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Abstract

In this paper, we formulate and investigate the following problem: given integersd, k andr where
k > r ≥ 1, d ≥ 2, and a prime powerq, arranged hyperplanes onFk

q to maximize the number of
r-dimensional subspaces ofFk

q each of which belongs to at least one of the hyperplanes. The problem
is motivated by the need to give tighter bounds for an error-tolerant pooling design based on finite
vector spaces.

1 Introduction

Designing good error-tolerant pooling design is a central problem in the area of non-adaptive group
testing [9], which has many practical applications including DNA library screening [8, 10, 21], multiple
access control [5–7,17,26], and error correcting/detecting superimposed codes [11–15], to name a few.

To date, there are relatively few papers addressing the problem of designing and analyzing error-
tolerant pooling designs [1,3,4,16,19,20,22,24]. In [22], Ngo and Du introduced a non-adaptive pooling
design based on finite vector spaces, which was later found to be highly error-tolerant by D’yachkov et
a. [10]. The analysis of the design in [10] was not very tight. In this paper, we give a tighter analysis of
the design. This is done via formulating a new and very interesting hyperplane arrangement problem on
finite fields.

To formally describe our problem, we first need a few definitions. A01-matrix M is said to be
d-disjunct if and only if no column is contained in the union ofd others. (Here, columns are viewed
as characteristic vectors of sets of rows.) Ad-disjunct matrix corresponds precisely to a pooling design
which can identify at mostd negative items. For the design to tolerate a few errors in outcomes, it is not
sufficient for a column to just not be covered byd others. Adz-disjunct matrix is a matrix where, given
anyd + 1 columnsC0, C1, . . . , Cd, the setC0 \C1 ∪ · · · ∪Cd has at leastz elements. It is easy to show
that adz-disjunct matrix can detectz − 1 errors and correctb(z − 1)/2c errors.

The construction in [22] is as follows. Letq be a prime power andm, k, r be integers such that
m > k > r ≥ 1. Let Mq(m, k, r) be the01-matrix whose rows are indexed byr-dimensional subspaces
of Fm

q and whose columns are indexed byk-dimensional subspaces ofFm
q . Mq(m, k, r) has a1 in row

R and columnC if and only if R is a subspace ofC. It is easy to see thatMq(m, k, d) is d-disjunct (the
containment method by Macula [18]). Later, D’yachkov et al. [10] realized that we do not have to take
r = d for Mq(m, k, r) to bed-disjunct (r could be a lot smaller thand, evenr = 1 works sometimes).
Moreover, the construction can, in general, tolerate a lot of errors. Specifically, their main result was that,
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for anyd + 1 k-dimensional subspacesC0, C1, . . . , Cd of Fm
q , the number ofr-dimensional subspaces

each of which belongs toC0 but not otherCi is at least[
k

r

]
q

− d

[
k − 1

r

]
q

+ (d− 1)
[
k − 2

r

]
q

,

and that the bound is tight ford ≤ q + 1. Here, for any non-negative integersm,n,
[

n
m

]
q

denotes the
Gaussian coefficient, to be defined in the next section.

The number of columns ofMq(m, k, r) is
[
m
k

]
q
, exponentially larger thanq+1. Hence, it is desirable

to devise tight bounds for the case whenq + 1 < d ≤
[
m
k

]
q
− 1. In this paper, we partially address this

problem. In the process, we formulate a new – to the best of the author’s knowledge – hyperplane
arrangement problem on finite fields.

The rest of this paper is organized as follows. Section 2 motivates the hyperplane arrangement prob-
lem and presents preliminary results on the problem. Section 3 gives tighter bounds for the original group
testing problem using results from Section 2. Section 4 concludes the paper with additional remarks and
a conjecture.

2 An extremal hyperplane arrangement problem on finite fields

2.1 Motivation and notations

Henceforth, we shall use(a; q)n (or (a)n for short) to denote theq-shifted factorial:

(a)n = (a; q)n := (1− a)(1− aq) . . . (1− aqn−1).

