
Strong-mixed Searching and Pathwidth

Boting Yang 1

Department of Computer Science
University of Regina

Abstract. In this paper, we propose a new search model, called strong-
mixed search, which is a generalization of the mixed search. We show that
the strong-mixed search number of a graph equals the pathwidth of the
graph. We also describe relationships between the strong-mixed search num-
ber and other search numbers.

Keywords: node search, edge search, mixed search, cops-and-robber
game, pursuit-evasion problem.

1 Introduction

Let G be a connected undirected finite graph. Parsons [10] introduced and
studied the pursuit-evasion problem on graphs. Megiddo et al. [9] dis-
cretized this problem to an edge search model. They proved that determin-
ing whether the edge search number of G (es(G)) is bounded by a given
integer is NP-complete. Kirousis and Papadimitriou [7] introduced the node
search model and proved that ns(G)− 1 ≤ es(G) ≤ ns(G) + 1, where ns(G)
denotes the node search number of G. They also proved that ns(G) equals
the vertex separation number of G plus one. Kinnersley [6] showed that the
vertex separation number of G equals the pathwidth of G (pw(G)). This
implies that ns(G) = pw(G) + 1. The mixed search model is a combination
of the edge search and node search [3, 12]. Takahashi et al. [12] showed that
mixed search number (ms(G)) equals the proper-path-width of G (ppw(G)).
In summary, we have the following results due to [3, 6, 7, 12].

1.1 Lemma. [3, 6, 7, 12] If G is a connected graph, then
(i) ns(G)− 1 ≤ es(G) ≤ ns(G) + 1;
(ii) ms(G) ≤ es(G) ≤ ms(G) + 1;
(iii) ms(G) ≤ ns(G) ≤ ms(G) + 1;
(iv) ns(G) = pw(G) + 1; and
(v) ms(G) = ppw(G).

1Email: boting@cs.uregina.ca. Research was supported in part by NSERC and MI-
TACS.

1

Graph search problems serve as models for important applied problems
(see [1, 2, 4, 5]). In this paper, we propose and study a new search model,
called strong-mixed search, which is a generalization of the mixed search. We
proved that recontamination does not help in the strong-mixed search. We
show that the strong-mixed search number of a graph equals the pathwidth
of the graph. We also relate the strong-mixed search with other search
models.

This paper is organized as follows. In Section 2, we give definitions and
notations. In Section 3, we present properties of the strong-mixed search.
In Section 4, we establish the relationship between the strong-mixed search
number and the pathwidth by relating the strong-mixed search with the
node search. In Section 5, we describe relationships between the strong-
mixed search and other searches.

2 Preliminaries

Throughout this paper, let G be a connected undirected finite graph em-
bedded in E3 such that no pair of edges intersect at a point that is not a
common end vertex. A point in G is either a vertex or an interior point of
an edge in G.

We first define the strong-mixed search model. Initially, G contains one
intruder who is located at a point in G, and G does not contain any searchers.
Each searcher has no information of the whereabouts of the intruder, but
the intruder has complete knowledge of the location of all searchers. The
intruder always chooses the best strategy so that he evades capture. Suppose
we start at time t0 and the intruder is captured at time tN , and the search
time is divided into N intervals (t0, t1], (t1, t2], . . ., (tN−1, tN] such that in
each interval (ti, ti+1], exactly one searcher performs one of the following
three actions:

A1. One searcher is placed on a vertex v, denoted as place(v).

A2. One searcher is removed from a vertex v, denoted as remove(v).

A3. One searcher slides along an edge uv from u to v, denoted as slide(u, v).

The above moment sequence (t0, t1, . . . , tN) corresponds to the search steps.
The intruder can move from a point x to a point y in G at any time in
the interval (t0, tN) if there exists a path between x and y which contains
no searcher. As usual, the intruder always takes the best strategy so that

2

he avoids being captured. Let N(v) = {u : u is adjacent to v} and N [v] =
{v} ∪N(v). A capture takes place when one of the following events occurs:

C1. A searcher and the intruder occupy the same point on G.

C2. The intruder is on an edge whose end vertices are both occupied by
searchers.

C3. The intruder is in the subgraph induced by N [v] and all vertices in
N(v) are occupied by searchers.

The goal of searchers is to capture the intruder, and the goal of the intruder
is to avoid being captured. We refer to this search model as the strong-mixed
searching. The strong-mixed search number of G, denoted by ss(G), is the
smallest positive integer k such that k searchers can capture the intruder
using the strong-mixed search model. A strong-mixed search strategy of G
is a finite sequence of searcher actions that results in the intruder being
captured. Note that the strong-mixed search is different from the edge
search, node search or mixed search only in the definitions of actions and
captures. The edge search uses actions A1, A2 and A3 but only uses capture
C1; the node search uses actions A1 and A2 and captures C1 and C2; and
the mixed search uses actions A1, A2 and A3 and captures C1 and C2.
Similar to the strong-mixed search, we can define the edge search number
of G (es(G)), node search number of G (ns(G)) and mixed search number
of G (ms(G)), and similarly define their search strategies. We say that a
search strategy is optimal if the intruder can be captured using the minimum
number of searchers.

