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The maximum node clustering problem

G. Carelld, F. Della Crocé A. Grossé, M. Locatelli

Résumé

Dans cet article, nous introduisons un probléeme de graphes, appelé Maximum
Node Clustering (MNC). Nous prouvons que ce probleme est forteMé&ntomplet
et montrons qu'il peut étre approché en temps polynomial avec un rapport arbitrai-
rement proche de 2. Pour le cas particulier ou le graphe est un arbre, nous prouvons
que le probléme esy P-complet au sens faible puisqu’il généralise le probleme du
sac-a-dos et qu’on peut le résoudre en temps pseudopolynomial par une approche de
programmation dynamique. Nous présentons également un FPTAS pour le cas des
arbres.

M ots-clefs: Maximum Node Clustering, Sac-a-dos, Complexité, Approximation

Abstract

In this paper we introduce a graph problem, called Maximum Node Clustering
(MNC). We prove that the problem is strongh/P-complete and show that it can be
approximated in polynomial time within a ratio arbitrarily close to 2. For the special
case where the graph is a tree, we prove that the problem is waaRkkgomplete
as it generalizes the@/1 Knapsack problem and is solvable in pseudopolynomial
time by a dynamic programming approach. For this latter case an FPTAS is also
presented.

Key words: Maximum Node Clustering, Knapsack, Complexity, Approximation
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The maximum node clustering problem

1 Introduction

We consider the following problem: an undirected gréfif, F) is given, with nonnega-
tive node profitsr;, ¢ € V, edge weightsv., e = {7, j} € E, and a given capacit§ > 0;
determine a subsét® C V' such that the total profit(S*) = >, ¢. m; is maximum and

Z w, < B (1)

e€6(S*)

whered(S*) is the set of all edges having at least one endpoirit*inIn what follows

it is also assumed that({i}) < B, Vi € V, otherwise node could not be part of any
feasible solution and could be discarded in advance. We call such problem Maximum
Node Clustering {/ NC). This problem generalizes tlig¢1 Knapsack problem (see the
reduction of Figure 1 in Section 3) and is strictly related to the DérSabgraph problem

[7, 1].

The problem models also a class of knapsack-like problems with quadratic capacity con-
straint, arising in some telecommunication network design problems ( see [2], [3], [9]
and [13]). In telecommunication networks with hierarchical architecture, terminal nodes
—terminals in what follows — representing origins and destinations of traffic demands,
are connected to hub nodes in charge of aggregating small flows into larger ones and route
them on intra-hub backbone links. Usually hubs have a ligjtpn the amount of traffic

they can handle — i.e. the amount of traffic they can aggregate/disaggregate and route.
The amount of traffic to be faced by a given hub is the sum of the traffic related to ter-
minals connected to it. Consider a set of termiridlsa subset5 C V' connected to the
considered hub and a traffic mattix, (¢, j) € V' x V. The amount of traffic to be faced

by the hub is

DDt D b= | D () =Dty
€S jeV €S jeV\S €S Ljev JjES

In certain environments we can specify meaningful “profits” coming from connecting a
terminali to the hub; this leads to a knapsack-like quadratic model

max Z X5 (2)

i€V

subject to

Z Z (tij + t5i) i ZTLJ%T Ti| = 3

eV Ljev JjeV

x; €{0,1}, Vi eV, 4)
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wherez; = 1 iff the terminali is connected to the considered hub.

The profits assigned to the terminals may be different. With all equal profits we aim to
maximize the number of connected terminals. In another situation, suppose that a ter-
minal i* is considered and that the goal is to minimize the total amount of traffic that it
sends on the intra-hubs links — this helps in reducing network costs, since a flow de-
pending cost is usually given between every pair of hubs. Thus, the aim is to minimize
D evs (tij + tjix). Sinced .y (t; +t;-) is @ constant, this is equivalent to maxi-
mize ), ¢ (t; +t;+). This leads to a quadratic knapsack problem in which the profit
of an itemj is given byt;.; + t;;-. Finally,(2)—(4) is the pricing problem in a column
generation approach for a class of Bin Packing Problems with quadratic formulation of
the capacity constraint (see [2]). In this case, completely general profits are defined by
the simplex multipliers at each iteration. Model (2)—(4) defines a special case of MNC,
where terminals are mapped on graph nodes and weights ¢;; + ¢;; are associated to
edges{i, j }: equation (1) enforces constraint (3).