The q-analogue of a natural numbern is denoted by[n]q, and the Gaussian coefficient is denoted by[
n
m

]
q
. They are defined as follows.

[0]q := 0

[n]q := 1 + q + · · ·+ qn−1, n ≥ 1[
n

m

]
q

:=

{
0 whenn < m

(q)n

(q)n−m(q)m
= (1−qn)...(1−qn−m+1)

(1−qm)...(1−q) otherwise.

We shall drop the subscriptq and write[n] and
[

n
m

]
when there is no potential confusion as to whatq is.

Our notations are standard in theq-series literature [2].
For any vector spaceX, let X denote the set of allr-dimensional subspaces ofX, anddim(X) the

dimension ofX. Then, it is well known (see, e.g. [25]) that

|X| =
[
dim(X)

r

]
.

For any vector spacesX andY ,
X ∩ Y = X ∩ Y (1)

because any vector space which is a subspace ofX and a subspace ofY is also a subspace of the vector
spaceX ∩ Y . Note that, in generalX ∪ Y is not a vector space, and

X ∪ Y 6= span(X ∪ Y ).

The matrixMq(m, k, r) is dz-disjunct for

z = min{|C0 \ C1 ∪ · · · ∪ Cd| : C0, C1, . . . Cd ared + 1 differentk-dimensional subspaces ofFm
q }.

2



Thus, we want to findk-dimensional subspacesC0, C1, . . . , Cd of Fm
q that minimizes the quantity

|C0 \ C1 ∪ · · · ∪ Cd|.

For anyi ∈ {1, . . . , d}, let Hi = Ci ∩ C0, then

|C0 \ C1 ∪ · · · ∪ Cd| = |C0 \ (C1 ∩ C0) ∪ · · · ∪ (Cd ∩ C0)|
= |C0 \ (C1 ∩ C0) ∪ · · · ∪ (Cd ∩ C0)|
= |C0 \H1 ∪ · · · ∪Hd|.

For |C0 \C1 ∪ · · · ∪Cd| to be minimized, we can assume that allHi are hyperplanes ofC0. The number
of hyperplanes ofC0 is

[
k

k−1

]
= [k]. Thus, whend ≤ [k] we can also assume that theHi aredifferent

hyperplanes ofC0; because, givend hyperplanesH1, . . . ,Hd, we can take the span of each of them
with a vectorv /∈ C0 to reconstruct theCi. For the group testing problem, we will address the case
whend > [k] in a later section. In this section, we only consider the case whend ≤ [k]. Because
|C0 \ C1 ∪ · · · ∪ Cd| is minimized when|H1 ∪ · · · ∪Hd| is maximized, the above discussion motivates
the following problem.

Problem 1 (Our Hyperplane Arrangement Problem). Given ak-dimensional vector spaceC overFq,
and an integerd such that1 ≤ d ≤ [k], findd hyperplanesH1, . . . ,Hd of C thatmaximizesthe following
quantity

|H1 ∪ · · · ∪Hd|.
At least, find good upper bounds for the quantity.

The result in [10] can be restated as follows

Theorem 2.1 (D’yachkov et al.).Given integersr ≤ k − 2, andd ≤ [k]. LetH1, . . . ,Hd bed different
hyperplanes of ak-dimensional vector space overFq. Then,

|H1 ∪ · · · ∪Hd| ≤ d

[
k − 1

r

]
− (d− 1)

[
k − 2

r

]
(2)

The bound is tight whend ≤ q + 1.