Before the intruder is captured, there always exists a region of G in which
the intruder hides. This region is called the intruder’s territory. The vertices
and edges in the intruder’s territory are called contaminated, or dirty. For a
strong-mixed search, all vertices and edges of G are contaminated at t0. A
vertex v can be cleared in two ways: (1) v is occupied by a searcher; or (2)
every vertex in N(v) is occupied by a searcher. We say that v is cleared by
sight in case (2). An edge uv can be cleared in three ways: (1) both u and
v are occupied by searchers; (2) all vertices of N(u) or N(v) are occupied
by searchers; or (3) if vertex u is occupied by a searcher and every edge
incident with u, other than uv, is already cleared, then the searcher slides
along uv from u to v. For cases (1) and (2), we say that uv is cleared by
sight; for case (3) we say that uv is cleared by sliding. If the path connecting
a cleared edge uv and a dirty edge contains no searcher at some moment,
then uv becomes a portion of the intruder’s territory and must be cleared
again. In this case we say uv becomes recontaminated.

3

At moment ti, if a vertex v has both cleared and contaminated edges
incident on it, then v must have a searcher, say γ, to protect cleared edges
incident on it. If there are two or more dirty edges incident on v, then γ
must stay on v in (ti, ti+1] if we do not allow the cleared edges incident on
v to become recontaminated. The searcher γ is called a guard at ti. If there
is exactly one dirty edge incident on v, then γ may slide along this dirty
edge in (ti, ti+1] without any recontamination, but we cannot remove γ from
v in (ti, ti+1] if we do not allow the cleared edges incident on v to become
recontaminated. The searcher γ is said to be semi-free at ti. If a searcher is
neither a guard nor a semi-free searcher at ti, then this searcher is said to
be free at ti.

Let Ei be the set of cleared edges at ti. A search strategy for which
Ei ⊆ Ei+1 for all ti is said to be monotonic [3, 8]. The fewest num-
ber of searchers required to capture the intruder in G under the mono-
tonic strong-mixed search model is called the monotonic strong-mixed search
number, denoted mss(G). Similarly, we can define the monotonic node
search and the monotonic node search number (mns(G)).

Robertson and Seymour [11] introduced the concept of the pathwidth of
a graph. For graph G(V, E), a sequence (W1,W2, . . . , Wr) of subsets of V is
a path decomposition of G if each of the following conditions are satisfied:

(i)
⋃r

i=1 Wi = V ;
(ii) for each edge uv ∈ E, there exists a Wi such that u, v ∈ Wi; and
(iii) for all integers i, j, k with 1 ≤ i ≤ j ≤ k ≤ r, Wi ∩Wk ⊆ Wj .

The width of a path decomposition is defined as max{|Wi| − 1 : 1 ≤ i ≤ r}.
The pathwidth of G, denoted by pw(G), is the minimum width over all
possible path decompositions of G.

3 Properties of strong-mixed searching

We first consider the subgraph cleared at each step in the strong-mixed search.

3.1 Lemma. Let X = (X0, X1, . . . , XN−1) be a strong-mixed search strat-
egy for a connected graph G such that Xi is the action in interval (ti, ti+1].
Let Ei, 0 ≤ i ≤ N , be the set of cleared edges at ti and Gi+1 be the graph
formed by the edges of Ei+1 \Ei. If Ei+1 \Ei 6= ∅, then there exists a vertex
v in Gi+1 such that the graph Gi+1 −N [v] consists of only isolated vertices.

Proof. Note that the strong-mixed search has three kinds of actions.
For an action Xi in (ti, ti+1], if Xi is a removing action, then Ei+1 \Ei = ∅.
Thus, we only need to consider placing and sliding actions. In either one of

4

these two actions, let v be the vertex that receives a searcher in (ti, ti+1].
If v is cleared at ti, then Ei+1 \ Ei = ∅. Thus, we can assume that v is
dirty at ti. Hence, at least one adjacent vertex of v is not occupied by a
searcher at ti. Let u be a vertex adjacent to v. If a searcher is on u at ti+1,
then uv ∈ Ei+1 \ Ei. We now consider the case that no searcher is on u at
ti+1. If each vertex in N(u) is occupied by a searcher at ti+1, then all edges
incident on u (which form a star) belong to Ei+1 \ Ei; otherwise, there is a
vertex w ∈ N(u) − {v} that is not occupied by any searcher at ti+1. Then
every edge incident on u is not in Ei+1 \ Ei. Let u1, u2, . . . , um ∈ N(v) be
such that each ui is occupied by a searcher at ti or ui is not occupied by a
searcher, but each vertex in N(ui) is occupied by a searcher at ti+1. It is
easy to see that Gi+1 − ({v} ∪ {ui : 1 ≤ i ≤ m}) consists of only isolated
vertices.

The graph Gi+1 in Lemma 3.1 is called a 1-action-clearing graph of a
strong-mixed search and vertex v is called the search center of Gi+1 (see
Figure 1). Because Gi+1 is the graph formed by the edges of Ei+1 \Ei, the
vertex set of Gi+1 consists of all end vertices of the edges in Ei+1 \Ei. The
graph Gi+1 can be decomposed into a set of stars (a star of k vertices is
a tree with k − 1 leaves and one center vertex). Each star has a center in
N [v], where v is the search center of Gi+1. It is easy to see that the radius
of Gi+1 is at most 2. From Lemma 3.1, we have the following result.

