
Fast algorithms for computing the

Tripartition-based Distance between

Phylogenetic Networks

Nguyen Bao Nguyen, C. Thach Nguyen, and Wing-Kin Sung

National University of Singapore, 3 Science Drive 2, Singapore 117543. E-mail:
{baonguyen, thachnguyen, dcsswk}@nus.edu.sg

Abstract. Consider two phylogenetic networks N and N ′ of size n. The
tripartition-based distance finds the proportion of tripartitions which
are not shared by N and N ′. This distance is proposed by Moret et
al (2004) and is a generalization of Robinson-Foulds distance, which is
orginally used to compare two phylogenetic trees. This paper gives an
O(min{kn log n, n log n + hn})-time algorithm to compute this distance,
where h is the number of hybrid nodes in N and N ′ while k is the max-
imum number of hybrid nodes among all biconnected components in N

and N ′. Note that k << h << n in a phylogenetic network. In addition,
we propose algorithms for comparing galled-trees, which are an impor-
tant, biological meaningful special case of phylogenetic network. We give
an O(n)-time algorithm for comparing two galled-trees. We also give an
O(n + kh)-time algorithm for comparing a galled-tree with another gen-
eral network, where h and k are the number of hybrid nodes in the latter
network and its biggest biconnected component respectively.

1 Introduction

Phylogenetic trees are traditionally used to describe evolutionary relationships
among a set of objects. However, evolutionary events such as horizontal gene
transfer or hybrid speciation (often referred to as recombination events) which
suggest convergence between objects cannot be adequately represented in a single
tree structure. In the famous Science paper [3] by Doolittle, he also pointed
out that the phylogenetic tree is inadequated to represent the “true” evolution
history. To solve the shortcoming, phylogenetic networks were introduced. A
phylogenetic network is a distinctly leaf-labeled directed acyclic graph where the
in-degree and out-degree of all nodes are bounded above by 2. The nodes with
in-degree 2 are called hybrid nodes and they are used to model the recombination
events. Fig. 1(a) shows an example of a phylogenetic network.

Recently, a lot of works have been proposed to reconstruct phylogenetic net-
works [1, 4–6, 8–11, 15–17, 19]. To access the topological accuracy of different con-
struction methods, two measurements were proposed for comparing networks.
They are Maximum Agreement Phylogenetic Subnetwork (MASN)[2, 13], and
Tripartition-based distance[14]. This paper focuses on the latter measurement.

The tripartition-based distance is a generalization of the Robinson-Foulds
measure [18], which is a well-known method for comparing phylogenetic trees.
Given two phylogenetic networks N and N ′ which have the same leaf set, the
tripartition-based distance tri(N,N ′) computes the proportion of tripartitions
(defined in Section 2.3) which are not shared by N and N ′. The tripartition-based
distance is shown to be a distance metric[14]. More importantly, when both N
and N ′ are trees, tri(N,N ′) equals the Robinson-Foulds distance between them.

In this paper, we compute tri(N,N ′) in O(min{kn log n, n log n + hn}) time
where n = max{V (N), V (N ′)}, h is the maximum number of hybrid nodes
in N and N ′, and k is the maximum number of hybrid nodes among all the
biconnected components in N and N ′. As the number of hybrid nodes in a
network is relatively rare (recombination events do not happen frequently), k <<
h << n. Thus, in practice, the running time of our algorithm achieves O(n log n).

We also consider comparing an important, biologically motivated special case
of phylogenetic networks, known as galled-trees. A galled-tree [2, 5, 10–13, 16, 19]
(also referred to in the literature as a a level-1 network [2, 12], a gt-network [16],
or a topology with independent recombination events [19]) is a phylogenetic net-
work in which all cycles in the underlying undirected graph are node-disjoint (see
the network N in Fig. 2 for an example). When both N and N ′ are galled-trees,
we show that tri(N,N ′) can be computed in O(n) time. If only N is known to
be a galled-tree, tri(N,N ′) can be computed in O(n + kh) where h and k are
the number of hybrid nodes in N ′ and in the biggest biconnected component of
N ′ respectively.

