Semi-online scheduling with “end of sequence” information

Leah Epsteih Deshi Yeb

Abstract

We study a variant of classical scheduling, which is cafiededuling with “end of sequence” in-
formation It is known in advance that the last job has the longest processing time. Moreover, the last
job is marked, and thus it is known for every new job whether it is the final job of the sequence. We
explore this model on two uniformly related machines, that is, two machines with possibly different
speeds. Two objectives are considered, maximizing the minimum completion time and minimizing the
maximum completion time (makespan). Lsete the speed ratio between the two machines, we consider
the competitive ratios which are possible to achieve for the two problems as functiengVefpresent
algorithms for different values afand lower bounds on the competitive ratio. The proposed algorithms
are best possible for a wide range of values.dfor the overall competitive ratio, we show tight bounds
of ¢ + 1 ~ 2.618 for the first problem, and upper and lower boundg .6fand1.46557 for the second
problem.

1 Introduction

The traditional model of online scheduling assumes that the length of the job stream is not known in advance,
and the algorithm needs to obey the competitive ratio at every time. This reflects the structure of some
systems. However, it is often the case that the worst case occurs when the largest job arrives last (see e.qg.
the seminal paper of Graham [8]). In real world systems, even though the information on future jobs is not
complete, it is still known for each job whether the current job is last or not.

In this paper we try to model this situation and study the following relatively new semi-online scheduling
problem on two uniformly related machines. In this problem it is known that the very last job has the longest
processing time (though previous jobs in the sequence may have the same processing time as well), and the
adversary who presents the sequence informs the scheduler upon arrival of each job not only the size of the
job, but also whether it is the last job.

In the uniformly related machines system model, each madWisteas aspeeds; and each joly,, has an
initial processing time (or sizg),. The processing time of jol, on machine\/; is py/s;. Jobs arrive one

*The authors would like to dedicate this paper to the memory of our colleague andYaagdHe who passed away in August
2005 after struggling with iliness.

fDepartment of Mathematics, University of Haifa, 31905 Haifa, Isi@el@math.haifa.ac.il

tCorresponding author.

§College of Computer Science, Zhejiang University, Hangzhou 310027, China. Research was supported in part by
NSFC(10601048)yedeshi@zju.edu.cn



by one and are are presented to a scheduler in this way. Each job must be assigned to one of the machines
before any future jobs are revealed. No preemption is allowed. We study two goals which are minimizing
the makespan and maximizing the minimum completion time. In our model, which is stated above, we get
additional information in advance compared to the standard online model. Therefore we see this problem as
a semi-online scheduling problem.

We use thecompetitive ratioto measure the quality of a semi-online algorithm, similarly to online
algorithms. For any input job sequenéglet C'4(I) andC*(I) denote the values of the solutions of an
algorithm A and optimal offline algorithm which knows the whole sequence in advance, respectively. For
the objective to minimize the makespan, we say fhatis the competitive ratio of the algorithr if

CA(I)}
cx(n) )

Ry :sup{
I

On the other hand, for the objective to maximize the minimum completion time, the competitivé&ratio
of the algorithmA is defined as

(1) }
Ca(D) )~
For simplicity, we us&”'4y andC* instead ofC 4 (/) andC*([) if the meaning is clear from the context.

Ra :sup{
I

Previous Work: The semi-online scheduling model studied in this paper was first suggested by Zhang
and Ye [17]. They study the standard makespan minimization problem on two and three identical machines
(i.e., machines that all have the same speed). They provided optimal algorithms with competitivg'2atios
and3/2 for two and three machines respectively. They also pointed out that all the additional information
given by an adversary is necessary for the model. That is, the model is no different from the standard model
without having all the extra information (it is not enough that the last job is largest if is not announced to be
last, and it is not enough to announce the last job if it is not largest).

Various other models of semi-online scheduling problems on identical machines have been studied ex-
tensively in recent years [11, 16, 10, 13, 2, 6, 15, 3, 12]. These variants differ in which partial information
about future job is known in advance. A few examples are listed below.

In the first model jobs arrive in non-increasing order of processing time [9, 13]. Several models assume
some information is known in advance, this can be the total processing time of jobs [11, 1], the optimal
makespan [2, 4] or the largest processing time [10]. A model where all job processing times are bounded
between two known values, with a ratio of at mestor some givenp > 1 between these two values,
was studied in [10]. On the other hand, some semi-online problems give the algorithm more power than a
general online problem, and jobs do not always need to be assigned right away. One such model is studied
in [11, 16], where a buffer is available for storage of a small number of jobs. A semi-online algorithm
in [12] benefits from allowing the current assignment to be changed whenever a new job arrives, subject to
the constraint that the total processing time of moved jobs is boundgdimes the processing time of the
arriving job.



Our Contributions:  In this paper we focus on the two uniformly related machines case. Two objective
functions of the problem are explored, (maximization of the) smallest completion time of any machine
(Max-min) and (minimization of) the maximum completion time of any machine, also called the makespan
(Min-max).