3.2 Theorem. Let u be a vertex and vw be an edge in a given connected
graph G such that u /∈ {v, w}. For a strong-mixed search strategy of G, if u
is not occupied by a searcher and vw is contaminated at ti, and u is occupied
by a searcher and vw becomes cleared at ti+1, then exactly one end vertex of
vw is occupied by a searcher at ti and the other end vertex is adjacent to u.

Proof. From Lemma 3.1, we know that u is the search center of the
graph Gi+1 formed by the edges of Ei+1 \ Ei and vw is an edge in Gi+1.
At ti, if both v or w are occupied by searchers, then vw is cleared. This
contradicts the condition that vw ∈ Ei+1 \ Ei. Suppose that no searcher
is on v or w at ti. If there is an intruder on the middle of edge vw, then
the intruder cannot be captured by sight in (ti, ti+1]. Thus, vw cannot be
cleared at ti+1. This is a contradiction. Hence, at least one of the two end
vertices of vw must be occupied by a searcher in (ti, ti+1]. Without loss
of generality, we can assume that w is occupied by a searcher in (ti, ti+1].
We now show that v must be adjacent to u. If each adjacent vertex of v is
occupied by a searcher at ti, then v and all its incident edges are cleared.
This is a contradiction. Let x ∈ N(v) be such that there is no searcher on

5

v

Figure 1: The solid-circle vertices are occupied by searchers. A searcher is
placed on v at the current step. The solid edges form the 1-action-clearing
graph with the search center v. The dashed edges are cleared in the previous
steps and the dotted edges are contaminated edges.

x at ti. Then vx is contaminated at ti. At ti+1, if x has not been occupied
by a searcher, then vx cannot be cleared by sight. Since vx is contaminated
at ti+1, vw is still contaminated at ti+1. This is a contradiction. Therefore,
x must have a searcher at ti+1. That means x is identical with u.

4 Strong-mixed search and pathwidth

In this section, we will prove that ss(G) = pw(G) by characterizing the
relationship between the strong-mixed search and node search. We first
show the following relation between ss(G) and ns(G).

4.1 Lemma. If G is a connected graph, then ns(G) ≤ ss(G) + 1.

Proof. Let ss(G) = k and X = (X0, X1, . . . , XN−1) be an optimal
strong-mixed search strategy such that Xi is the action in (ti, ti+1]. During
(ti, ti+1], Xi is one of the three actions: place, remove and slide. There is no
searcher on G at t0 and X0 is a placing action. Let Ei(X), 0 ≤ i ≤ N , be
the set of cleared edges at moment ti.

6

By simulating the strong-mixed search strategy X, we will construct a
node search strategy Y that uses k + 1 searchers. For each action Xi in
(ti, ti+1], 0 ≤ i ≤ N − 1, we use a sequence of actions, denoted as y(Xi), to
simulate the action Xi within the same interval (ti, ti+1]. Thus, Y is the con-
catenation of y(Xi) and can be expressed as (y(X0), y(X1), . . . , y(XN−1)).
Let Ei(Y) be the set of all cleared edges by strategy Y at the moment ti.
Note that Y has only two actions, place and remove, and it may have several
actions in (ti, ti+1], 0 ≤ i ≤ N − 1. We now construct Y from X inductively
such that Ei(X) = Ei(Y) for each i satisfying 0 ≤ i ≤ N . It is easy to see
that E0(X) = E0(Y) = ∅.

Initially, if the action X0 is placeX(u), then the first action in y(X0) is
placeY (u). If E1(X) = ∅ , then y(X0) = (placeY (u)) and E1(Y) = ∅. If
E1(X) 6= ∅ , then, for each edge in E1(X), one end vertex must be u and
the other must be a leaf. Let E1(X) = {uv1, uv2, . . . , uvm}. Since the node
search has k +1 searchers, we can construct y(X0) = (placeY (u),placeY (v1),
removeY (v1),. . . , placeY (vm),removeY (vm)). Thus, E1(Y) = E1(X) and
only vertex u is occupied by one searcher for both strategies at t1.

Suppose that Ej−1(Y) = Ej−1(X) and both strategies have the same
set of vertices that contain searchers at tj−1. We now consider Ej(X) and
Ej(Y). There are three cases regarding the action of Xj .

Case 1. Xj = placeX(a). If Ej(X) \ Ej−1(X) = ∅, then no edge is
cleared by Xj , and no recontamination happens. Thus, we set y(Xj) =
(placeY (a)). It is easy to see that Ej(Y) = Ej−1(Y) = Ej−1(X) = Ej(X).
If Ej(X)\Ej−1(X) 6= ∅, it follows from Lemma 3.1 that the graph Gj formed
by the edges of Ej(X)\Ej−1(X) is a 1-action-clearing graph with search cen-
ter a. It is easy to see that each vertex of Gj−N [a] is occupied by a searcher
at tj−1. Let V (Gj) ∩ N(a) = {u1, u2, . . . , um}. We can construct y(Xj) =
(placeY (a), placeY (u1), removeY (u1), . . . , placeY (um), removeY (um)) which can
clear Gj using k + 1 searchers by Y . Thus, Ej(X) \ Ej−1(X) = Ej(Y) \
Ej−1(Y). It follows from the inductive hypothesis that Ej(X) = Ej(Y) and
both strategies have the same set of vertices that are occupied by searchers
at tj .