Our improvement is stemmed from a novel labeling technique which labels the
nodes of the networks to facilite efficient identification of common tripartitions
between two networks.

The rest of the paper is organized as follows. We first present the preliminaries
in Section 2. Section 3 details the results for computing tri(N,N ′) when at least
one of N and N ′ is a galled-tree. Finally, we present the result for computing
the tripartition-based distance for two general networks in Section 4.

2 Preliminaries

2.1 Phylogenetic Network

A phylogenetic tree is a binary, rooted, unordered tree whose leaves are distinctly
labeled. A phylogenetic network is a generalization of a phylogenetic tree formally
defined as a rooted, connected, directed acyclic graph in which: (1) exactly one
node has indegree 0 (the root), and all other nodes have indegree 1 or 2; (2) all
nodes with indegree 2 (referred to as hybrid nodes) have outdegree 1, and all
other nodes have outdegree 0 or 2; and (3) all nodes with outdegree 0 (the leaves)
are distinctly labeled.

For each hybrid node h, there are several nodes from which there are two
disjoint paths to h. Such nodes are called split nodes of h. These disjoint paths
are called the merge paths of h. Two merge paths of h starting from the same
split node u form a simple cycle, called the recombinant cycle of u.

For any phylogenetic network N , let U(N) be the undirected graph obtained
from N by replacing each directed edge by an undirected edge. The level of N
[2] is the maximum number of hybrid nodes among all biconnected components
of U(N). A galled-tree is a network of level 1.

In the following, we will use V (N), E(N), L(N), h(N) and k(N) to denote
the set of nodes, edges, leaves, the number of hybrid node and the level of the
network N .

2.2 Component Tree of a Network

We decompose U(N) into biconnected components (or simply components). In
each biconnected component C in U(N), there is a node being an ancestor of
all the others, called the component’s sub-root and denoted by r(C). For a node
x ∈ C, a child u of x is called its internal child if u ∈ C; otherwise, u is
x’s external child. Internal descendants and external descendants of a node are
similarly defined.

Given a component C, its reduced component Cr is obtained by contracting
all nodes which have one external and one internal children (by “contracting”
a node, we mean deleting it and letting all its children become its parent’s
children). The reduced network Nr is obtained by replacing each component of
N by its reduced component. Fig. 1(a) and (c) show a network N and its reduced
network Nr.

If we consider every biconnected component in N as a node, the resulting
graph is a tree and we denoted it as biconnected component tree T (N) (see
Fig. 1(b) for an example). One property of T (N) is that edges from one compo-
nent to another have the sub-roots of the latter as their heads.

We will use the term children to indicate both children of a node in a net-
work N as well as children of a component in T (N). Parents, ancestors and
descendants will also be used in this way. Thus, children, parents, descendants
and ancestors of a node are nodes in N whereas those of a component are com-
ponents in T (N).

a b dc

u2

r

u3

u1

u4

u6

u7u8

u9 u10

u5

C1

C2

C5C4C3 C6

a b dc

u2

r

u1

u6

u7u8

u10

u5

a c

u2

r

u3

u1

u5

u2

u4

a c

r

u3

u1

u5

(a) (b) (c) (d) (e)

Fig. 1. (a) A network N . (b) The reduced network Nr. (c) The component tree T (N).
(d) N∗

{a,c}. (e) N{a,c}.

The following lemma states an important property of the reduced compo-
nents.

Lemma 1. Each reduced component contains O(t) nodes and O(t) internal edges
where t is the number of its hybrid nodes.