The processing time of a job on a given machine is also called the workload of the job on that machine.
The workload of a machine is the sum of workloads of all jobs assigned to it. Thus, the makespan is the
maximum workload among all the machines and the minimum completion time is the minimum workload
of any machine. For two identical machines=£ 1), the optimal competitive ratio for the Min-max problem
is v/2 [17]. We show that for the Max-min problem this value equals %@

We present algorithms relying on the speed ratiof machines for both problems. The competitive
ratios depend also on the speedThe proposed algorithms are best possible for almost all the valsie of
Table 1 and Table 2 list the results (see also Figures 1 and 2), where

3s+1++vbs2+2s+1
R(s) =
(s) 2 12 ;
R,(s):s—1+\/532+23+1.

2s

Table 1: Bounds on two uniformly related machines, Max-min

speeds Lower bound Upper bound
s > 8.24264 R(s) R(s)
7.159191247 < 5 < 4 + 3v/2 = 8.24264 Ri(s) R(s)
5.40431 < s < 7.159191 R(s1) ~ 2.324718 R(s)
1 < s <81~ 5.40431 R(s) R(s)

Some exact values i |n Table 1 are as foIonH@( )= 5

1
w(ﬂ—%{) + (% + r) andR(s;) = (3 + Y83 4 (1 - ¥&)

(27+ +\/125+81s >§+( 7+%_\/12s+8132)%+%,

=

+ 1.

Table 2: Bounds on two uniformly related machines, Min-max

speeds Lower bound| Upper bound
s>1+4+3 1+1 1+1
2<s<1++3 1+2+23+52 141
1.46557 < s < 2 14+ 2 R/(s)
1<s<sy=1.46557 R'(s) R'(s)
s=1 V2 V2




0 57.15 10 15 20

n
© S3
§2.4 S1
Q
m 2
o 2.2
:
— 2
~
21.8
5
0 5 10 15 20

Figure 1. Upper bound and lower bound as a function of s, where- 5.40431, sy = 7.15191247,
s3 = 8.24264. Max-min.

1.5

Bounds

1.4

1.3

1.2

Upper /Lower

Figure 2: Upper bound and lower bound as a function of s. Min-max.

The exact value of, in Table 2 issy = £(116 + 121/93)1/% + 1(116 — 124/93)'/% + L. Note that this
implies upper and lower bounds ¢f+ 1 ~ 2.618 for the Max-min problem. For the Min-max problem we
get an upper bound df5 and a lower bound of.46557.

The online versions of the problems studied in this paper were studied in [7] (Min-max) and [5] (Max-
min). For Min-max model, in [7], it was shown that the best competitive ratio for minimizing makespan is
min{l + %, 1+ S5} Comparing it to our results we can see that for smallir semi-online model indeed
improves the situation of the algorithm. However, for large enosigive see that the situation does not
change. Note that for these valuessahe competitive ratio is already quite small. For Max-min model,
in [5], it was shown that for the basic online model, the best competitive ratioHd. For this problem
the additional information we have is helpful especially for large valuasadiere we can show a constant
competitive ratio unlike the case for the online problem.

The rest of the paper is organized as follows. In Section 2 we define a general algorithm. In Section 3
we study the problem of maximizing the minimum completion time. In Section 4 we investigate the problem



of minimizing the makespan.

2 Algorithms

We start with defining a general algorithm which will be used both in Section 3 and in Section 4. The
idea of the algorithm is to keep the faster machine relatively empty, and to assign the very last job to this
machine. Clearly, for some inputs this machine cannot be kept completely empty, and we fill it with some
amount of jobs.

For the definition and analysis of algorithms for our problems, we introduce some notations. We denote
jobs and their processing times Byandp; (t = 0, 1,2,...), respectively. Denote by/s (s > 1) the speed
of the slow machine, without loss of generality, the speed of fast machineMachine 1 (/) is the slow
machine and Machine 2{,) is the fast machine. Let/;(t) denote the workload of Machinémmediately
after the jobJ; is assigned, fot = 0,1,2,..., andi = 1,2. Leta(s) be a function ofs such that for any

value ofs, 0 < a(s) < 1. We defines(s) = 1:”5(;)(5). According to the constraints an(s), 5(s) is defined

for every value ofs and is positive.

Algorithm A, (s):
Step OLetj = 0.

Step 1.If the next job.J; . is thelastjob, assign it to Machine 2 and stop. Otherwise, go to 5tep
2.

it

Step 2.If Ms(j) + pj+1 > a(s)(Mi(j) + spj+1), assign/; to Machine 1; otherwise assign
to Machine 2. Letj = j + 1, go to Step 1.

For convenience of notation, we sometimes dder 3(s) and« for «(s) throughout the paper. The
following observation holds regardless of the exact definition.of

Observation 1 Letn be the number of jobs presented to the Algorithm Consider the resulting schedule
produced for somé < j < n — 1. ThenM,(j) < SM;(j) holds for this schedule.