In this work, we first show that the problem is strongiy?-complete (even for bipartite
graphs) and that approximation ratios arbitrarily close e attainable in polynomial
time. Then, we consider the weakly P-complete special case whefgis a tree and
show that it is solvable in pseudopolynomial time by a dynamic programming approach.
For this latter case an FPTAS is also provided.

2 Resultsfor the general problem

We first recall the following problems which are instrumental for the results.

0/1 KNAPSACK (KP). GivenitemsN = {1,2,...,n}, item profitsp,, ..., p, and
weightsiy, ..., W, andb > 0 determineS C N such thai?'(S) = >, . W; < b and
Y ics Pi IS maximum (decision versiory_, ¢ p; > K for a givenk).

DENSEK-SUBGRAPH DK S). Given agraplty’(V’, E’), with edge weight$V;;, k£ >
0 and@ > 0, determine ar$” C V"’ such thatS’| = k and

Z Wi > @Q, )

{igreE(S")
whereE(S") = {{i,j} € E':i,j € S}.

The K P problem isN P-complete in the ordinary sense [8], while thed{S problem is
N P-complete in the strong sense even for unweighted bipartite graphs [4].
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The maximum node clustering problem

The decision version oM/ NC calls for finding anS C V such thatw(S) < B and
7(S) > R for a givenR. The following proposition establishes the complexity\éiVC
even for the special case of bipartite graphs.

Proposition 1 M NC' isstrongly N P-complete.

Proof: Feasibility of anyS C V' can be checked i@(|E|) time, henceM NC' € NP.
A reduction fromDKS « MNC is immediate: seV = V', E = E', W;; = wyj,
m=1foralli e VB =3, n.pWij—Q R=|V]—k AnS C V exists such that
7(S) = |S] = Randw(S) < Biff § =V \ Sis ak-node subset satisfying (5)J

We now discuss approximate algorithms #dtV C on arbitrary graphs. From now on we
denote byS4 an approximate (heuristic) solution faf NC.
Proposition 2 An approximate solution S 4 such that

(S*)
7(5a)

<3+¢
is computable in polynomial time for each ¢ > 0, and this bound is tight.

Proof: Let I be an instance of/ NC with a graphG(V, E), profitsm;, i € V, weights
wy;, (1,7) € E, and capacity3. We define an instanck of K P as follows:

N={1,2,...,n} =V, (6)

Di = T, (RS Va (7)
(i,5)EE

b= B. )

As already remarked in the Introduction, we assuime< B for all i (if not, node; cannot

be part of the solution and can be eliminated updating accordingly the other nodes ). Any
S C N feasible for/, is also a feasible solution fdr, sincelV (S) = >, Wi > w(S).

Let ST be an optimal solution of;; we now prove that

w(S*)
= <3. (10)
m(S7)
First note that, foiS* being feasible for, we must have
W(S") =) W; <2B; (11)
€S
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we introduce a second, restricted instanc&’d@? defined by
N={irie S},
pi = T, (RS N7
W; = Z Wiy, i €N,

(i,)€E
b= B.

That is, I, is I; with the item set restricted to the (unknown) itemsSin clearly,
m(57) = m(S3),
wheresS; is an optimal solution fof,; for anyt € S* \ S} we have
W(S;)+ W, > DB
(for optimality of S3). We combine this with (11) and get
W(S™\ (S5 U{t})) < B. (12)
Recalling; < B, then both{t} andS* \ (S; U {t}) are feasible fot,; hence, for the

optimality of S;:

m < 7(53), (13)

m[STN\ (53 U{t})] < 7(5S3). (14)

Now, we have
m(S7) = m(S3) + m + 7[5\ (55 U {t})] < 3m(S55) < 3n(S5)),

which proves (10).
Using (10), we define an approximation algorithm faas follows: first, we construdt
in linear time; then we compute an approximate solutior/faxith relative error at most
/3. SinceK P admits an FPTAS, the latter can be done in ti(thé%3 . Finally, we set
our S, to the approximate solution fdi. The guaranteed approximation ratio is then

m(S7) _ m(ST)  7(ST) £
= . <3(1+-)=3+e.
7(Sa) 7S w(Sa) = (1+ 3) te
For the bound tightness, consider any instancéf¥C whereV = {1,2,3}, £ =
{(1, 2), (1,3)7 (2,3)}, Tl = Mg = T3 = 1, W12 = W13 = W3 = %, then in]1 W1 = WQ =
Wy = 2B, andn(S}) = 1, while7(S*) = 7({1,2,3}) =3. O