Proof. A node in a reduced component belongs to one of 4 types A,B,C and
D whose internal in and out degrees are 0 and 2, 1 and 2, 2 and 1 and 2
and 0 respectively. Let a, b, c, d be the numbers of nodes belong to each type
respectively. We have c + d = t and 2a + 2b + c = b + 2c + 2d. This implies
a + b ≤ 2a + b = c + 2d ≤ 2(c + d) = 2t. Thus a + b + c + d ≤ 3t. ⊓⊔

2.3 Tripartition-based Measure

Consider a phylogenetic network N leaf-labeled by S. For a node u ∈ V (N), an
ancestor v of u is called its strict ancestor if all paths from the root of N to
u contain v. Otherwise, v is called a non-strict ancestor of u. The tripartition
of u is (A(u), B(u), C(u)) where A(u) = {s ∈ S|u is a strict ancestor of s};
B(u) = {s ∈ S|u is a non-strict ancestor of s}; and C(u) = {s ∈ S|u is not an
ancestor of s}. We also denote A(u) ∪ B(u) as D(u).

Given two networks N and N ′ having the same leaf set, a node u in one
network is unmatched if and only if there is no node v in the other network such
that A(u) = A(v), B(u) = B(v) and C(u) = C(v). An edge (u, v) is unmatched
if and only if v is unmatched. The tripartition-based distance tri(N,N ′) between
N and N ′ is defined by:

(|{e ∈ E(N)|e is unmatched}|

|E(N)|
+

|{e ∈ E(N ′)|e is unmatched }|

|E(N ′)|

)

/2

Fig. 2 shows an example of how to compute tripartition of all nodes in N
and N ′. All the nodes are unmatched. Hence, all the edges whose heads are of
these nodes are unmatched and tri(N,N ′) = (7/10 + 7/10)/2 = 0.7.

N

N’

a b c

v1
v2

v3
v5

v4

a b c

u2

u1
u3

u4 u5

Node A(u) B(u) C(u)

u1 {a} ∅ {b,c}
u2 {b,c} {a} ∅
u3 {b,c} ∅ {a}
u4 {b} {c} {a}
u5 {c} ∅ {a,b}

Node A(u) B(u) C(u)
v1 {a} {b} {c}
v2 {c} {b} {a}
v3 ∅ {b} {a,c}
v4 {c} {b} {a}
v5 {b} ∅ {a,c}

Fig. 2. Two networks N and N ′ whose tripartition-based distance tri(N, N ′) = 0.7.

3 Comparing a Galled-tree and a General Network

Given a galled-tree N and a general network N ′ having the same leaf set, this
section describes an algorithm to identify their unmatched nodes. Once all such
nodes are identified, tri(N,N ′) can be readily computed. The algorithm pro-
cesses in 3 steps as in Fig. 3.

Algorithm UnmatchedNode

Input: A galled-tree N and a general network N ′ of the same leaf set

Output: The unmatched nodes in the two networks

1 Label the nodes of N and N ′ such that two nodes u ∈ V (N) and u′ ∈ V (N ′)
have the same label if and only if they induce the same tripartition.

2 Sort the nodes of both networks by their labels.

3 Compare the sorted lists of labels to identify unmatched nodes in the two
networks.

End UnmatchedNode

Fig. 3. Algorithm to identify all unmatched nodes in two phylogenetic networks

The first step of Fig. 3 is achieved in two phases. Phase 1 reindexes the leaves
by numbers from 1 to |L(N)| so that for each node u of the galled-tree N , both
D(u) and B(u) form sub-intervals of [1..|L(N)|]. Phase 2 labels each non-leaf
node u by a 6-tuple of integers (md(u), Md(u), nd(u), mb(u), Mb(u), nb(u))
whose meaning is:

– md(u),Md(u), nd(u) indicate the minimum leaf index, maximum leaf index
and the number of leaves, respectively, in D(u).

– mb(u),Mb(u), nb(u) indicate the minimum leaf index, maximum leaf index
and the number of leaves, respectively, in B(u).

The labeling satisfies the following property.

