(S∗

1) = 1, while π(S∗) = π({1, 2, 3}) = 3. �

The approximation ratio of Proposition 2 can be further improved by solvingn instances
of KP instead of one. Given an instanceI of MNC, for each nodek ∈ V define a
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The maximum node clustering problem

reduced instanceI[k] where nodek and all its incident arcs are removed fromG, and the
capacity is reduced to

B −
∑

j : (k,j)∈E

wkj.

Approximating all these instances delivers better approximate solutions forI.

Proposition 3 An approximate solution SA such that

π(S∗)
π(SA)

≤ 2 + ε

is computable in polynomial time for each ε > 0, and this bound is tight.

Proof: The improved approximation algorithm works as follows. GivenI, we define
instancesI[k], k ∈ V as above. For eachI[k], aKP instanceI1[k] is created as in (6)–
(9) — always stripping off nodek and its incident arcs. Then we generate approximate
solutionsS1[k] for theI1[k]’s with relative error bounded from above byε/2; eachS1[k]
is also feasible forI[k], andS1[k] ∪ {k} is feasible forI. Finally, we setSA to be the set
S1[k] ∪ {k} with the largest profit.

To establish the result, it is sufficient to prove

π(S∗) ≤ 2 max
k∈V

{πk + π(S∗
1 [k])} . (15)

Let S∗[k] andS∗
1 [k] be optimal solutions forI[k], I1[k], respectively. Note that, for all

k ∈ S∗,
S∗[k] = S∗. (16)

Let k̄ ∈ S∗ be such that
πk̄ ≥ πi for all i ∈ S∗, (17)

and consider instanceI1[k̄]. We proceed similarly to the proof of Proposition 2; an in-
stanceI2[k̄] of KP corresponding toI1[k̄] restricted to the items inS∗[k̄] = S∗ is de-
fined. LetS∗

2 be the optimal solution forI2[k̄]. Clearly,π(S∗
2) ≤ π(S∗

1 [k̄]). For some
t ∈ S∗ \ (S∗

2 ∪
{
k̄
}
) we have

π(S∗) = πk̄ + π(S∗
2) + πt + π(S∗ \ (S∗

2 ∪
{
t, k̄

}
));

also, by the same arguments used for equation (12),S∗\(S∗
2 ∪

{
t, k̄

}
) is feasible forI2[k̄];

this implies
S∗ \ (S∗

2 ∪
{
t, k̄

}
) ≤ π(S∗

2).

Recalling (16), (17) andt, k̄ ∈ S∗, we have

π(S∗) = πk̄ + πt + π(S∗ \ (S∗
2 ∪

{
t, k̄

}
) + π(S∗

2) ≤ 2 [πk̄ + π(S∗
2)] ,
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0

1 2 n...

N = {1, 2, . . . , n}
W1, . . . ,Wn

p1, . . . , pn

b

K

=⇒

V = {0, 1, 2, . . . , n} , E = {(0, i) : i = 1, 2, . . . , n}
w0i = Wi, i = 1, 2, . . . , n

π0 = 0, πi = pi, i = 1, 2, . . . , n

B = b

R = K

Figure 1:KP ∝ TMNC

hence

π(S∗) ≤ 2 [πk̄ + π(S∗
2)] ≤ 2

[
πk̄ + π(S∗

1 [k̄])
]

which implies (15).

If all πk + π(S∗
1 [k]) are approximated within a maximum relative errorε/2,

π(S∗)
π(SA)

=
π(S∗)

maxk {πk + π(S∗
1 [k])} · maxk {πk + π(S∗

1 [k])}
π(SA)

≤ 2 + ε.

For the bound tightness, consider an instanceI of MNC on a complete graph where
V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, πi = 1 for all i ∈ V ,
wij = 1

6
B for all (i, j) ∈ E. EachI1[k] has capacity1

2
B, and optimal value1, hence we

get a heuristic solution with value2, while S∗ = {1, 2, 3, 4}. π(S∗) = 4. �

3 The tree case

In the following we consider instances ofMNC where the underlying graph is a tree
T (V,E) (Tree-MNC, TMNC). TMNC is easily seen to beNP-complete: Figure 1
sketches a simple reductionKP ∝ TMNC whereG is a star.

Let V = {1, 2, . . . , n}; without loss of generality, we assume that nodes are numbered so
that each nodek ∈ V is connected to “children” nodesΓk = {k1, k2, . . . , km > k} (m
depending onk) and, ifk �= 1, to a unique “parent”k′ < k; node1 is the root of the tree.
Also, letU ⊂ V be the set of leaves ofT .
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The maximum node clustering problem

3.1 Dynamic programming

We develop a dynamic programming recursion forTMNC, which is in the spirit of
those used forKP . Particularly, we remark that the recursion parameter could be (i)
the maximum capacity allowed for a partial solution, or (ii) the total profit associated
with the partial solution. We analyze in detail approach (ii).