Proof. SinceM;(0) = M»(0) = 0, the property holds in the beginning of the sequence. Therefore we
can assume thagt > 1. As long as machine 2 does not receive jobs, the property is trueJ; s the

last job assigned to Machine 2 at a given moment (after the arrivajaifs). From the algorithm, we have
My(t—1)4+p < a(Mi(t—1)+ sp), sinceJ; was assigned to machine 2. Note thak Ma(t) = Ma(j),

and the load of machine 1 is non-decreasing in time. Thus,

Ma(j) = Ma(t) = Ma(t — 1) + pr < a(My(t — 1) + sp;) < a(M1(j) + sMa(j)). 1)

Sincesa < 1, so we haveMl,(j) < —2-M;(j) = BM1(j). ]

1—sa



3 The Max-min objective

In this section our objective is to maximize the minimum completion time. R(g) = 3s+1tybsd2stl,

We show that for nearly every value gf R(s) is the exact competitive ratio for the speed ratio

3.1 Analysis of the algorithm for the Max-min problem
V5s2+2s+1—(s+1)

252

In this section we use(s) = . Note that is the positive solution of2a? + (s + 1)a —

1 = 0, which is equivalent to% = . The above choice of gives the valuek(s) to these two

1

expressions. Using simple algebra, it is possible to showitkaty < 1.

Theorem 2 The competitive ratio of Algorithi,, (s) is at mostR(s) = Sstltyos d2stl

Proof. Let y be the processing time of the last joh. Then the cost of the algorithii,, is Cy4_, is
min{M;(n) = M;i(n — 1), Ma(n) = Ma(n — 1) + y}. Consider the following two cases.

Case 1.C4, = My(n — 1) + y. SinceM;(n) > My(n), machine 1 is non-empty. Letbe the processing
time of the last job assigned to Machine 1, arnt$ index. From the algorithm, we hawés(n — 1) + = >
Msy(t — 1) +x > aM;(t) = aM;(n — 1) (otherwise this job would have been scheduled on Machine 2).
Recall thatJ,, is a job with the longest processing time We havey > = and thus we ged/;(n — 1) <

1 (Ms(n — 1) + y), therefore,

Mi(n—1)/s+My(n—1)+y M(n—1)+s(Ma(n—1)+y)

c* <
- 1+1/s s+1
1/a+s 3s+1++vbs2+2s+1
/ (Ma(n—1) +y) = Ca

- s+1 25 + 2 o

Case 2.Cy, = Mi(n—1). If y > Mi(n—1)+ sMa(n— 1), then the machines cannot be totally balanced.
We apply Observation 1.

C* = My(n— 1)+ sMy(n—1) < <1+s a )Ml(n—l)

1-— s«

1 3s+1++vbs2+2s+1
C Cya. .
Aa 2S+2 Aa

1-sa
Now assume thaj < M;(n — 1) + sMa(n — 1).
Mi(n—1)/s+ Ma(n—1)+y

C*
- 1+1/s
Mi(n—1)/s+ Ma(n —1) 4+ Mi(n — 1) + sMa(n — 1)
- 1+1/s
3s+14+V5s2+2s+1
= Mn-1 Mo(n—1) < Mi(n—1)= Ca,.-
1n=1) +sMa(n—1) < ——M(n — 1) 55 1 2 Aa



3.2 Lowers bounds

In this section, we give instances to show a lower bound which matches the upper bound we have given in
the previous subsection for almost every valua.of

Lemma 3 For any online algorithmd, the competitive ratide 4 > 3=H1Ey9s258] whens > 4+ 3v/2 =

1 1
5 367 5v69 \ 3 367 5v69\3
824264 0r1 <5 < 34 (%7 — yW)3 4 (37 4 YO)® ~ 5.40431.

Proof. To prove the lemma we consider three cases whichsare,1, 1 < s < 2 ands > 2. The first

case can be easily combined into the second one, however, we give it separately to avoid confusion when
referring to “the fast machine” and “the slow machine”. Since the sequence must notify which job is last,
we specify it where necessary. If not specified, it means the job is not last.

Case a.s = 1. We show a lower bound df + 1/2/2. We use the same sequence as in the proof in [17] for
two identical machines, and the Min-max problem. The first two jobs have processing time

sub-case a.1. They are assigned to different machines. Thenldéisejob which has processing tine
arrives.C* = 2,C4 = 1. ThusR4 > 2.

sub-case a.2. They are assigned to the same machine, without loss of generality, assug itise next
job with processing time = /2 arrives.

sub-case a.2.1. It is assigned tdl/y, then thelastjob has processing time. We know thatC* = x + 1
andCy = z. ThusRy > £t =14 /2/2.

sub-case a.2.2. It is assigned td\/», we add dastjob of processing time + z. ClearlyC* = 2 + z and
Ca < 2. Which implies that? 4 > 212 =1+ /2/2.

Case b.1 < s < 2. We start with a job of sizpg = 1. We use a similar pattern for both cases (each case
relates to the machine where the first job is assigned). We use a par@metefs) < 1 (the value ofz
depends on the machine which received the first job, and is fixed laterk Fot,---, K + 1, we issue

the jobpy, = z(1 4 2)¥~1. Clearly, the sum of all jobs up to joly is (1 + z)7. After this sequence we give
anotherastjob of sizepx 2 = pr41. The total sum of jobs iSx = (22 4+ 1)(z + 1)%. Note that the last

job is indeed the largest since starting the third job, the sequence is non-decreasing. We would like to show
that if K is large enough, then the optimal schedule is almost balanced. We start with the following claim.