Lemma 2. For u ∈ V (N) and u′ ∈ V (N ′), (md(u), Md(u), nd(u)) = (mb(v),
Mb(v), nb(v)) if and only if u and v induce the same tripartition.

Given the labeling, Steps 2 and 3 can identify all unmatched nodes. Below,
we detail the reindexing and the labeling.

3.1 Reindexing the Leaves of a Galled-tree

We now describe how to index the leaves of a galled-tree so that for each internal
node u, both D(u) and B(u) are sub-intervals of [1, l]. First, we state a property
of the biconnected components of a galled-tree.

Lemma 3. Each biconnected component C of a galled-tree consists of either a
single node or the (only) recombinant cycle of its sub-root.

Based on the lemma, we design the reindexing algorithm as in Fig. 4. The
correctness and time complexity of this algorithm is stated below.

Algorithm Reindex

Input: A galled-tree N of l leaves and an integer i

Output: A new indexing of N ’s leaves so that for each node u ∈ V (N), both
D(u) and B(u) are sub-intervals of [i, i + l − 1].

1 if N consists of a single leaf then

1.1 reindex the leaf as i

elseif the root of N is a tree node then

1.2 let Nl and Nr be the left and right subnetworks attached to the left and
right children of the root of N

1.3 Reindex (Nl, i)

1.4 Reindex (Nr, i + |L(Nl)|)

elseif the root of N is a split node then

1.5 let N1, N2, . . . Nx be the list of subnetworks attached to the recombinant
cycle of the root of N in counter clockwise order

1.6 for j = 1 to x do

1.6.1 Reindex (Nj , i + |L(N1)| + |L(N2)| + · · · |L(Nj−1)|)

endfor

endif

End Reindex

Fig. 4. Algorithm to reindexing the leaves of a galled-tree

Lemma 4. Reindex(N , 1) runs in O(|E(N)|) time and it reindexes the leaves
of a galled-tree N such that, for each u ∈ V (N), both D(u) and B(u) are sub-
intervals of [1, |L(N)|].

3.2 Labeling the Nodes of a Network

Given a network N , we go bottom up on T (N) and label the nodes in each com-
ponent visited. To reduce the time of labeling the nodes in each component, we
divide the process into two steps. First, all the nodes in the reduced component
are labeled. Then the remaining nodes are labeled based on the labeled nodes.

For every x ∈ V (Cr), let Ex(x) and In(x) be the set of external children
and internal descendants of x, respectively, i.e., Ex(x) = {v|(x, v) ∈ E(Nr) and
v /∈ V (Cr)} and In(x) = {v|v ∈ V (Cr) and v is a descendant of x}. In addition,
let e(x) =

∑

v∈Ex(x) nd(v) and H(x) = {v|v ∈ V (Cr) and x is a non-strict

ancestor of v}.
The following lemmas help us label the nodes of N . Lemma 5 and Lemma 6

compute the labels of nodes in a reduced component Cr whereas Lemma 7
computes the labels of the other nodes.

Lemma 5. For each node x ∈ V (Cr) whose children are u and v, we have:
nd(x) = e(x) +

∑

w∈In(x) e(w), md(x) = min{md(u),md(v)}, and Md(x) =

max{Md(u),Md(v)}.

Lemma 6. For each node x ∈ V (Cr), nb(x) =
∑

v∈H(x) e(v), mb(x) = minv∈H(x) md(v)

and Mb(x) = maxv∈H(x) Md(v).

Lemma 7. For each node x having an internal child u and an external child v.

nd(x) = nd(u) + nd(v)
md(x) = min{md(u),md(v)}
Md(x) = max{Md(u),Md(v)}
nb(x) = nb(u) if u is a tree node or nd(u) if u is a hybrid node
mb(x) = mb(u) if u is a tree node or md(u) if u is a hybrid node
Mb(x) = Mb(u) if u is a tree node or Md(u) if u is a hybrid node

Lemma 8. The tripartition distance between a galled-tree N and a general net-
work N ′ can be computed in O(|E(N)| + |E(N ′)| + k(N ′)h(N ′)).