2.2 Initial observations

By inclusion-exclusion, we have

|H1 ∪ · · · ∪Hd| =
d∑

i=1

(−1)i−1
∑

T⊆{1,...,d}
|T |=i

⋂
t∈T

Ht

=
d∑

i=1

(−1)i−1
∑

T⊆{1,...,d}
|T |=i

⋂
t∈T

Ht

=
d∑

i=1

(−1)i−1
∑

T⊆{1,...,d}
|T |=i

[
dim

(⋂
t∈T Ht

)
r

]
(3)

As we will see later, it is not easy to determine the dimension of the intersection of a given number of
arbitrary hyperplanes. That is why inclusion-exclusion does not help us directly solve the problem. Next,
for any two vector spacesX andY ,

dim(X) + dim(Y ) = dim(span(X ∪ Y )) + dim(X ∩ Y ).
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In particular, ifX is a hyperplane andY is a proper subspace of ak-dimensional vector space, then either
Y ⊆ X or dim(Y ) = dim(X ∩ Y ) + 1. To see this, supposeY has dimensionl ≤ k − 1. If Y 6⊆ X,
thendim(span(X ∪ Y )) = k, which implies

dim(Y ) = k + dim(X ∩ Y )− dim(X) = dim(X ∩ Y ) + 1.

In words, a hyperplane either containsY or “cut into” Y at one dimension lower than that ofY . This
observation leads to the following simple yet important lemma.

Lemma 2.2. Let H1, . . . ,Hx be somex hyperplanes of anl-dimensional vector space overFq whose
intersection isI = H1 ∩ · · · ∩ Hx. Let H be any hyperplane not containingI, and setYi = H ∩ Hi,
i ∈ {1, . . . , x}. Then, for any subsetS ⊆ {1, . . . , x}, we have

dim

(⋂
i∈S

Hi

)
= dim

(⋂
i∈S

Yi

)
+ 1 (4)

Proof. BecauseH does not containI, H does not contain
⋂

i∈S Hi for anyS. Thus,

dim

(⋂
i∈S

Hi

)
= dim

(
H ∩

⋂
i∈S

Hi

)
+ 1 = dim

(⋂
i∈S

(Hi ∩H)

)
+ 1 = dim

(⋂
i∈S

Yi

)
+ 1.

TheYi actually are hyperplanes ofH. What this lemma tells us is that, the inter-relationship (in terms
of dimensions of intersections) between the hyperplanesH1, . . . ,Hx is the same as the inter-relationship
between the hyperplanesY1, . . . , Yx of H. The hyperplanesY1, . . . , Yx form a down-scaled picture of
H1, . . . ,Hx insideH.

Consider ani-dimensional subspaceX of ak-dimensional vector spaceS overFq. Let l be an integer
wherei ≤ l ≤ k. Then, the number ofl-dimensional subspaces ofS containingX is

[
k−i
l−i

]
. In particular,

wheni = k − 2 the number of hyperplanes that containsX is[
k − (k − 2)

k − 1− (k − 2)

]
=
[
2
1

]
= q + 1. (5)

Lastly, the following identity is theq-analog of the Pascal’s triangle identity for binomial coefficients
[25]: [

n

m

]
q

=
[
n− 1

m

]
q

+ qn−m

[
n− 1
m− 1

]
q

. (6)

2.3 The cases of4 and 5 hyperplanes

Using the basic observations in the previous section, when there are a constant number of hyperplanes it
is possible to enumerate all possible classes of arrangements (with respect to our objective function). In
this section, we will compute the objective function for all arrangements of4 and5 hyperplanes. These
arrangements will serve as the base case to prove generic bounds in the next section.

We will be working on anl-dimensional vector spaceS overFq, namelyS is isomorphic toFl
q. For

any set of (at least two) hyperplanesH, let x(H) be the maximum number of hyperplanes inH whose
intersection has dimensionl − 2. Note that2 ≤ x(H) ≤ q + 1. Also define

g(H) =

∣∣∣∣∣ ⋃
H∈H

H

∣∣∣∣∣ .
We first consider the4-hyperplane case.
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Lemma 2.3. LetH = {H1,H2,H3,H4} be a set of4 hyperplanes ofFl
q.

(i) If x(H) = 4, then

g(H) = g
(4)
1 := 4

[
l − 1

r

]
− 3
[
l − 2

r

]
. (7)

This case can only hold whenq ≥ 3.