Claim 4 Giventhe set/ = {1,z,2(1+z),---,2(1 4+ 2)’} = {po, - -, pj+1}. Given a numbey such that

y € [0, (1 + 2)7*1] (i.e. y is positive and smaller or equal than the sum of all elements)irthen we can
choose a subset &F, W C U such thatfy — igv:vpi’ <1.

Proof. By induction. Ifj = 0, theny € [0,1 + z] and the possible sums af6, z, 1,1 + z}. The largest
gap between two consecutive elementsiisc{z, 1 — z} < 1, therefore it is possible to choose the required
subset. Givery > 0, we choose the subset in the following wayylf> z(1 + z)7, we choose:(1 + z)’
and sety = y — z(1 + z)7. This gives) < ¢/ < (1 + z)?. Otherwise we do not choosé1 + z)/ and set

7



y' = y. In both cases we can continue using the inductive hypothesjsfdr. Note that in the second case
y=1v9 <z(14+2) <(1+z)7 sincez < 1. ]
Next we show how to use this claim to get a convenient offline schedule.

Claim5 Given some > 0, it is always possible to chood€ such that we can always assign the jobs
p1,---,PK+2 SUCh thatlsfl < C*(1 + ¢) is satisfied. I.e., the schedule is almost flat.

Proof. In a flat schedule, the loads both machines woulqglee We always assign the last job to the fast
machine. The amount that the fast machine still needs to achieve a flat schedule is

Sk sz + D (z+ DK

1+ P st1 A
s(2z+1)
= G (T )
e+ D) (zs+s—2)
B s+1 ’

This value is positive since < 1 < s. It is easy to shows— pr12 < (z + 1)K+ thus the difference
satisfies that conditions of the previous claim. therefore there exists a subset of jobs we can add to the fast
machine getting load of at Ieaﬁ} —1and at mostls—K + 1. This means that the workload of the slow

S x
machine which receives all other jobs is at Ieééf —sand at mosg—K + 5. We getC* > + K- — 5. Since

s

Sk can be arbitrarily large, we choogésuch thatSx > (s +1)(1 + 1). ]

We can proceed with the proof now. If the first job is assigned to the fast machine wgs)se-
R(s)/s—1,whereR(s) = 2H1ty5s£2s41 which is a solution of the equatiqa+1)R? — (35+1)R+s =
0. It is simple to shows < R(s) < 2 < s+ 1 for the cases < 2. We get thatsz(s) = R(s) — s, SO
0 < z(s) <sz(s) < 1.

Choose:s and letK be an integer satisfying claim 5. We give the jobs. If someygpp; is assigned
to the slow machine, as a result, this machine has the worldo@d+ z)’, and the workload of the fast
machine is(1 + z)/. Thus we stop the sequence and give a last job ofsgize- 2)/*! (Clearly this is the
largest job, since it is larger than the sum of all previous jobs). Sifice s(1 + 2)/*!, andCy = (1 + 2)7
(usingsz < 1), which gives the competitive ratigf1 + z) = R.

Upon arrival of jobK + 2 (which is last), we have™ > m

2)% < (1 + 2)¥ on the slow machine, and a workload @f + 1)%+! on the fast one. So, the ratio

We get a workload ofz(1 +

Ra= & 2 25/ (L +e).
We getR, = (5—1—21])%(/];/51—1) = G- In the following, we will show that?, > R. This is

equivalent to showingR — s > (s + 1)(R — s)R = R%(s + 1) — s(s + 1) R. From the definition of?, we
get2R —s > (3s+1)R— s —s(s+ 1)R, this give®2R — s > R(—s>+2s+1) —sorR(s2—2s+1) > 0
which clearly holds.

If the first job is assigned to the slow machine we ué® = R(s) — 1, Sinces < R(s) < 2 for the
cases < 2. We getthad < z(s) < 1 < s.



Choose: and letK be an integer satisfying claim 5. We give the jobs. If someyjph is assigned to
the fast machine it has the loa¢ll + 2)7, and the load of the slow machines§l + z)’. Thus we stop the
sequence and give a last job of siga + z)’*!. SinceC* = s(1 + 2)/*!, andC4 = s(1 + z)7 (using
z < s), which give the competitive ratio + z(s) = R(s).

After the arrival of jobK + 2 we haveC* > Sk /(1 + 1)/(1 +¢). We get a load ot (1 + z)X on the
fast machine, ane(z + 1)X*! on the slow one. So, the ratig, = &~ > Sf;jll))/( £).

We getRy = % = R(s) due to the definition of2(s) as the solution ofs + 1)R? — (3s +
1)R+s=0.