Proof. (Sketch) The time needed to compute e(x), In(x) and H(x) for all x ∈
V (Nr) is O(|E(N)| +

∑

i h(Ci)
2) = O(|E(N)| + k(N)h(N)) where Ci for i =

1, 2, . . . is a non-singleton biconnected component of N and h(Ci) is the number
of hybrid nodes in Ci. Then, by Lemmas 5 and 6, the labels of all x ∈ V (Nr)
can be computed in O(|V (N)| + k(N)h(N)). Finally, the labels of other nodes
are computed by Lemma 7 using O(|E(N)|) time. The lemma then follows. ⊓⊔

Corollary 1. The tripartition distance between two galled-tree N and N ′ can
be computed in O(|E(N)| + |E(N ′)|).

4 Comparing Two General Networks

4.1 The Subnetwork Induced by a Set of Leaves

We first define the subnetwork induced by a set of leaves, which will play an
important role in comparing two general networks.

Given a network N and a set of leaves X = {l1, l2, . . . lt}, we denote TX(N)
be a subtree of T (N) induced by X, which is a tree such that (1) whose nodes
are X and their lowest common ancestors in T (N); and (2) whose edges preserve
the ancestor-descendant relationship of T (N).

Let E′
X = {(u, v)|u ∈ C1, v ∈ C2, (C1, C2) ∈ V (TX(N)) and there exists a

path from u to v which does not pass through any nodes belonging to some
components in V (TX(N))}. Let N∗

X be a subnetwork of N such that (1) whose
node set is

⋃

C∈V (TX(N)) V (C) and (2) whose edge set is E′
X∪

⋃

C∈V (TX(N)) E(C).
We denote NX be the subnetwork of N induced by X, which is a network formed
by contracting all nodes in N∗

X whose in-degree and out-degree are equal to 1.
Fig. 1(d) and (e) show example of N∗

{a,c} and N{a,c} where N is the network in

Fig. 1(a).

Lemma 9. |E(NX)| = O(min{h(N) + |X|, k(N)|X|}).

Lemma 10. Given t disjoint leaf sets X1,X2, . . . Xt such that
⋃

Xi = L(N),
the subnetworks NX1

, NX2
, . . . NXt

can be computed in total O(
∑

|NXi
|) time.

4.2 DB-labeling

We also use UnmatchedNode (Fig. 3) to identify all unmatched nodes of two
general networks N and N ′. However, the non-leaf nodes of the networks are
labeled in a different way. Each of them is assigned a DB-label, which is a pair
of integers (d(u),b(u)) such that (1) d(u) = d(v) if and only if D(u) = D(v);
(2) b(u) = b(v) if and only if B(u) = B(v); and (3) d(u) = b(v) if and only if
D(u) = B(v). Furthermore, d(u) = 0 if and only if D(u) = ∅ and b(v) = 0 if and
only if B(v) = ∅.

It is clear that two nodes have the same DB -label if and only if they induce
the same tripartition. The above labeling is called a DB-labeling of N and N ′.

Algorithm DBlabeling

Input: two networks N and N ′ of the same leaf set S

Output: the DB-labeling of N and N ′

1 Consider the singleton sets X1, X2, . . . X|S|, each containing a distinct leaf in
S. For each i, find the DB-labeling for NXi

and N ′
Xi

.

2 Repeat the following for log |S| rounds: Let X1, X2, . . . be the sets of leaves
considered in last round. Pair up Xi’s and let X2i−1 = X2i−1 ∪ X2i. Delete all
X2i’s and rename X2i−1’s as Xi’s. For each i, compute the DB-labeling of NXi

and N ′
Xi

based on the result of last round.