The approximation ratio of Proposition 2 can be further improved by solvimgtances
of K P instead of one. Given an instanéeof M NC, for each nodé < V define a
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The maximum node clustering problem

reduced instancé[k] where node: and all its incident arcs are removed fr@mand the
capacity is reduced to
B — Z Wi -

j: (kj)eE
Approximating all these instances delivers better approximate solutiods for
Proposition 3 An approximate solution .S 4 such that

(S*)
7(S4)

<2+¢
is computable in polynomial time for each ¢ > 0, and this bound is tight.

Proof: The improved approximation algorithm works as follows. Giverwe define
instanced [k], k € V as above. For eachk], a K P instancel, [k] is created as in (6)—
(9) — always stripping off nodé and its incident arcs. Then we generate approximate
solutionsS (k| for the I; [k]’s with relative error bounded from above by2; eachS; k]

is also feasible fof [k], and S, [k] U {k} is feasible forl. Finally, we setS4 to be the set
S1[k] U {k} with the largest profit.

To establish the result, it is sufficient to prove

m(S87) < 2max {m, + 7 (S7[k])} - (15)

Let S*[k] and S} [k| be optimal solutions fof [x], I;[k], respectively. Note that, for all
ke S,
S*[k] = S (16)
Letk € S* be such that
T > T foralli € S*, a7

and consider instanck [k]. We proceed similarly to the proof of Proposition 2; an in-
stancel,[k] of K'P corresponding td, [k] restricted to the items i*[k] = S* is de-
fined. LetS; be the optimal solution fof,[k]. Clearly,7(5;5) < =(S;[k]). For some
t €5\ (55U {k}) we have

m(S*) = mp 4+ 7(S5) + m + (SN (S U {t,k}));

also, by the same arguments used for equation @2)(S; U{t, k}) is feasible forl,[k];
this implies B
S\ (S5 U {t,k}) < m(S5).

Recalling (16), (17) and k € S*, we have
m(S*) =mp +m +7(ST\ (S5 U {t, l_c}) +7(S5) < 2[mp + 7(S3)],
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N={1,2,...,n} V={0,1,2,...,n}, E={(0,4):i=1,2,...,n}
Wi, ..., W, wy =W, 1=1,2,....n

DiyeeeyDn = my=0m=p,1=1,2,...,n

b B=b

K R=K

Figure . KP x TMNC

hence
m(S*) < 2[mg + 7(S3)] < 2 [my, + 7(S;[k])]

which implies (15).
If all m, + w(S7[k]) are approximated within a maximum relative ersge,

m(S*) 7(S*) ~maxy {m + 7(S7[K])} .
7(Sa)  maxy {m + 7(SH[E])} 7(Sa) s2te

For the bound tightness, consider an instahagd M NC on a complete graph where
V ={1,2,3,4}, E = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}, m; = 1 foralli € V,
w;; = ¢Bforall (i, j) € E. Eachl;[k] has capacity, B, and optimal valué, hence we
get a heuristic solution with valug while S* = {1,2,3,4}. #(S*) = 4. O

3 Thetreecase

In the following we consider instances 6f NC' where the underlying graph is a tree
T(V,E) (TreeMNC, TMNC). TMNC is easily seen to b&P-complete: Figure 1
sketches a simple reductidtiP o« TM NC whereG is a star.

LetV = {1,2,...,n}; without loss of generality, we assume that nodes are numbered so
that each nodé € V' is connected to “children” nodds, = {ki,ks,... , kyn >k} (m
depending ork) and, ifk # 1, to a unique “parentk’ < k; nodel is the root of the tree.
Also, letU C V be the set of leaves df.
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3.1 Dynamic programming

We develop a dynamic programming recursion Tak/ NC, which is in the spirit of
those used fod P. Particularly, we remark that the recursion parameter could be (i)
the maximum capacity allowed for a partial solution, or (ii) the total profit associated
with the partial solution. We analyze in detail approach (ii).