1 1

Casec.2 < s < s =5+ (% - 2Y)° + (%] + 2Y)° ~ 540431 ands > 4+ 3v2 ~ 8.2426.
We consider the following instance: given the sequence of four jobs with size ofz(1 + 2),z(1 + 2)},
respectively. Where = R(s) — 1, again letR(s) = 3stlbyosd2stl @f;*%“ It is interesting to note thak(s) is
a non-decreasing function ef 2 < R(s) < (3 + \/5)/2 in the case that > 2. For simplicity, we useR

instead ofR(s) without cause any confuse. The valuezafepends os,

[ o= if 2<s<s;
T s -1 if s> 443V

In the following we will prove that > z in this case. First, we consider< s < s1. z = if;; =
Si’;ﬁ. s+2—2R > 0, sinces® > 35+ 2if s > 2. In order to showe > R — 1 = z, we only need to
show thaR — 1 > s(R — 1) — 2(R — 1)?, which is equivalent te < 2(R — 1) + z-7 + 2. This holds for
s < s1.

Now we consides > 4 + 3v/2. From the definition of?, we havez = S“ —1= (1%571) —1.1In
order to show: > = = R — 1, we only need to prove that> 2R? — R — 1. ThIS holdss > 4 + 3v/2. We
can proceed the proof of this case now. We start withjobf sizel.

Case c.1.J; is assigned td//s. Then the next job is claimed to be the last job of siz&Ve haveC* = s
andC4 = 1, thusR4 > g—A = s> R, whens > 2.
Case c.2.J; is assigned td/;. The next jobJ; of sizez arrives.

Case c.2.1J; is assigned td/;. Then the next job of size(1 + z) is claimed to be the last job. We
haveC* = s(1 + z), Ca4 = max{s, z}. ThusR4 > max{l + z,s + s/z} > R, fromz >z = R — 1.

Case c.2.2); is assigned td/;. Then the next jol/s of sizex(1 + z) arrives.

Case c.2.2.1J3 is assigned td\/. Then the last job of size(1 + z) + sz(1 + z) arrives. Clearly,
C*=s(14+2)+sz(l+z2)andCy = s(1+ z),sinces > R > x. ThusRy > 1+ x = R.

Case c.2.2.2J5 is assigned td/;. The last job of size:(1 + z) arrives. ClearlyC4 = z(1 + z). Now
we consider the optimal valu&*. In the case < s < 2424/2, assign joh/s of sizez to slow machine, and
all the other jobs to fast machine. Thét = min {sz, 1 + 2z(1 + z)}, from the definition ofz = 22t}

s—2x!

we havesz = 1+ sz(1+z). ThenR4 = T = 835((2:111)). Note thats(2z+1) = (s — 1)z +s+x(s+1).

From the definition ofs, (s +1)2? — (s — 1)z —s5 = 0, s(2x+1) = (s+ )22 +2(s+1) = (1+2)z(s+1).




ThenR, = sz((zjjll)) — 1+ 2 = R. Now we consider the optimal valu&* in the cases > (9 + 5v/5)/2.
Just assign the first job of siZeto slow machine and all the other jobs to the fast machine. Therefore,
C* = min {s, 2z(1 + z) + z}. From the definition ot, we haves = 22(1+z) +z. Then,R4 =

= R.

x(ls—l—z) -

(R—l)(l—o—s/FR(R—l))—l)

Lemma 6 For any online algorithm4, the competitive ratid? 4 > max{(3 + @)

2.3247, Ry (s) = (& + § + Y12si8ls® )3 + (5 + 35 7“251;;815)3 + £} for any 2

1
(37 + 3Y09)% ~ 540431 = 51 <5 <4+3V2.

Proof. Let2 < R < R(s) be a competitive ratio we would like to prove. We start with a job of size 1. Ifit
is assigned td/s, then a last job of size arrives.C* = sandR4 > s > R(s). Assume therefore that the
first job is assigned td/;, the next job is of sizé? — 1. If the second job is assigned ids, then a last job
of sizesR appears. Thu€™* = sR andC4 = max{R —1,s} = s, R4 > R. If the second job is assigned
to M, then the next job is of sizB(R — 1) > R. Ifitis assigned td\/,, then a last job of sizeR? arrives.
We haveC* = sR? andC4 = sR, thus againR4 > R. Finally, if all three jobs are assigned 1d;, a last
job of sizeR? — R arrives.

At this time, we consider two possible offline schedules.

In the first option, all jobs but the first one of siz&— 1 are assigned to the fast machine. In this case
C* = 2R? — 2R + 1. To show that, note that the other machine has the worki¢&d— 1). Comparing
the values we have thatR — 1) > 2R? — 2R + 1 for s > s;. Therefore the competitive ratio is at least
MRQ# Taking R to be the solution of the equatiarf — 322 + 2z — 1 = 0, we achieve the first option
for the lower bound.

In the second option, all jobs but the first one of sizare assigned to the fast machine. In this case
C* = s. To show that, note that the sum of all other job84& — R. SinceR > 2.32, we have2R2 — R >
8.44 which is strictly larger thas. We haveCy = R? — R, and therefore the competitive ratio is at least

TaklngR to be the solution of the equatiari — 22 = s, we achieve the second option for the lower

R2
bound.