Case 2. Xj = removeX(a). We can simply set y(Xj) = (removeY (a)).
Since no edge can be cleared by removing actions in both X and Y , we have
Ej(X)\Ej−1(X) = Ej(Y)\Ej−1(Y) = ∅. If each edge incident on a is cleared
at tj−1, then no recontamination happens by removeX(a) and removeY (a).
Thus, Ej(X) = Ej(Y). If there exists a dirty edge incident on a at tj−1,
consider any cleared edge xy at tj−1. If there is a path that contains a and
xy and has only one searcher stationed on a at tj−1, then xy becomes dirty at
tj for both X and Y strategies. Thus, Ej−1(X)\Ej(X) = Ej−1(Y)\Ej(Y).

7

From the inductive hypothesis, we know that Ej(X) = Ej(Y) and both
strategies have the same set of vertices that are occupied by searchers at tj .

Case 3. Xj = slideX(a, b). If Ej(X)\Ej−1(X) = ∅, then we set y(Xj) =
(placeY (b), removeY (a)). It is easy to see that Ej(X) \ Ej−1(X) = Ej(Y) \
Ej−1(Y). If Ej(X)\Ej−1(X) 6= ∅, it follows from Lemma 3.1 that the graph
Gj formed by the edges of Ej(X)\Ej−1(X) is a 1-action-clearing graph with
search center b. Similar to Case 1, let V (Gj)∩N(b) = {u1, u2, . . . , um}. We
can construct y(Xj) = (placeY (b),removeY (a), placeY (u1),removeY (u1),. . . ,
placeY (um),removeY (um)) which can clear Gj using k + 1 searchers by Y .
Thus, Ej(X)\Ej−1(X) = Ej(Y)\Ej−1(Y). On the other hand, if Ej−1(X)\
Ej(X) = ∅, then Ej(Y) = Ej(X); if Ej−1(X) \Ej(X) 6= ∅, similar to Case
2, we have that Ej−1(Y) \ Ej(Y) = Ej−1(X) \ Ej(X) since both X and Y
have the same set of vertices that are occupied by searchers at tj−1 and tj .
Therefore, Ej(X) = Ej(Y) and both strategies have the same set of vertices
are occupied by searchers at tj .

Kirousis and Papadimitrious [7] proved the following monotonicity result
for the node search.

4.2 Lemma. [7] If G is a connected graph, then ns(G) = mns(G), and
furthermore, there always exists an optimal node search strategy in which no
vertex is visited twice by a searcher, and in which every searcher is removed
immediately after all the edges incident on it have been cleared (ties are
broken arbitrarily).

Similar to the strong-mixed search, suppose that the node search starts
at time t0 and the intruder is captured at time tN , and the searching time
is divided into N intervals (t0, t1], (t1, t2], . . ., (tN−1, tN] such that in each
interval (ti, ti+1], exactly one searcher is either placed on a vertex or removed
from a vertex.

4.3 Lemma. If G is a connected graph with at least one edge, then mss(G)+
1 ≤ mns(G).

Proof. Let mns(G) = k and Y = (Y0, Y1, . . . , YN−1) be an optimal
node search strategy described in Lemma 4.2 such that Yi is the action in
interval (ti, ti+1]. Since no vertex is visited twice, Y is monotonic. Because
there is no searcher on G at t0, the action at (t0, t1] must be place. Let
Ei(Y), 0 ≤ i ≤ N be the set of cleared edges at ti. Thus, E0(Y) = ∅.

By simulating Y , we construct a monotonic strong-mixed search strategy
X that uses at most k − 1 searchers. Let X = (X0, X1, . . . , XN−1), where

8

Xi, 0 ≤ i ≤ N−1, is an action corresponding to the action Yi. Since an action
slideX(u, v) in X corresponds to two actions, removeY (u) and placeY (v), in
Y , we introduce an empty action in X such that all searchers on the graph
stay still during the interval when the empty action is executed. Notice that
each sliding action in X is followed immediately by an empty action. Thus,
the number of sliding actions is equal to that of empty actions in X. Let
Ei(X) be the set of all cleared edges of strategy X at ti.

We now construct X such that Ei(Y) ⊆ Ei(X) for each i satisfying
0 ≤ i ≤ N . Since G has at least one edge, we know that k ≥ 2. Consider an
arbitrary interval (ti, ti+1], 0 ≤ i ≤ N − 1. If Y uses at most k− 2 searchers
in G at moment ti, then we set the action Xi to be the same action as Yi.
If Y uses k − 1 searchers in G at ti and Yi is a removing action, then we
can set Xi to the same action. If Y uses k− 1 searchers in G at ti and Yi is
a placing action, then Yi+1 must be a removing action. Let Yi = placeY (u)
and Yi+1 = removeY (v). For strategy Y , it follows form Lemma 4.2 that
every searcher is removed immediately after all the edges incident on it have
been cleared. Thus, there must exist at least one dirty edge incident on v at
ti and all the edges incident on v are cleared at ti+1. Hence, uv is the only
dirty edge incident on v at ti. Therefore, we can set Xi = slideX(v, u) and
Xi+1 = empty .