Note that, for a nodé to be part of a feasible solutiofi C V' a capacity
ar = w(Ty) orby, = wig + w(Ty)

must be allotted té&, depending whether’ € Sork’ ¢ S.

SolutionsS C V are build recursively, in stages; the recursion alternaigger stages
and minor stages. Each major stage is associated with a nédec 1/, and decides
whetherk must be part of a solution or not; then a sequence of minor stages is dedi-
cated to build the partial solution for the forest of subtrégs Ty, ..., Ty, rooted at
r{10des{k1, ko, . } , kn} = T'x. Each minor stage composes solutionsfgrand the forest
Thyorse s T }-

A decision taken in a major stage for nokl@as consequences up to the major stages
for k1, ..., k,, only; specifically, ifk is to be brought into the solution, eathwill need
only a,, units of capacity to be allotted in order to join the solution; otherwise, it will
needb,; units.

We state the recursion f@rA N C' by using four functions.

e &, (s) is defined as the minimum capacity to be allotted toSamcluding only
nodes from the subtree rootediatand such that(S) = s, assumingz units of
capacity are required far;

e ¢,(s) is defined as the minimum capacity to be allotted toSaimcluding only
nodes from the forest made up of the subtrees rootéd, at. , k,,, and such that
7(S) = s, assumingy, units are required for eadh € {k; ...k, };

e U, (s) is defined as the minimum capacity to be allotted toSamcluding only
nodes from the subtree rootediatand such that(S) = s, assumingy units of
capacity are required for node
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e Vi, (s) is defined as the minimum capacity to be allotted toSaimcluding only
nodes from the forest made up of the subtrees rootéd, at. , k,,, and such that
7(S) = s, assuming, capacity of units are required for eakhe k; ... ky,.

Note that, at the major stage correspondingt¢s) the decision is whether to bring or not

k into the solution; the optimal decision is the one which gives minimum weight between
¢k, (s — 1) + ar, — note that each; will then requirea, units of capacity in this part of

the recursion — and, (s); in the latter case eadty will require by, units in this part of

the recursion. Similar observations hold fbg(s).

Concerining the minor stages, the minimuy)(s) is a composition of solutions for
T, and {Tml, co iy I, } the total profit has to be partitioned, withunits to theT,
solution ands — u to the residual forest, hence we minimize over all the valw%
0,...,s. Proceed similarly fot), (s).

Given the above definitions, the problem of clustering nodes with prafitd mini-
mum weight writes out as

Dp.(s) = min {¢x, (s — ) + ag, Vi, (5)} fork e V\U, (18)
P, (s) = mln {@k u) + G, (s u)} forj=1,....,m—1,k; €'y, (19)
Wi(s) 7mln{(bkl(s—m)erk,t/)kl(s)} forke V\Uk#1, (20)
Uy, (s) = mm {\I’k )+ i, (s u)} forj=1,....m—1,k; €'y, (21)

where foreachh € [0,11], IT =", m

Bk, (8) = P, ()
Uk (8) = Yy, (5)

and with initial conditions on leavesc U:

ap =0 if s € {O,ﬂ'k},
Dp(s) = 22
() {oo otherwise, (22)
bk:wk’k ifs:ﬂk,
U(s) =<0 if s=0, (23)
s otherwise.

Equations (18) and (20) correspond to major stages, while (19) and (21) correspond to
minor stages.
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This set of functions can be computed, for< s < »°._, 7; from the leaves up to the
root; the maximum profit for the instance at hand is given by

7(S*) = max{s: ®i(s) < B};

the optimal solutior* can be recovered by backtracking.
Proposition 4 Recursion (18)(23) optimally solves TM NC intime O(n3x2,).

Proof: Optimality follows from the discusssion above (one could proceed, more formally,
by induction from the leaves to the root). For the time bound: for eat¢here are no
more tham major stages®(s) and¥,(s) to compute), each computed in constant time
by (18) or (20); for each major stagethere are exactlyl',| minor stagesd,(s) and

U, (s) to compute), each requiring tin®(s). Hence for a fixed a time proportional to
n+s-Y ,ev IUk| = O(n+ns) = O(ns) isrequired. There arg’,_,, ; values of interest

for s, hence the total time is proportional to

2
n ( Yiev 7ri> =0(n*n2,,). O

Remark 1: One could design the recursion with the capacity as parameter®tfen
would be the maximum profit attainable with a subSetf nodes from the subtree rooted

in k£ and such that(S) < s, assumingy,, units of space are required for taking nddia

S; the other definitions should be modified similarly. Along the same lines as above, one
can prove that such recursion solVE&sVC' on trees in time(’)(nBQ).