The breakpoint between the two lower boundsii¥s;) — R%(s;) ~ 7.159191247. The first lower
bound is larger in the first interval, and the second one, in the second interval. ]

Fors > 4+ 3v2andl < s < s1, the algorithmA,,(s) is a best possible online algorithm. As can be
seen in Figure 1, the gap between the lower and upper bounds in the remaining interval is relatively small.

4 The Min-max objective

In this section we deal with this semi-online problem on two uniform machines whose objective is to mini-
mize the makespan.

10



4.1 Lower Bounds
In this section we give lower bounds depend on the speed

Lemma 7 For any semi-online algorithmi, no deterministic algorithm can have competitive ratio lower
than

1+1 if s> 143
2 ; .
RA: 1+m7 Zf2§5<1+\/§,
L+ 1, if 146557 < s < 2:

R/(s) = s10V3s 825kl | < 5 < 1.46557.
Proof. We prove the lemma by the following cases.

Case a.s > 1 + /3. We start with a jobJ; of processing timé. If .J; is scheduled on the fast machine
My, then the last job, which has sizaarrives. ClearlyCy = min{s?,1 + s} = 1 + sandC* = s. If .J;

is scheduled on the slow machiné,, the last job is of sizé. We haveC* = 2, however,C4 = s. Since

s > 1+ /3, we haves? — 2s — 2 > 0, this is equivalent td + 1 < s/2. Therefore, R4 > 1+ 1 in this
case.

Caseb.l ++3>s>2.

Letx = % andy = s(1 + x)/2. We haver > 1 when1.8832 < s < 1+ /3, x > 5/2 when
s >1.7511 andy > = when0 < s < 1+ /3.

Again, we start with first jol/; of size 1.

Case b.1. J; is assigned to fast machinds, then the last job of size arrives, which implies that
Rpa>1+ %

Case h.2.J; is assigned td/1, then next jobJ, of sizex arrives.

Case b.2.1.J; is assigned td/q, the last jobJ; of sizex arrives. We have’™* = 2z sinces < 2x for
s> 1.7511andCy = s(1 +z). SORs = s(1+x)/(21) =1 +4/(s®> +25 —2) > 1+ 25/(2 + 25 + s2)
in our interval.

Case b.2.2.J, is assigned td/s, next job.J; of sizey arrives.

Case b.2.2.1.J5 is assigned td\/;, the last job is of sizg. ThenCy = s(1 + y), C* = 2y. Then
Ra=1+2s/(2+ 25+ s?).

Case b.2.2.2J; is assigned td/,, the last jobJ, of sizes(1+xz+y) arrives. We hav€™* = s(1+z+y)
andCy =z +y+s(l+z+y). HenceRy =1+ (z+y)/(s(1 +z+y)) =1+2s5/(2+ 25 + 52).
Case .3 ~ 1.46557 < s < 2. Where3 ~ 1.46557 is a solution of the equation 6 — s> — 1 = 0. The
lower bound we prove here is smaller thain{s, 1 + %} for all considered values 6t

We start with a sub-interval which is< 1.8832 = % + @ + %\/ —1 + 2+/2. If the first job is assigned
to the fast machine, then the last job has size. dfhus, in this case we have alwaigg > min{s, 1 + %}.
Consider now the case that the first job is assigned at slow maghine

11



Let z = s+ 1/s. The next job is of size. If it is assigned tal/;, the last job is of size as well.
C* = szforsz < 1+2zandl +z otherwise.Cy > s(1+ z). This gives a lower bound of at lealst- °.
Otherwise, the next job is of size= (2 4 2s% — s3) /(53 — 52 — 1), this number is non-negative in our
interval. Ifit is assigned to the fast machine, the last job is of size- = 4 2z). We haveC™* = s(1+z + z).
If it is assigned to the slow machine, this results in a competitive ratio largersth@therwise the ratio is
L+ o5y = 1+ o fors < 1.8832.
If 2 is assigned to the slow machine, the next jop is (1+s2)?/(s(s®> —s?—1)). Note thaty > = and
y > zinthe intervals < 2. If y is assigned to the fast machine, we have the lastfob-y + 1+ z) = C*.
If it is assigned to the slow machine, this results in a competitive ratio largersth@therwise the ratio is
1+ s(w—l-yyiti—i—l) =1+ 27 Otherwise, the last job is of sizeas well. We getthat™ = sy = y+z+1+ 2.
Ca>s(l+xz+y).
We would like to use a similar instance for the rest of the interval. However, the proof fails at the point
where the job of size arrives. Instead of the above sequence, we let the first job be of sizeinstead of
1. Clearly, if it is assigned to the fast machine we still get a high competitive ratio. Otherwise, the next job
is of sizez. If we reach a situation where this job is assigned to the fast machine, we can continue as before,
since all optimal schedules assigned the jobs of sizzslx to the same machine. Itis only left to consider
the case where the job of sizés assigned to the slow machine, we let another job of saeive and it is
the last job. Note that > 1 + x already forx > 1.8393. Sincesz > z + = + 1 in all the interval we are

considering now, we have* < sz. This gives a ratigct2tl = 1 + sy > 1+ 5 for s <2.3593.

