Skip to main content
Log in

Packing [1, Δ]-factors in graphs of small degree

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Given an undirected, connected graph G with maximum degree Δ, we introduce the concept of a [1, Δ]-factor k-packing in G, defined as a set of k edge-disjoint subgraphs of G such that every vertex of G has an incident edge in at least one subgraph. The problem of deciding whether a graph admits a [1,Δ]-factor k-packing is shown to be solvable in linear time for k = 2, but NP-complete for all k≥ 3. For k = 2, the optimisation problem of minimising the total number of edges of the subgraphs of the packing is NP-hard even when restricted to subcubic planar graphs, but can in general be approximated within a factor of \(\frac{42\Delta -30}{35\Delta-21}\) by reduction to the Maximum 2-Edge-Colorable Subgraph problem. Finally, we discuss implications of the obtained results for the problem of fault-tolerant guarding of a grid, which provides the main motivation for research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caro Y (1984) The decomposition of trees into subtrees. J Graph Theor 8:471–479

    MATH  MathSciNet  Google Scholar 

  • de Castro N, Cobos FJ, Dana JC, Marquez A, Noy M (1999) Triangle-free planar graphs as segment intersection graphs. Lecture Notes Comp Sci 1731:341–358

    Google Scholar 

  • Chazelle B, Edelsbrunner H (1992) An optimal algorithm for intersecting line segments in the plane. J ACM 39:1–54

    Article  MATH  MathSciNet  Google Scholar 

  • Colbourn CJ (1988) Edge-packing of graphs and network ealiability. Disc Math 72:49–61

    Article  MATH  MathSciNet  Google Scholar 

  • Czyzowicz J, Kranakis E, Urrutia J (1998) A simple proof of the representation of bipartite planar graphs as the contact graphs of orthogonal straight line segments. Inform Proc Lett 66:125–126

    Article  MATH  MathSciNet  Google Scholar 

  • Dangelmayr C (2004) Intersection graphs of straight-line segments. In: 4th Annual CGC Workshop on Computational Geometry (Stels)

  • Dyer ME, Frieze AM (1986) Planar 3DM is NP-complete. J Algorith 7(1):174–184

    Article  MATH  MathSciNet  Google Scholar 

  • Favrholdt LM, Nielsen MN (2003) On-line edge-coloring with a fixed number of colors. Algorithmica 35(2):176–191

    Google Scholar 

  • Finke U, Hinchirs K (1995) Overlaying simply connected planar subdivisions in linear time. In: Proc ACM SoCG, pp 119–126

  • Feige U, Ofek E, Wieder U (2002) Approximating maximum edge coloring in multigraphs. Lecture Notes Comp Sci 2462:108–121

    Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: A guide to the theory of NP-completeness. Freeman, New York

    MATH  Google Scholar 

  • Hartman IB-A, Newman I, Ziv R (1991) On grid intersection graphs. Disc Math 87:41–52

    Article  MATH  MathSciNet  Google Scholar 

  • Hartvigsen D (1984) Extensions of matching theory, PhD Thesis. Carnegie-Mellon University

  • Heath LS, Vergara JPC (1998) Edge-packing planar graphs by cyclic graphs. Disc Appl Math 81(1–3):169–180

    Article  MATH  MathSciNet  Google Scholar 

  • Holyer I (1981) The NP-completeness of edge-colouring. SIAM J Comp 10:718–720

    Article  MATH  MathSciNet  Google Scholar 

  • Ivanco J, Meszka M, Skupień Z (2002) Decompositions of multigraphs into parts with two edges. Discuss Math Graph Theor 22:113–121

    MATH  Google Scholar 

  • Jacobs DP, Jamison RE (2000) Complexity of recognizing equal unions in families of sets. J Algor 37(2):495–504

    Article  MATH  MathSciNet  Google Scholar 

  • Jünger M, Reinelt G, Pulleyblank WR (1985) On partitioning the edges of graphs into connected subgraphs. J Graph Theor 9:539–549

    MATH  Google Scholar 

  • Kawarabayashi K, Matsuda H, Oda Y, Ota K (2002) Path factors in cubic graphs. J Graph Theor 39:188–193

    Article  MathSciNet  Google Scholar 

  • König D (1916) Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Math Ann 77:453–465

    Article  MathSciNet  Google Scholar 

  • Kosowski A, Małafiejski M, Żyliński P (in press) Cooperative mobile guards in grids, to appear in Computational Geometry: Theory and Applications

  • Kosowski A, Małafiejski M, Żyliński P (2006) Fault tolerant guarding of grids. Lecture Notes Comp Sci 3980:161–170

    Google Scholar 

  • Leven D, Galil Z (1983) NP-completeness of finding the chromatic index of regular graphs. J Algorith 4(1):35–44

    Article  MATH  MathSciNet  Google Scholar 

  • Liaw BC, Huang NF, Lee RCT (1993) The minimum cooperative guards problem on k-spiral polygons. In: Proc CCCG, pp 97–101

  • Liaw BC, Lee RCT (1994) An optimal algorithm to solve the minimum weakly cooperative guards problem for 1-spiral polygons. Inf Process Lett 52:69–75

    Article  MATH  MathSciNet  Google Scholar 

  • Lonc Z, Meszka M, Skupień Z (2004) Edge decompositions of multigraphs into 3-matchings. Graphs Comb 20:507–515

    Article  MATH  Google Scholar 

  • Małafiejski M, Żyliński P (2005) Weakly cooperative guards in grids. Lecture Notes Comp Sci 3480:647–656

    Google Scholar 

  • Nierhoff T, Żyliński P (2003) Cooperative guards in grids. In: 3rd Annual CGC Workshop on Computational Geometry, Neustrelitz

  • Ntafos S (1986) On gallery watchmen in grids. Inf Proc Lett 23:99–102

    Article  MATH  Google Scholar 

  • O’Rourke J (1987) Art gallery theorems and algorithms. Oxford University Press

  • Scheinerman ER (1984) Intersection classes and multiple intersection parameters of graphs. PhD thesis, Princenton University

  • Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Urrutia J (2000) Art gallery and illumination problems. Handbook on computational geometry, Elsevier Science, Amsterdam

    Google Scholar 

  • Woźniak M (2004) Packing of graphs and permutations—a survey. Disc Math 276(1–3):379–391

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Żyliński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosowski, A., Małafiejski, M. & Żyliński, P. Packing [1, Δ]-factors in graphs of small degree. J Comb Optim 14, 63–86 (2007). https://doi.org/10.1007/s10878-006-9034-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-006-9034-4

Keywords

Navigation