We now show that Ei(Y) ⊆ Ei(X) for each i by induction. For the basis,
we know that Y0 = placeY (u) and X0 = placeX(u). Thus, E1(Y) ⊆ E1(X).
Suppose that the inductive hypothesis holds for i. We now prove it is true for
i+1. Consider action Yi, 1 ≤ i ≤ N −1, in (ti, ti+1]. If Y uses at most k−2
searchers in G at ti or Y uses k−1 searchers in G at ti and Yi+1 is a removing
action, then Xi+1 = Yi+1 and Ei+1(Y) \ Ei(Y) ⊆ Ei+1(X) \ Ei(X). Thus,
Ei+1(Y) ⊆ Ei+1(X). If Y uses k− 1 searchers in G at ti and Yi = placeY (u)
and Yi+1 = removeY (v), then Xi = slideX(v, u) and Xi+1 = empty . Since
uv is the only dirty edge incident on v at ti, slideX(v, u) can clear uv in
(ti, ti+1]. By the hypothesis, we have Ei+1(Y) ⊆ Ei+1(X).

We have constructed a monotonic strong-mixed search strategy X that
uses at most k − 1 searchers. Therefore, mss(G) + 1 ≤ mns(G).

From Lemma 4.3 and Lemma 1.1(iv), we know that mss(G) ≤ pw(G).
We can also prove this inequality by using a path decomposition directly.
The basic idea is to establish a relation between an occupied vertex set at
each step and the bag in a path decomposition. Note that each vertex is
visited exactly once by a searcher because we are considering the monotonic
strong-mixed search model. Thus, we can put all occupied vertices at a step
into one bag and we may add one more vertex v into the same bag if all
vertices in N(v) are occupied. In order to show that mss(G) ≤ pw(G), we

9

need to assume that |(Wi \Wi+1) ∪ (Wi+1 \Wi)| = 1 and |W1| = |WN | = 1
in a given path decomposition (W1,W2, . . . , WN) of width k (= pw(G)).
We can then design a monotonic strong-mixed search strategy to clear all
vertices in every bag one by one in the order of W1,W2, . . . , WN by using k
searchers.

Since ss(G) ≤ mss(G), from Lemmas 4.1, 4.2 and 4.3, we have the fol-
lowing theorem.

4.4 Theorem. If G is a connected graph with at least one edge, then ss(G) =
mss(G) = ns(G)− 1.

From Theorem 4.4 and Lemma 1.1 (iv), we have the following main result
of this section.

4.5 Theorem. If G is a connected graph with at least one edge, then ss(G) =
pw(G).

Since computing ns(G) is an NP-complete problem [7], from Theorem 4.4,
we have the following result.

4.6 Corollary. Given a graph G and an integer K, the problem of deter-
mining whether ss(G) ≤ K is NP-complete.

5 Relations between search models

In Theorem 4.4, we show that ss(G) = mss(G) = ns(G) − 1. In this sec-
tion, we relate the strong-mixed search with other search models. From
Lemma 1.1 and Theorem 4.4, it is easy to show the following lemma.

5.1 Lemma. If G is a connected graph, then ss(G) ≤ es(G) ≤ ss(G) + 2
and ss(G) ≤ ms(G) ≤ ss(G) + 1.

5.2 Theorem. If ns(G) < es(G), then ss(G) = es(G) − 2 = ms(G) − 1 =
ns(G)− 1.

Proof. Since ns(G) < es(G), it follows from Lemma 1.1 (i), we know
that ns(G) = es(G) − 1. Suppose that ms(G) < ns(G). From Lemma 1.1
(iii), we have ms(G) = ns(G)−1. Thus, ms(G) = es(G)−2. This contradicts
Lemma 1.1 (ii). Hence, ms(G) = ns(G) = es(G)− 1. From Theorem 4.4, we
have ss(G) = es(G)− 2.

For the complete bipartite graph K3,3, it is easy to see that ns(K3,3) = 4
and es(K3,3) = 5. It follows from Theorem 5.2 that ms(K3,3) = 4 and
ss(K3,3) = 3.

10

5.3 Theorem. If ns(G) > es(G), then ss(G) = es(G) = ms(G) = ns(G)−1.

Proof. From Lemmas 1.1 and 5.1, we have

ns(G)− 1 = ss(G) ≤ ms(G) ≤ min{es(G),ns(G)}.

Since ns(G) > es(G), we know that min{es(G),ns(G)} = es(G) = ns(G)−1.
Therefore, ss(G) = ms(G) = es(G) = ns(G)− 1.

Let P be a path. It is easy to see that ns(P) = 2 and ss(P) = ms(P) =
es(P) = 1.

If ns(G) = es(G), then ss(G) may be equal to ms(G) or ms(G) + 1. For
example, let K4 be a complete graph of order 4, K ′

4 be a graph obtained
by replacing each edge of K4 by a path of length 2, and K ′′

4 be a graph
obtained by replacing each edge of K4 by a path of length 3. It is easy
to verify that ss(K4) = ms(K4) < es(K4) = ns(K4); ss(K ′

4) < ms(K ′
4) =

es(K ′
4) = ns(K ′

4); and ss(K ′′
4) = ms(K ′′

4) = es(K ′′
4) < ns(K ′′

4).

5.4 Corollary. If ms(G) = es(G), then ss(G) ≥ es(G)− 1.

Proof. Since ms(G) ≤ ns(G), we have es(G) ≤ ns(G). If es(G) =
ns(G), then ss(G) = es(G) − 1. If es(G) = ns(G) − 1, then ss(G) = es(G).
Thus, ss(G) ≥ es(G)− 1.

5.5 Corollary. If ms(G) < ns(G), then ss(G) = ms(G).

Proof. From Lemma 1.1 (iii), we have ms(G) = ns(G) − 1. It follows
from Theorem 4.4 that ss(G) = ms(G).