Case d.1 < s < 3 =~ 1.46577. Whereg is a solution of the equatios® = s2 + 1. Before proving this
case, we first prove the following claim regarding the first job.

Claim 8 The first job must be assigned to the slow machifie otherwise we can get an instanédor
which the ratio is no less thaR/(s).

Proof. Suppose that the first job is assigned to the fast machipe The instancd is given as follows.
Assume that this first job has size 1 (otherwise scale accordingly). We continue similarly to Lemma 3
with jobs of sizesz, z(1 + 2), 2(1 + 2)?,... wherez = (s + 1 — s?)/(s?) < 1. The sum aftei such

jobs is(1 + z)*. If some job in this sequence is assigned to the slow machine, we can immediately give
a last job of sizes(1 + z)* (instead of the remainder of this sequence), and thus &dve- s(1 + z)°.

If this additional job is assigned to the slow machine, it contains the last two jobs and we get a ratio of
(s2(14+2)0"D 4+ 82(142)") /(s(1+2)") = (2+s(2+1))/(1+2) = (25+1)/(s+1) > R/(s). Otherwise,

all jobs but one (the second to last job) are on the fast machine and we get thés(atie z)* + (1 +

2N /(s(142)") = (s+s2+1)/(s+52) = (2s + 1) /(s + 1).

After giving enough jobs (that are all assigned to the fast machine), we can balance any required
schedule. Denote the sum of jobs presented so fakbyNext we have a job of sizé' X wherel =
(s+1—sR'(s))/(2sR'(s) — s — 1). The largest job so far (not including the new job) has siz¢/ (1 + z)
so in order to let the last job have the same size as this job, the new job need to be the largest, and we need

12



to haveT > z/(1 + z). It can be easily verified that this algebraic property holds in the interval consid-
ered here. If this job of siz& X is assigned to the fast machine, a last job of §i2¢ follows it. We get
C* = (2T'X + X)/(1 + 1/s) and the fast machine has total size of jobs which is at I¥astTX. Thus
we get the ratiqs + 1)(7' + 1) /(s(2T' + 1)) = R/(s)
If the job of sizeT' X was assigned to the slow machine, a last job of ${Zé+ 1) X follows it. We have
C* = s(T + 1)X. This job may be assigned to the fast machine or the slow machine. In the first case, this
machine additionally has all smaller jobs and we get the (&fie-s(T+1)X)/(s(T+1)X) = 1+1/(s(T+
1)). In the second case, we get the rdtid(T + 1) X + sTX)/(s(T + 1)X) = (T + s(T + 1)) /(T + 1) .

The last two ratios are larger thati(s). [
s(R'(s)—1)
1+s—sR/(s)"

Note thatl + s > sR/(s) for anys < 2. We further definex = ”SE%Z The value ofx is monotonically
decreasing witly and we have) < a < % in this interval.

The first job is of sizex > 0. If « = 0 the sequence starts with the next job. Otherwise, it must be
assigned tal/; according to Claim 8.

The next job is of sizé — «. This job must be assigned id; otherwise a last job of sizearrives, the
C* = sandCy = min{l — a + s,as + s?}. Sincea + s = R/(s) andl — a + s > sR'(s) hold in our
interval.

The next job is of size. This job must be assigned id; otherwise a last job of siz&z + 1) arrives,
we haveC* = s(z + 1), C4 = min{z + s(z + 1), s + s%(z + 1) }. Again, we get these two ratios is at least
R/(s) in our interval.

The last job is of size as well. According to the value ef, we have thaC* = z + 1 — a = s(a + 2).
HoweverC,4 > s(1 + z), and the ratioj((;—z)) = R/(s). [

As can be seen in Figure 2, the gap between the lower and upper bounds in the remaining interval is also
relatively small.

Now we are ready to prove this case. We abuse the notatéom define the value(s) =

4.2 Analysis of the algorithm for the Min-max problem

In this section, we present algorithms for the above semi-online problem. The competitive ratios again
depend on the value af First we consider a fie algorithm which just uses the fast machine for all jobs.
In [7], it was shown that the competitive ratio of this algorithm is at most &f1/s (this is a simple fact
that follows from total size of all jobs).
Fors < 2, we schedule the jobs according to the following algorithms. d(gy — Y225t (s+1),
This is the positive solution of the equatien® + (s + 1)a — s = 0. With this value ofo, we get that the
two expression% andl + « are equal, and have the valRés).

Thensa(s) < 1 whens < 2. Let3(s) = 1_0[5(;)(5)- We useA,(s) for our problem, and prove the

following theorem.

Theorem 9 The competitive ratio of Algorithm,, is at mostR/(s) = S=1HV3s% 42+l — 1 4 ¢,

13



Proof. Lety be the processing time of the last jdp. Then the cost of the algorithfil, , is max{M;(n) =
Mi(n —1), Ma(n) = Ma(n — 1) + y}. Consider the following two cases.