(ii) If x(H) = 3, then

g(H) = g
(4)
2 := 4

[
l − 1

r

]
− 5
[
l − 2

r

]
+ 2
[
l − 3

r

]
. (8)

(iii) If x(H) = 2, then there are two cases:

g(H) = g
(4)
3 := 4

[
l − 1

r

]
− 6
[
l − 2

r

]
+ 4
[
l − 3

r

]
−
[
l − 4

r

]
(9)

g(H) = g
(4)
4 := 4

[
l − 1

r

]
− 6
[
l − 2

r

]
+ 3
[
l − 3

r

]
. (10)

Moreover,g(4)
1 ≥ g

(4)
2 ≥ g

(4)
3 ≥ g

(4)
4 .

Proof. Cases(i) and(ii) follow straightforwardly from the inclusion-exclusion formula (3) and Lemma
2.2. Supposex(H) = 2, thenW = H1 ∩H2 ∩H3 has dimensionl − 3. If H4 does not containW then

H1 ∩ H2 ∩ H3 ∩ H4 has dimensionl − 4, and the formula forg(4)
3 follows from (3) again. (Note that,

whenl ≤ 3 all formulas follow trivially.) Thus, the last case is whenW ⊂ H4. Let Vi = H4 ∩ Hi, for
i = 1, 2, 3. Becausex(H) = 2, theVi are three different hyperplanes ofH4. Moreover,V1∩V2∩V3 = W ,
anddim(Vi) = l − 2 for i = 1, 2, 3. We can computeg(H) as follows, noting Lemma 2.2,

g(H) = |H1 ∪H2 ∪H3|+ |H4 \H1 ∪H2 ∪H3|
= |H1 ∪H2 ∪H3|+ |H4 \ V1 ∪ V2 ∪ V3|
= |H1 ∪H2 ∪H3|+ |H4| − |V1 ∪ V2 ∪ V3|

=
(

3
[
l − 1

r

]
− 3
[
l − 2

4

]
+
[
l − 3

r

])
+
[
l − 1

r

]
−
(

3
[
l − 2

r

]
− 2
[
l − 3

r

])
= g

(4)
4 .

Lemma 2.4. LetH = {H1,H2,H3,H4,H5} be a set of5 hyperplanes ofFl
q.

(i) If x(H) = 5, then

g(H) = g
(5)
1 := 5

[
l − 1

r

]
− 4
[
l − 2

r

]
. (11)

This case can only hold whenq ≥ 4.

(ii) If x(H) = 4, then

g(H) = g
(5)
2 := 5

[
l − 1

r

]
− 7
[
l − 2

r

]
+ 3
[
l − 3

r

]
. (12)

This case can only hold whenq ≥ 3.
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(iii) If x(H) = 3, then there are three cases:

g(H) = g
(5)
3 := 5

[
l − 1

r

]
− 8
[
l − 2

r

]
+ 4
[
l − 3

r

]
, (13)

g(H) = g
(5)
4 := 5

[
l − 1

r

]
− 9
[
l − 2

r

]
+ 7
[
l − 3

r

]
− 2
[
l − 4

r

]
, (14)

g(H) = g
(5)
5 := 5

[
l − 1

r

]
− 9
[
l − 2

r

]
+ 5
[
l − 3

r

]
. (15)

The last case (ofg(5)
5 ) can only hold whenq ≥ 3).

(iv) If x(H) = 2, then there are four cases:

g(H) = g
(5)
6 := 5

[
l − 1

r

]
− 10

[
l − 2

r

]
+ 10

[
l − 3

r

]
− 4
[
l − 4

r

]
, (16)

g(H) = g
(5)
7 := 5

[
l − 1

r

]
− 10

[
l − 2

r

]
+ 10

[
l − 3

r

]
− 5
[
l − 4

r

]
+
[
l − 5

r

]
, (17)

g(H) = g
(5)
8 := 5

[
l − 1

r

]
− 10

[
l − 2

r

]
+ 9
[
l − 3

r

]
− 3
[
l − 4

r

]
, (18)

g(H) = g
(5)
9 := 5

[
l − 1

r

]
− 10

[
l − 2

r

]
+ 6
[
l − 3

r

]
. (19)

The last case (ofg(5)
9 can only hold whenq ≥ 3).