Given graph G, we call a path u1u2 . . . ut suspended when the vertices
u2, u3, . . . , ut−1 all have degree 2 in G and both u1 and ut have degree
3 or more in G. We call a path u1u2 . . . ut pendant when the vertices
u2, u3, . . . , ut−1 all have degree 2 in G, and either u1 or ut have degree 1
in G and neither of them has degree 2 in G.

Theorem 4.4 shows a relationship between ss(G) and ns(G). The fol-
lowing four theorems describe the relation between ss(G) and es(G) from
different aspects.

5.6 Theorem. For a connected graph G, if es(G) = ss(G), then for any
optimal monotonic edge search strategy, there exists a moment ti such that
this strategy has es(G)− 1 guards at ti and the remaining searcher clears a
suspended path of length at least 3 or clears a pendant path of length at least
2 just after ti.

11

Proof. Let es(G) = k and Z = (Z0, Z1, . . . , ZN−1) be an optimal
monotonic edge search strategy such that Zi is the action in (ti, ti+1]. Let
Ei(Z), 0 ≤ i ≤ N , be the set of cleared edges at ti. Thus, E0(Z) = ∅.

Suppose that there is no moment ti such that Z has k − 1 guards at
ti and the remaining searcher clears a suspended path of length at least 3
or clears a pendant path of length at least 2 just after ti. By simulating
Z, we construct a strong-mixed search strategy X that uses at most k − 1
searchers. Let X = (X0, X1, . . . , XN−1), where Xi, 0 ≤ i ≤ N − 1, is an
action in (ti, ti+1] which corresponds to the action Zi. Let Ei(X) be the set
of all cleared edges of strategy X at ti.

We now show that Ei(Z) ⊆ Ei(X) for each i satisfying 0 ≤ i ≤ N − 1.
If Z uses at most k − 2 guards at ti, then we set Xi = Zi. If Z uses k − 1
guards and the free or semi-free searcher clears a suspended path of length at
most 2 or clears a pendant edge, then this suspended path of length at most
2 or pendant edge is already cleared at ti under the strong-mixed search
model. Thus, Xi can take an empty action. In both cases, it is easy to see
that Ei+1(Z) ⊆ Ei+1(X). Therefore, if there is no moment ti satisfies the
condition of the theorem, then ss(G) ≤ es(G) − 1. This is a contradiction.

5.7 Theorem. If there exists an optimal strong-mixed search strategy such
that for each moment ti when this strategy has at least ss(G)− 2 guards, no
vertex or edge must be cleared by sight in (ti, ti+1], then es(G) = ss(G).

Proof. Let ss(G) = k and X = (X0, X1, . . . , XN−1) be an optimal
strong-mixed search strategy such that Xi is the action in interval (ti, ti+1].

We construct an edge search strategy Z that uses k searchers to simulate
X. Let Z = (z(X0), z(X1), . . . , z(XN−1)), where z(Xi), 0 ≤ i ≤ N − 1, is a
sequence of actions in (ti, ti+1] that clear the same set of edges as the action
Xi does. Let Ei(X) and Ei(Z) be the set of all cleared edges by strategy X
and Z at ti, respectively.

We now show that Ei(X) = Ei(Z) for each i satisfying 0 ≤ i ≤ N − 1.
If X uses at most k − 3 guards at ti, then we set the first action in z(Xi)
as Xi. Notice that while Ei+1(X) \ Ei(X) is cleared by one searcher in X,
Ei+1(X) \ Ei(X) is cleared by at most three searchers in Z. Thus, we can
set the remaining actions in z(Xi) to clear edges Ei+1(X) \Ei(X) such that
Ei+1(Z) = Ei+1(X). If X uses at least k − 2 guards, since no vertex or
edge must be cleared by sight in (ti, ti+1], we can use the sliding actions in
z(Xi) to clear edges such that Ei+1(Z) = Ei+1(X). Thus, G can be cleared
by the edge search strategy Z using k searchers. Hence, es(G) ≤ k. Since
ss(G) ≤ es(G), we have es(G) = ss(G).

12

5.8 Theorem. Let G be a connected graph. For any optimal strong-mixed search
strategy X, for any moment ti when X has ss(G)− 1 guards, if no vertex of
degree at least 3 is cleared by sight in (ti, ti+1], then es(G) ≤ ss(G) + 1.

Proof. Let ss(G) = k and X = (X0, X1, . . . , XN−1), where Xi is
the action in (ti, ti+1]. We now construct an edge search strategy Z =
(z(X0), z(X1), . . . , z(XN−1)) such that G can be cleared by k + 1 searchers,
where z(Xi) is a sequence of actions that simulate the action Xi in (ti, ti+1].
Let Ei(X) be the set of cleared edges by the strategy X at ti, and Ei(Z)
be the set of cleared edges by the strategy Z at ti. Both X and Z have
three actions, place, slide and remove. Since a searcher in Z is not as pow-
erful as that in X, z(Xi) may have several actions in (ti, ti+1] to clear the
same edges as Xi does. We now construct Z from X inductively such that
Ei(X) = Ei(Z) for each i satisfying 0 ≤ i ≤ N . It is easy to see that
E0(X) = E0(Z) = ∅. Suppose Ei(X) = Ei(Z) for any i < N − 1. We now
consider the interval (ti, ti+1]. For any edge cleared by X in (ti, ti+1], if this
edge is cleared by sliding a searcher along an edge, then this edge can be also
cleared by Z in the same way in (ti, ti+1]; if this edge is cleared by sight in
X, from the assumption that no vertex of degree at least 3 is cleared by sight
when X uses k − 1 guards, we know that this edge can be cleared by a free
searcher or two free searchers of Z in (ti, ti+1]. Hence, Ei+1(X) = Ei+1(Z)
and G can be cleared by k +1 searchers of Z. Therefore, es(G) ≤ ss(G)+1.