Note that, for a nodek to be part of a feasible solutionS ⊆ V a capacity

ak = w(Γk) or bk = wk′k + w(Γk)

must be allotted tok, depending whetherk′ ∈ S or k′ /∈ S.

SolutionsS ⊆ V are build recursively, in stages; the recursion alternatesmajor stages
and minor stages. Each major stage is associated with a nodek ∈ V , and decides
whetherk must be part of a solution or not; then a sequence of minor stages is dedi-
cated to build the partial solution for the forest of subtreesTk1 , Tk2 , . . . , Tkm rooted at
nodes{k1, k2, . . . , km} = Γk. Each minor stage composes solutions forTkj

and the forest{
Tkj+1

, . . . , Tkm

}
.

A decision taken in a major stage for nodek has consequences up to the major stages
for k1, . . . , km only; specifically, ifk is to be brought into the solution, eachkj will need
only akj

units of capacity to be allotted in order to join the solution; otherwise, it will
needbkj

units.

We state the recursion forTMNC by using four functions.

• Φk(s) is defined as the minimum capacity to be allotted to anS including only
nodes from the subtree rooted atk, and such thatπ(S) = s, assumingak units of
capacity are required fork;

• φkj
(s) is defined as the minimum capacity to be allotted to anS including only

nodes from the forest made up of the subtrees rooted atkj, . . . , km, and such that
π(S) = s, assumingaki

units are required for eachki ∈ {kj . . . km};

• Ψk(s) is defined as the minimum capacity to be allotted to anS including only
nodes from the subtree rooted atk, and such thatπ(S) = s, assumingbk units of
capacity are required for nodek;

114



Annales du LAMSADE n˚4-5

• ψkj
(s) is defined as the minimum capacity to be allotted to anS including only

nodes from the forest made up of the subtrees rooted atkj, . . . , km, and such that
π(S) = s, assumingbki

capacity of units are required for eachki ∈ kj . . . km.

Note that, at the major stage corresponding toΦk(s) the decision is whether to bring or not
k into the solution; the optimal decision is the one which gives minimum weight between
φk1(s− πk) + ak — note that eachkj will then requireakj

units of capacity in this part of
the recursion — andψk1(s); in the latter case eachkj will require bkj

units in this part of
the recursion. Similar observations hold forΨk(s).

Concerining the minor stages, the minimumφkj
(s) is a composition of solutions for

Tkj
and

{
Tkj+1

, . . . , Tkm

}
; the total profit has to be partitioned, withu units to theTkj

solution ands − u to the residual forest, hence we minimize over all the valuesu =
0, . . . , s. Proceed similarly forψkj

(s).

Given the above definitions, the problem of clustering nodes with profits and mini-
mum weight writes out as

Φk(s) = min {φk1(s − πk) + ak, ψk1(s)} for k ∈ V \ U , (18)

φkj
(s) = min

0≤u≤s

{
Φkj

(u) + φkj+1
(s − u)

}
for j = 1, . . . ,m − 1, kj ∈ Γk, (19)

Ψk(s) = min {φk1(s − πk) + bk, ψk1(s)} for k ∈ V \ U, k �= 1, (20)

ψkj
(s) = min

0≤u≤s

{
Ψkj

(u) + ψkj+1
(s − u)

}
for j = 1, . . . ,m − 1, kj ∈ Γk, (21)

where for eachs ∈ [0, Π], Π =
∑

i∈V πi

φkm(s) = Φkm(s)

ψkm(s) = Ψkm(s)

and with initial conditions on leavesk ∈ U :

Φk(s) =

{
ak = 0 if s ∈ {0, πk},

∞ otherwise,
(22)

Ψk(s) =




bk = wk′k if s = πk,

0 if s = 0,

∞ otherwise.

(23)

Equations (18) and (20) correspond to major stages, while (19) and (21) correspond to
minor stages.

115



The maximum node clustering problem

This set of functions can be computed, for0 ≤ s ≤ ∑
i∈V πi from the leaves up to the

root; the maximum profit for the instance at hand is given by

π(S∗) = max {s : Φ1(s) ≤ B} ;

the optimal solutionS∗ can be recovered by backtracking.

Proposition 4 Recursion (18)–(23) optimally solves TMNC in time O(n3π2
max).

Proof: Optimality follows from the discusssion above (one could proceed, more formally,
by induction from the leaves to the root). For the time bound: for eachs, there are no
more thann major stages (Φk(s) andΨk(s) to compute), each computed in constant time
by (18) or (20); for each major stagek there are exactly|Γk| minor stages (φkj

(s) and
ψkj

(s) to compute), each requiring timeO(s). Hence for a fixeds a time proportional to
n+s ·∑k∈V |Γk| = O(n+ns) = O(ns) is required. There are

∑
i∈V πi values of interest

for s, hence the total time is proportional to

n

(
∑

i∈V πi

)2

= O(
n3π2

max

)
. �

Remark 1: One could design the recursion with the capacity as parameter; thenΦk(s)
would be the maximum profit attainable with a subsetS of nodes from the subtree rooted
in k and such thatw(S) ≤ s, assumingak units of space are required for taking nodek in
S; the other definitions should be modified similarly. Along the same lines as above, one
can prove that such recursion solvesMNC on trees in timeO(

nB2
)
.