End DBlabeling

Fig. 5. Algorithm to compute the DB-labeling of two networks of the same leaf set

We compute the DB -labeling of N and N ′ incrementally in a way similar
to [7] as in Fig. 5. In step 2, given the DB -labeling of NX and NY , we find
a DB -labeling of NX∪Y by the following relabeling procedure. This procedure
utilizes the concept of Z-stamp of a node u where Z is a set of leaves, which
is a pair of integers (dZ(u), bZ(u)) such that (1) dZ(u) = dZ(v) if and only if
D(u)∩Z = D(v)∩Z; and (2) dZ(u) = bZ(v) if and only if D(u)∩Z = B(v)∩Z;
and (3) bZ(u) = bZ(v) if and only if B(u) ∩ Z = B(v) ∩ Z.

Relabeling procedure:

1. For each u ∈ V (NX∪Y), compute its X-stamp and Y -stamp as follow. If u ∈
V (NX), by Lemma 11, the X-stamp of u equals its label in NX . Otherwise,
its X-stamp is computed by Lemmas 12 and 13. The Y -stamps are calculated
similarly.

2. Sort all the pairs (dX(u), dY (u)) and (bX(u), bY (u)) together and replace
each pair by a number such that two pairs are replaced by the same number
if and only if they are identical.

Lemma 11. Let the tripartition of u in NX be (AX(u), BX(u), CX(u)). We
have AX(u) = A(u) ∩ X, BX(u) = B(u) ∩ X and CX(u) = C(u) ∩ X.

Lemma 12. Let u be a node in a component C which is in V (TX(N)). If u is
in V (NX∪Y) but not in V (NX) then it must have an internal child v and an
external child w. Furthermore, dX(w) = 0, dX(u) = dX(v) and bX(u) = dX(v)
if v is a hybrid node and bX(v) otherwise.

Lemma 13. Each component C in V (TX∪Y (N)) − V (TX(N)) has at most one
child C ′ in TX∪Y (N) such that D(r(C ′)) 6= ∅. If no such C ′ exists, DX(u) = ∅
for all u ∈ C. Otherwise, for each u ∈ V (C) ∩ V (NX∪Y), dX(u) = dX(r(C ′))
if u is an ancestor of r(C ′) and 0 otherwise and bX(u) = dX(r(C ′)) if u is a
non-strict ancestor of r(C ′) and 0 otherwise.

From the above two lemmas, we can compute the X-stamps and Y - stamps
of nodes in NX∪Y and N ′

X∪Y separately. To achieve good running time, for
each node in a reduced component, we store the sets of its ancestors and non-
strict ancestors in that reduced component. These sets for all nodes in N can be
pre-calculated in total O(k(N)h(N)) time.

Lemma 14. The sets of ancestors and non-strict ancestors of any node u ∈
V (C) ∩ V (NX∪Y) can be computed in O(|V (C) ∩ V (NX∪Y)).

Let k = max{k(N), k(N ′)}, h = max{h(N), h(N ′)} and n = max{|V (N)|,
|V (N ′)|}. The following lemmas state the time complexity of comparing two
general networks.

Lemma 15. Given the DB-labeling of NX , N ′
X , NY and N ′

Y , the above proce-
dure computes DB-labeling of NX∪Y and N ′

X∪Y using O(min{h+ |X ∪Y |, k|X ∪
Y |}) time.

Lemma 16. The tripartition-based distance between two general networks N
and N ′ can be computed in O(min{hn + n log n, kn log n}) time.

References

1. D. Bryant and V. Moulton.NeighborNet: an agglomerative method for the construc-
tion of planar phylogenetic networks. In Proc.of the 2nd Workshop on Algorithms in

Bioinformatics (WABI 2002), volume 2452 of LNCS, pages 375–391. Springer,2002.
2. C. Choy, J. Jansson, K. Sadakane, and W.-K. Sung. Computing the maximum agr-

eement of phylogenetic networks. Theoretical Computer Science, 335(1):93–107,
2005.