Moreover,g(5)
1 ≥ g

(5)
2 ≥ g

(5)
3 ≥ g

(5)
4 ≥ g

(5)
5 ; and g

(5)
4 ≥ g

(5)
6 ≥ g

(5)
7 ≥ g

(5)
8 ≥ g

(5)
9 . Also,g(5)

5 ≥ g
(5)
6

whenq ≥ 4.

Proof. • Cases(i) and(ii) follow straightforwardly from the inclusion-exclusion formula (3) and
Lemma 2.2.

• Supposex(H) = 3, and assumeV = H1 ∩ H2 ∩ H3 has dimensionl − 2. Let Vi = H4 ∩ Hi,
for i = 1, 2, 3, andU = H1 ∩ H2 ∩ H3 ∩ H4. Sincex(H) = 3, H4 does not containV and thus
dim(U) = l − 3 by Lemma (2.2). We consider three cases as follows.

Case 1:H5 contains someVi for i = 1, 2, 3. Note thatH5 cannot contain two differentVi because
the span of two differentVi is exactlyH4. Without loss of generality, assumeV1 ⊂ H5. In this
caseH1,H2,H3,H4 intersectH5 at3 different hyperplanes (ofH5), becauseH1 andH4 intersect
H5 at the same hyperplaneV1. Lemma 2.2 and the inclusion-exclusion formula (3) gives

|H1 ∪ · · · ∪H5| = |H1 ∪H2 ∪H3|+ |H4 \H4 ∩H1 ∪H4 ∩H2 ∪H4 ∩H3|+
|H5 \H5 ∩H1 ∪ · · · ∪H5 ∩H4|

=
(

3
[
l − 1

r

]
− 2
[
l − 2

r

])
+ 2

([
l − 1

r

]
− 3
[
l − 2

r

]
+ 2
[
l − 3

r

])
= g

(5)
3 .

Case 2:H5 containsU but does not contain anyWi for i = 1, 2, 3. In this case,H1,H2,H3,H4

intersectH5 at4 different hyperplanes all of which containsU . It follows that

|H1 ∪ · · · ∪H5| = |H1 ∪H2 ∪H3|+ |H4 \H4 ∩H1 ∪H4 ∩H2 ∪H4 ∩H3|+
|H5 \H5 ∩H1 ∪ · · · ∪H5 ∩H4|

=
(

3
[
l − 1

r

]
− 2
[
l − 2

r

])
+
([

l − 1
r

]
− 3
[
l − 2

r

]
+ 2
[
l − 3

r

])
+([

l − 1
r

]
− 4
[
l − 2

r

]
+ 3
[
l − 3

r

])
= g

(5)
5 .

6



Case 3:H5 does not containU . This is the situation of Lemma 2.2. We have

|H1 ∪ · · · ∪H5| = |H1 ∪ · · · ∪H4|+ |H5 \H5 ∩H1 ∪ · · · ∪H5 ∩H4|

=
(

4
[
l − 1

r

]
− 5
[
l − 2

r

]
+ 2
[
l − 3

r

])
+([

l − 1
r

]
− 4
[
l − 2

r

]
+ 5
[
l − 3

r

]
− 2
[
l − 4

r

])
= g

(5)
4 .

• If x(H) = 2, thenW = H1 ∩ H2 ∩ H3 has dimensionl − 3. The formula forg(5)
6 comes from

the case whenH4 andH5 both containW ; g
(5)
7 is obtained whenW ⊂ H4 but W 6⊂ H5 or vice

versa;g(5)
8 is obtained whenW is neither a subspace ofH4 or H5 andH5 does not contain the

intersectionU = H1 ∩ H2 ∩ H3 ∩ H4, andg
(5)
9 is obtained whenW is neither a subspace ofH4

norH5, yetH5 does containU . The computation is similar to the previous case.