From Theorem 5.8, we have the following corollary.

5.9 Corollary. For a connected graph G, if es(G) = ss(G)+2, then for any
optimal strong-mixed search strategy, there exists a moment ti such that G
has ss(G)− 1 guards at ti and a vertex of degree at least 3 is cleared by sight
in (ti, ti+1].

Theorem 5.8, which describes a relation between ss(G) and es(G), de-
pends on search strategies. The following theorem reveals the same relation
from the structure of G.

5.10 Theorem. For a connected graph G, let (W1,W2, . . . , Wr) be its path
decomposition of width pw(G). If |Wi−1 ∩Wi+1| < pw(G) for each 2 ≤ i ≤
r − 1, then es(G) ≤ ss(G) + 1.

Proof. Let pw(G) = k. By Theorem 4.5, we only need to show that G
can be cleared by an edge search strategy using at most k + 1 searchers.

13

For each vertex set Wi in the path decomposition (W1,W2, . . . , Wr), if
it is a subset of another vertex set Wj , we can delete Wi. By this operation,
we get a new vertex set sequence (Wi1 ,Wi2 , . . . , Wim) such that any element
in this sequence is not a subset of another element. It is easy to see that
(Wi1 ,Wi2 , . . . , Wim) is still a path decomposition of width pw(G). For any
2 ≤ j ≤ m− 1, if ij+1 = ij−1 + 2, by the condition of the theorem, we have
|Wij−1 ∩Wij+1 | < pw(G); if ij+1 ≥ ij−1 +3, by the condition (iii) in the def-
inition of the path decomposition, we have Wij−1 ∩Wij+1 ⊆ Wij−1+2. Thus,
|Wij−1 ∩Wij+1 | ≤ |Wij−1 ∩Wij−1+2| < pw(G). Hence, (Wi1 ,Wi2 , . . . , Wim)
also satisfies the condition of the theorem. For simplicity, we still use
(W1,W2, . . . , Wr) to denote (Wi1 ,Wi2 , . . . , Wim). We will use induction to
show that each subgraph induced by Wi, 1 ≤ i ≤ r, can be cleared by an
edge search strategy using at most k + 1 searchers.

We first clear all edges in W1 using at most k + 1 searchers. Since
W1 6⊆ W2, there exists a vertex a ∈ W1 \ W2. Since |W1| ≤ k + 1, we
know that deg(a) ≤ k. Hence, we can place a searcher on a and slide deg(a)
searchers from a to its neighbors to clear all edges incident on a. Remove the
searcher on a and then place searchers to each vertex that is not a neighbor
of a. We can use one free searcher to clear all remaining dirty edges in
W1 and then remove some searchers such that each vertex in W1 ∩ W2 is
occupied by one searcher and each vertex in W1 \W2 is not occupied by a
searcher. Thus, we cleared all edges in W1 using at most k + 1 searchers.
Suppose we have cleared all edges in W1,W2, . . . , Wi one by one using at
most k +1 searchers and immediately after all edges in Wi are cleared, each
vertex in Wi∩Wi+1 is occupied by one searcher and each vertex in Wi\Wi+1

is not occupied by a searcher. We now consider clearing all edges in Wi+1

using at most k + 1 searchers. If i = r − 1, then Wi+1 is the last bag in
the path decomposition. Select a vertex u ∈ Wr−1 ∩ Wr. Since u has at
most k neighbors in Wr, we can clear all dirty edges incident on u by sliding
searchers from u to its neighbors. Remove the searcher on u and then place
searchers on each vertex that is not a neighbor of u. We can use one free
searcher to clear all remaining dirty edges in Wr. If i < r− 1, then we have
two cases regarding Wi ∩Wi+1.

Case 1. Wi ∩ Wi+1 6⊆ Wi+2. In this case, there must exist a vertex
u ∈ (Wi∩Wi+1)\Wi+2. Since u is occupied by a searcher and it has at most
k neighbors in Wi+1, we can clear all dirty edges incident on u by sliding
searchers from u to its neighbors. Then we can remove the searcher on u
and then place searchers to each vertex that is not a neighbor of u in Wi+1.
We can use one free searcher to clear all remaining dirty edges in Wi+1.

14

Case 2. Wi ∩ Wi+1 ⊆ Wi+2. Since Wi+1 6⊆ Wi+2, there must exist a
vertex u ∈ Wi+1 \Wi+2. Since Wi ∩Wi+1 ⊆ Wi+2, we have u 6∈ Wi. From
the condition (iii) in the definition of the path decomposition, we know that
u 6∈ Wj for any j 6= i + 1. Since |Wi ∩ Wi+1| = |Wi ∩ Wi+1 ∩ Wi+2| ≤
|Wi ∩Wi+2| < k, we have k + 1− |Wi ∩Wi+1| ≥ 2. Thus, immediately after
all edges in Wi are cleared, each vertex in Wi ∩ Wi+1 is occupied by one
searcher and we have at least two free searchers. Hence, we can place one
free searcher on u and then use one free searcher to clear all edges between
u and every vertex in Wi ∩Wi+1. We then clear all dirty edges incident on
u by sliding searchers from u to its neighbors in Wi+1 \ Wi. Remove the
searcher on u and then place searchers to each vertex that is not a neighbor
of u in Wi+1. We can use one free searcher to clear all remaining dirty edges
in Wi+1.