Remark 2: If nodes profits and/or edge weights are unitary (πmax = 1 and/orB <
n(n−1)

2
), the complexity becomes polynomial. This induces, as a byproduct, thatDKS

on trees is polynomially solvable. We show this forDkS with unitary weights (the so-
calledDensest k-Subgraph problem in [1]), but through dicothomic search also the case
with arbitrary weights ((the so-calledHeaviest k-Subgraph problem in [1]) is polynomi-
ally solvable. Indeed, given an instance on a treeT of DkS, it is sufficient to optimally
solve the correspondingTMNC for all values ofB (that is to solveTMNC(B) for
1 ≤ B ≤ |E|) and check the corresponding solution values. This can be done in poly-
nomial time as|E| ≤ n(n−1)

2
. The valueB∗ such thatOPT (TMNC(B∗)) = n − k and

OPT (TMNC(B∗ − 1)) = n − k − 1, gives the optimal solution value ofDkS.
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3.2 A Fully Polynomial Time Approximation Scheme

Given the dynamic programming recursion (18)–(23), an FPTAS forMNC on trees is
defined as follows (note that the existence of an FPTAS can also be derived following
[11]). Let I be an instance ofTMNC with a treeT (V,E), profitsπi, i ∈ V , we, e ∈ E
andB; let ε be the desired bound on the relative error,πmax = max {πi : i ∈ V }, and
q = �1/ε�, M̄ = πmax

n(1+q)
.; we construct a scaled instanceI ′ with the same tree, capacity

B′ = B and weightsw′
e = we, and scaled profitsπ′

i = �πi/M̄�. Each solution feasible
for I ′ is also feasible forI. ThenI ′ is solved by theO (n3π2

max) dynamic programming
recursion, and the optimal solutionS′ for I ′ is returned as heuristic solution forI.

Proposition 5
π(S∗)
π(S ′)

≤ 1 + ε, and S ′ can be computed in time O
(

n5

ε2

)
.

Proof: The proof exactly mimics the one given forKP (see for example [8]). ForS∗ and
S ′, we have

∑
i∈S′

πi ≥
∑
i∈S′

M̄π′
i ≥

∑
i∈S∗

M̄π′
i ≥

∑
i∈S∗

(πi − M̄) ≥
∑
i∈S∗

πi − nM̄,

hence
π(S ′) ≥ π(S∗) − nM̄.

Then,

π(S∗)
π(S ′)

≤ 1 +
nM̄

π(S ′)
≤ 1 +

nM̄

π(S∗) − nM̄
≤ 1 +

nM̄

πmax − nM̄
= 1 +

1

q

≤ 1 + ε.

The time bound follows fromπ′
max = �πmax/M̄� = �n(1 + q)�, hence the recursion takes

time

O (n3(π′
max)

2) = O(n5q2) = O
(

n5

ε2

)
. �

3.3 Conclusions

We have introduced in this paper the Maximum Node Clustering showing that the problem
is stronglyNP -complete and can be polynomially approximated within a ratio arbitrarily
close to 2. We have then considered theNP -complete special case when the graph is a
tree and proposed a pseudopolynomial time exact dynamic programming algorithm and a
fully polynomial time approximation scheme. Several related issues are worthy of future
research with particular reference to
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• The approximability of theMNC problem on bipartite graphs: it is easy to prove
that, for this special case, a faster and simpler way (with respect to Proposition 3) to
get an approximation ratio arbitrarily close to 2 is the following: solve two instances
I1 of KP where in the first (second) case all nodes of the first (second) partition are
excluded a priori fromS∗ and take the best solution. This result is essentially due
to the bipartite structure of the problem. Is it possible to better exploit this structure
to improve upon this ratio?

• The Worst-case complexity (see [12] and its relevant notation). It is quite straight-
forward to show that theMNC problem on bipartite graphs can be solved with
complexityO∗(2

3
4
n). Indeed, if for all nodes of the smallest partition (with size

α ≤ n
2
) it is known whether they belong toS∗, the remaining problem corresponds

to aKP problem withβ = n − α ≥ n
2

variables. We know from [10] that aKP

problem withβ variables is exactly solvable with complexityO∗(2
β
2 ). But then, by

running the correspondingKP problem for all the2α different cases as far as the
smallest partition is concerned, we get a complexityO∗(2α ∗ 2

β
2 ) where the worst

case occurs forα = β = n
2

that isO∗(2
3
4
n). It is worthy to see if this result can be

improved to close the gap with respect to theO∗(2
n
2 ) bound provided by theKP

problem and whether it is possible to get anything better than the trivialO∗(2n) for
the general problem.
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