2.4 Tighter bounds and the packing arrangement

We first consider the simplest case whenr = 1. The total number of lines (i.e.1-dimensional subspaces)
of ak-dimensional vector spaceS overFq is[

k

1

]
= [k] =

qk − 1
q − 1

.

LetV be anyk−2-dimensional subspace ofS, andH1, . . . ,Hq+1 be the set of all hyperplanes containing
V . Then, the inclusion-exclusion formula (3) gives

|H1 ∪ · · · ∪Hq+1| = (q + 1)
[
k − 1

1

]
− q

[
k − 2

1

]
= (q + 1)

qk−1 − 1
q − 1

− q
qk−2 − 1

q − 1
=

qk − 1
q − 1

.

The following theorem follows immediately.

Theorem 2.5. Whenr = 1 andd ≥ q + 1, the maximum value of|H1 ∪ · · · ∪ Hd| is exactly[k], the
total number of lines inS. One way to obtain this maximum is to haveq + 1 of the hyperplanes contain
a (k − 2)-dimensional subspace ofS.

For the rest of this section, we can assumer ≥ 2. We first give a particular arrangement called the
packing arrangementwhich proves to be optimal in certain cases.

Definition 2.6 (Packing Arrangement). Suppose1 + q < d ≤ 1 + q + q2. Let S be thek-dimensional
vector space that the hyperplanes belong to. LetV be any(k− 2)-dimensional subspace ofS, andW be
any(k − 3)-dimensional subspace ofV . Thepacking arrangementof d hyperplanes is an arrangement
in whichq + 1 hyperplanes, sayH1, . . . ,Hq+1, all containV and the rest of the hyperplanes containW .

We could define the packing arrangement for larger values ofd. However, for the purposes of this
paperd ≤ 1 + q + q2 is sufficient. The following lemma tells us the “cost” of this arrangement.

Lemma 2.7. Consider1 + q < d ≤ 1 + q + q2, and letH1, . . . ,Hd be in the packing configuration.
Then,

|H1 ∪ · · · ∪Hd| = d

[
k − 1

r

]
−
(
d(q + 1)− (1 + q + q2)

) [k − 2
r

]
+ q(d− q − 1)

[
k − 3

r

]
. (20)
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Proof. Without loss of generality, assumeH1, . . . ,Hq+1 intersect at a(k − 2)-dimensional subspaceV
and the rest of the hyperplanes contain a(k− 3)-dimensional subspaceW ⊂ V . Consider anyHi where
q+1 < i ≤ d. LetVj = Hi∩Hj , for j ∈ {1, . . . , i−1}. Note that allVj containW ; and, due to Lemma
2.2 it is easy to see thatV1, . . . , Vq+1 aredifferenthyperplanes ofHi. Moreover, the total number of
hyperplanes inHi that containW is exactly1 + q. Hence,

{V1, . . . , Vq+1} = {V1, . . . , Vi−1}.

Consequently,

|Hi \H1 ∪ · · · ∪Hi−1| = |Hi \H1 ∩Hi ∪ · · · ∪Hi−1 ∩Hi|
= |Hi \ V1 ∪ · · · ∪ Vi−1|
= |Hi \ V1 ∪ · · · ∪ Vq+1|
= |Hi| − |V1 ∪ · · · ∪ Vq+1|

=
[
k − 1

r

]
− (q + 1)

[
k − 2

r

]
+ q

[
k − 3

r

]
.

Finally,∣∣∣∣∣
d⋃

i=1

Hi

∣∣∣∣∣ =

∣∣∣∣∣
q+1⋃
i=1

Hi

∣∣∣∣∣+
d∑

i=q+2

|Hi \H1 ∪ · · · ∪Hi−1|

= (q + 1)
[
k − 1

r

]
− q

[
k − 2

r

]
+ (d− q − 1)

([
k − 1

r

]
− (q + 1)

[
k − 2

r

]
+ q

[
k − 3

r

])
= d

[
k − 1

r

]
−
(
d(q + 1)− (1 + q + q2)

) [k − 2
r

]
+ q(d− q − 1)

[
k − 3

r

]
.