After all edges in Wi+1 are cleared using at most k + 1 searchers, we
remove some searchers such that each vertex in Wi+1 ∩Wi+2 is occupied by
one searcher and each vertex in Wi+1 \Wi+2 is not occupied by a searcher.
By induction, we know that es(G) ≤ ss(G) + 1.

5.11 Corollary. For a connect graph G, if es(G) = ss(G)+ 2, then for any
path decomposition (W1,W2, . . . , Wr) of G with width pw(G), there exists a
subscript i such that |Wi−1 ∩Wi+1| = ss(G).

6 Conclusion

In this paper, we proposed and studied the strong-mixed search, which is a
generalization of the mixed search. We proved that the strong-mixed search
is monotonic. We also proved that the strong-mixed search number of a
graph equals the pathwidth of the graph. Finally, we described relationships
between different search models.

This paper gives an approach to study the pathwidth by investigating
the strong-mixed search. For convenience, we only considered connected
finite graphs. In fact, all lemmas and theorems in Sections 3 and 4 hold for
any finite graph with loops and multiple edges.

The strong-mixed search can be generalized to two new search prob-
lems. Let G be a connected finite graph embedded in E3. For any two
vertices u, v ∈ V (G), the distance of u and v, denoted by distG(u, v), is the
length of the shortest path between them. For an edge ab ∈ E(G), the dis-
tance between v and ab, denoted by distG(v, ab), is defined as distG(v, ab) =

15

min{distG(v, a),distG(v, b)} + 1. We can first generalize the strong-mixed
search from the visibility of searchers. A searcher on vertex v ∈ V (G) has
k-visibility if he can see whether the intruder is hidden in the subgraph
formed by the edge set Ev = {ab ∈ E(G) : distG(v, ab) ≤ k}. In the strong-
mixed search, if we grant each searcher k-visibility, then we may define a
new search problem, called k-visible search. It is easy to see that 1-visible
search is identical with the strong-mixed search.

We can also generalize the strong-mixed search from the capture ability
of searchers. Let H ⊆ G be an induced connected subgraph with diameter
at most k, and ∂(H) be the set of vertices in H with a neighbor in G−H.
If each vertex of ∂(H) is occupied by at least one searcher, then all dirty
edges and vertices in H become cleared. Combining this with the searchers’
actions A1, A2 and A3, we may define a new search problem, called k-strong-
mixed search. It is easy to see that 1-strong-mixed search is identical with
the node search and 2-strong-mixed search is identical with the strong-mixed
search.

For these two search problems, their properties and the relations with
other search problems are totally unknown.

Acknowledgments:

The author would like to extend special thanks to Yi Cao and Runtao
Zhang for the discussion on pathwidth problems. The author would also
like to thank Chris Worman and the referees for comments and suggestions.

References

[1] B. Alspach, Searching and sweeping graphs: a brief survey, Le Matem-
atiche, 34pp (to appear).

[2] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro, Capture of
an intruder by mobile agents , Proc. of the 14th ACM Symposium on
Parallel Algorithms and Architectures (SPAA 2002), pp. 200–209, 2002.

[3] D. Bienstock and P. Seymour, Monotonicity in graph searching, Journal
of Algorithms, Vol.12, pp.239–245, 1991.

[4] M. Fellows and M. Langston, On search, decision and the efficiency of
polynomial time algorithm. 21st ACM Symp. on Theory of Computing
(STOC 89), (1989) pp. 501–512.

16

[5] M. Frankling, Z. Galil, and M. Yung. Eavesdropping games: A graph-
theoretic approach to privacy in distributed systems, Journal of ACM,
Vol.47, pp.225–243, 2000.

[6] N.G. Kinnersley, The vertex separation number of a graph equals its
path-width, Information Processing Letters, Vol.42, pp.345–350, 1992.

[7] L.M. Kirousis and C.H. Papadimitriou, Searching and pebbling, Theo-
retical Computer Science, Vol.47, pp.205–216,, 1986.

[8] A. S. LaPaugh, Recontamination does not help to search a graph. Jour-
nal of ACM, Vol.40, pp.224–245, 1993.

[9] N. Megiddo, S. L. Hakimi, M. Garey, D. Johnson and C. H. Papadim-
itriou, The complexity of searching a graph, Journal of ACM Vol.35,
pp.18–44, 1988.

[10] T. D. Parsons, Pursuit-evasion in graphs, Theory and Applications of
Graphs, Y. Alavi and D. R. Lick, eds., Springer, Berlin, pp.426–441,
1976.

[11] N. Robertson and P. Seymour, Graph minors I: excluding a forest,
Journal of Combinatorial Theory Series B, Vol.35, pp.39–61, 1983.

[12] A. Takahashi, S. Ueno and Y. Kajitani, Mixed searching and proper-
Path-Width, Theoretical Computer Science, Vol.137, pp.253–268, 1995.

17