Remark 2: If nodes profits and/or edge weights are unitary,.f = 1 and/orB <
@), the complexity becomes polynomial. This induces, as a byproduct/xthas

on trees is polynomially solvable. We show this fokS with unitary weights (the so-
calledDensest k-Subgraph problem in [1]), but through dicothomic search also the case
with arbitrary weights ((the so-callgdeaviest k-Subgraph problem in [1]) is polynomi-
ally solvable. Indeed, given an instance on a ffeef DkS, it is sufficient to optimally
solve the corresponding M NC for all values of B (that is to solvel'M NC(B) for

1 < B < |E|) and check the corresponding solution values. This can be done in poly-
nomial time agE| < "1, The valueB* such thaOPT(TMNC(B*)) = n — k and
OPT(TMNC(B*—-1)) =n — k — 1, gives the optimal solution value @i%.5S.
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3.2 A Fully Polynomial Time Approximation Scheme

Given the dynamic programming recursion (18)—(23), an FPTASVdYC on trees is
defined as follows (note that the existence of an FPTAS can also be derived following
[11]). Let I be an instance df M NC with a treeT'(V, E), profitsm;, i € V, w,., e € E

and B; let ¢ be the desired bound on the relative errgf,, = max {r;: i € V}, and
q=[1/e], M = (I we construct a scaled instanfewith the same tree, capacity

B' = B and weightsw, = w,, and scaled profits; = |x;/M |. Each solution feasible

for I’ is also feasible fof. Then!’ is solved by the) (n372 . ) dynamic programming

recursion, and the optimal soluticti for I’ is returned as heuristic solution for

7(S*)

P ition 5
roposition (5

<1+ ¢, and S’ can be computed in time © (';—2> .

Proof: The proof exactly mimics the one given farP (see for example [8]). Fa$* and
S’, we have

Zm— > Z]V_[TF; > Z]WW; > Z(Wi—M) > Zﬁi—nﬂ_ﬂ

ies’ i€s’ i€S* ieS* i€S*
hence B
7(S") > m(S*) — nM.
Then,
:((i’)) si+ 7rn(];4/) si+ W(S*T;AEITLM sl+ ﬂ'Hm,tl]—wn]Vf =1+ é
<l-+e.

The time bound follows from’

! ax = |Tmax/M | = [n(1+ q) ], hence the recursion takes
time

3.3 Conclusions

We have introduced in this paper the Maximum Node Clustering showing that the problem
is strongly N P-complete and can be polynomially approximated within a ratio arbitrarily
close to 2. We have then considered ffi&-complete special case when the graph is a
tree and proposed a pseudopolynomial time exact dynamic programming algorithm and a
fully polynomial time approximation scheme. Several related issues are worthy of future
research with particular reference to
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e The approximability of thel/ NC problem on bipartite graphs: it is easy to prove
that, for this special case, a faster and simpler way (with respect to Proposition 3) to
get an approximation ratio arbitrarily close to 2 is the following: solve two instances
I, of K P where in the first (second) case all nodes of the first (second) partition are
excluded a priori from5* and take the best solution. This result is essentially due
to the bipartite structure of the problem. Is it possible to better exploit this structure
to improve upon this ratio?

e The Worst-case complexity (see [12] and its relevant notation). It is quite straight-
forward to show that thé/ NC' problem on bipartite graphs can be solved with
complexityO*(ﬁ"). Indeed, if for all nodes of the smallest partition (with size
a < 3) itis known whether they belong t§*, the remaining problem corresponds
to a K P problem with3 = n — a > 5 variables. We know from [10] that & P

problem withj variables is exactly solvable with complexiﬂf(ﬁ). But then, by
running the corresponding P problem for all the2> different cases as far as the
smallest partition is concerned, we get a complegity2~ x 23) where the worst
case occurs for = 5 = 7 that isO*(21"). Itis worthy to see if this result can be
improved to close the gap with respect to thg22) bound provided by thél P
problem and whether it is possible to get anything better than the téwi@") for
the general problem.
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