3. W. F. Doolittle. Phylogenetic classification and the universal tree. Science,
284:2124–2128, 1999.

4. D. Gusfield and V. Bansal. A fundamental decomposition theory for phylogenetic
networks and incompatible characters. In Proc. of the 9 th Annual International

Conf. on Research in Computational Molecular Biology (RECOMB 2005), pages
217–232, 2005.

5. D. Gusfield, S. Eddhu, and C. Langley. Efficient reconstruction of phylogenetic
networks with constrained recombination. In Proc. of the Computational Systems

Bioinformatics Conference (CSB2003), pages 363–374, 2003.
6. J. Hein. Reconstructing evolution of sequences subject to recombination using

parsimony. Mathematical Biosciences, 98(2):185–200, 1990.
7. Wing-Kai Hon, Ming-Yang Kao, Tak Wah Lam, Wing-Kin Sung, and Siu-Ming

Yiu. Non-shared edges and nearest neighbor interchanges revisited. Inf. Process.

Lett., 91(3):129–134, 2004.
8. D. H. Huson, T. Dezulian, T. Klöpper, and M. Steel. Phylogenetic super-networks

from partial trees. In Proc. of the 4 thWorkshop on Algorithms in Bioinformatics

(WABI 2004), pages 388–399, 2004.
9. D. H. Huson, T. Klopper, P. J. Lockhart, and M. A. Steel. Reconstruction of reticu-

late networks from gene trees. In Proc.of the 9 thAnnual International Conf.on Re-

search in Computational Molecular Biology (RECOMB 2005), pages 233–249, 2005.
10. T. N. D. Huynh, J. Jansson, N. B. Nguyen, and W. K. Sung. Constructing a small-

est refining galled phylogenetic network. In Proc. of the 9 thAnnual International

Conf. on Research in Computational Molecular Biology (RECOMB 2005), pages
265–280, 2005.

11. J. Jansson, N. B. Nguyen, and W. K. Sung. Algorithms for combining rooted
triplets into a galled phylogenetic network. In Proc.of the 16 thAnnual ACM-SIAM

Symposium on Discrete Algorithms (SODA 2005), pages 349–358, 2005.
12. J. Jansson and W.-K. Sung. Inferring a level-1 phylogenetic network from a dense

set of rooted triplets. In Proc. of the 10 th International Computing and Combina-

torics Conference (COCOON 2004), 2004.
13. J. Jansson and W. K. Sung. The maximum agreement of two nested phylogenetic

networks. In Proc. of the 15 thAnnual International Symposium on Algorithms and

Computation (ISAAC 2004), pages 581–593, 2004.
14. B. M. E. Moret, L. Nakhleh, T. Warnow, C. R. Linder, A. Tholse, A. Padolina,

J. Sun, and R. Timme. Phylogenetic networks: Modeling, reconstructibility, and ac-
curacy. IEEE Transactions on Computational Biology and Bioinformatics, 1(1):1–
12, 2004.

15. L. Nakhleh, J. Sun, T. Warnow, C. R. Linder, B. M. E. Moret, and A. Tholse.
Towards the development of computational tools for evaluating phylogenetic re-
construction methods. In Proc. of the 8 th Pacific Symposium on Biocomputing

(PSB 2003), pages 315–326, 2003.
16. L. Nakhleh, T. Warnow, and C. R. Linder. Reconstructing reticulate evolution in

species – theory and practice. In Proc. of the 8 thAnnual International Conf. on Re-

search in Computational Molecular Biology (RECOMB 2004), pages 337–346, 2004.
17. D. Posada and K. A. Crandall. Intraspecific gene genealogies: trees grafting into

networks. TRENDS in Ecology & Evolution, 16(1):37–45, 2001.
18. D. F. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Mathematical

Biosciences, 53:131–147, 1981.
19. L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic networks with recombi-

nation. Journal of Computational Biology, 8(1):69–78, 2001.