Case 1.C4, = Mi(n — 1). Letx be the processing time of the last job assigned to Machine 1, and
t its index. From the algorithm, we havea(n — 1) + = > Ma(t — 1) + = > aM;(t) = aMi(n — 1)
(otherwise this job would have been scheduled on Machine 2). Sjnisea job with the longest processing
time,y > x. We geta(s)Mi(n — 1) < Ma(n — 1) + y. Therefore,

Min—1)/s+ Ma(n—1)+y _ Mi(n—1)+s(Ms(n—1) +y)

C*

= 1+1 s+ 1
1+ sa
M —1
> (1)
_ Caas 41 s—14/55213s41
ThenRAa = — < l—fsa(s) _ s 22 St

Case 2.C4, = Ma(n—1) +y. If y > Mi(n — 1) 4+ sMa(n — 1), thenC* > y. Using Observation 1
we haveM;(n — 1) > 5 Ms(n — 1), thus,

Ma(n —1 Ma(n —1
R, < Mei=D+y M-
Y Y
< 1+ Ma(n — 1)
Mi(n—1)+ sMa(n—1)
MQ(TL - 1)
= 1+ o 1-sa o
sMa(n — 1) + =% Ma(n — 1)
= 1+o.
_ Mq(n—1)
Next we consider the case that< M;(n — 1) + sMy(n — 1). ThenC* > Ma(n ”E’I s =

Miln=Utsytslla(n=1) ‘\\e use Observation 1 once again,

(s +1)(Ma(n—1)+y) :1+1_ (s+1)Mi(n—1)
“ T sMay(n—1)4+sy+ Mi(n—1) s  sMi(n—1)+s2Ms(n—1) + s%y
(s +1)My(n—1)

Ry

< 14—
= 1t s (24 s)Mi(n—1)+ (s3+ s2)Ma(n —1)
1 Mi(n — 1) 1 1
N <14 - —1+a.
+s sMi(n—1) 4 s2Ms(n—1) — +8 s+ 20 e

[
It is easy to see thak(s) < 1 + % whens < 2. Thus the algorithmd,, has a better performance for

s < 2. Note that fors > 1++/3, we have presented a best possible algorithm. Algorithnis also optimal
for identical machines, i.e. when= 1, in this case our algorithm reduces to the one of [17].

Acknowledgements We would like to thank an anonymous referee for many helpful suggestions to improve
the presentation of this paper.

14



References
[1] E. Angelelli, A. Nagy, M. Speranza and Z. Tuza. The on-line multiprocessor scheduling problem with
known sum of the taskgdournal of Scheduling@ (2004), 421-428.
[2] Y. Azar and O. Regev. Online bin stretchifitheorectial Computer Scien@68(2001), 17-41.

[3] G. Dosa and Y. He. Semi-Online algorithms for parallel machine scheduling probGomnputing72
(2004), 355-363.

[4] L. Epstein. Bin Stretching revisteActa Informatica39(2)(2003), 97-117.

[5] L. Epstein. Tight bounds for bandwidth allocation on two linRsscrete Applied Math148(2)(2005),
181-188.

[6] L. Epstein and L. M. Favrholdt. Optimal non-preemptive semi-online scheduling on two related ma-
chines.Journal of Algorithms57(1): 49-73, 2005.

[7] L. Epstein, J. Noga, S.S. Seiden, J. Sgall and G.J. Woeginger. Randomized Online Scheduling on Two
Uniform MachinesJournal of Scheduling(2) (2001), 71-92.

[8] R. Graham. Bounds for certain multiprocessing anomaBei. System Technical Journa5 (1966),
1563-1581.

[9] R. Graham. Bounds on multiprocessing timing anomal&#&M Journal on Applied Mathematics
17(2)(1969), 416-429.

[10] Y. He and G. Zhang. Semi on-line scheduling on two identical mach@®esiputing62 (1999), 179-
187.

[11] H. Kellerer, V. Kotov, M.G. Speranza, and Z. Tuza. Semi on-line algorithms for the partition problem.
Operations Research Lette24 (1997), 235-242.

[12] P. Sanders, N. Sivadasan, and M. Skutella. Online Scheduling with Bounded MigRxtioeedings
of Automata, Languages and Programming: 31st International Collogu{i@@ALP 2004), Lecture
Notes in Computer Scien@142(2004),1111-1122.

[13] S. Seiden, J. Sgall, and G. Woeginger. Semi-online scheduling with decreasing joiOgieesations
Research Letter27 (2000), 215-221.

[14] J. Sgall. On-line schedulin@nline algorithms — The State of Attecture Notes in Computer Science
1442(1998), 196-231.

[15] Z. Tanand Y. He. Semi-on-line problems on two identical machines with combined partial information.
Operations Research Letted$ (2002), 408-414.

[16] G. Zhang. A simple semi on-line algorithm fd*2//Cy.x With a buffer. Information Processing
Letters61(1997), 145-148.

15



[17] G.Zhang and D. Ye. A note on on-line scheduling with partial informat@mputers: Mathematics
with Applications44 (2002), 539-543.

16