Theorem 2.8. Supposed ≤ [k]. Consider anyd hyperplanesH1, . . . ,Hd of a k-dimensional vector
spaceS over Fq. Let x be a maximal number of hyperplanes intersecting in a(k − 2)-dimensional
subspaceV ⊂ C. Then,

|H1 ∪ · · · ∪Hd| ≤ d

[
k − 1

r

]
+
[
k − 2

r

]
− d

[
k − 3

r

]
+ x(x− d− 1)

([
k − 2

r

]
−
[
k − 3

r

])
(21)

Proof. Without loss of generality, assumeH1, . . . ,Hx intersect atV of dimension(k− 2), and no other
Hi containsV . We invoke Lemmas 2.2 and formula (3) again. SinceHi does not containV , it is easy
to see that, for1 ≤ j ≤ x, the vector spacesVj = Hi ∩Hj are all distinct with dimension one less than
Hj . Also, the intersection of theVj has dimension one less thanV . It follows that

|Hi \H1 ∪ · · · ∪Hx| = |Hi \ V1 ∪ · · · ∪ Vx| =
[
k − 1

r

]
− x

[
k − 2

r

]
+ (x− 1)

[
k − 3

r

]
.

Consequently,∣∣∣∣∣
d⋃

i=1

Hi

∣∣∣∣∣ =

∣∣∣∣∣
x⋃

i=1

Hi

∣∣∣∣∣+
d∑

i=x+1

|Hi \H1 ∪ · · · ∪Hi−1|

≤

∣∣∣∣∣
x⋃

i=1

Hi

∣∣∣∣∣+
d∑

i=x+1

|Hi \H1 ∪ · · · ∪Hx|

= x

[
k − 1

r

]
− (x− 1)

[
k − 2

r

]
+ (d− x)

([
k − 1

r

]
− x

[
k − 2

r

]
+ (x− 1)

[
k − 3

r

])
= d

[
k − 1

r

]
+
[
k − 2

r

]
− d

[
k − 3

r

]
+ x(x− d− 1)

([
k − 2

r

]
−
[
k − 3

r

])
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We get Theorem 2.1 for free.

Corollary 2.9 (Same as Theorem 2.1).Suppose2 ≤ d ≤ q+1. Then, for anyd hyperplanesH1, . . . ,Hd

of ak-dimensional vector spaceC overFq we have

|H1 ∪ · · · ∪Hd| ≤ d

[
k − 1

r

]
− (d− 1)

[
k − 2

r

]
. (22)

Moreover, there exists an arrangement of hyperplanes achieving the right hand side.

Proof. Without loss of generality, supposeH1, . . . ,Hx intersect at some(k − 2)-dimensional subspace
V , and no otherHi containsV . Note that2 ≤ x ≤ d. Thusx(x − d − 1) ≤ −d. The triangle identity
(6) gives [

k − 2
r

]
−
[
k − 3

r

]
= qk−2−r

[
k − 3
r − 1

]
≥ 0.

Relation (21) implies

|H1 ∪ · · · ∪Hd| ≤ d

[
k − 1

r

]
+
[
k − 2

r

]
− d

[
k − 3

r

]
− d

([
k − 2

r

]
−
[
k − 3

r

])
= d

[
k − 1

r

]
− (d− 1)

[
k − 2

r

]
.

The inequality is tight because equality can be obtained by choosingd hyperplanesH1, . . . ,Hd all of
which contain a(k − 2)-dimensional subspaceV .

Theorem 2.10. Supposed ≥ q + 2 and k > r ≥ 2. Then, for anyd hyperplanesH1, . . . ,Hd of a
k-dimensional vector spaceS overFq we have

|H1 ∪ · · · ∪Hd| ≤ d

[
k − 1

r

]
− (2d− 3)

[
k − 2

r

]
+ (d− 2)

[
k − 3

r

]
. (23)

Moreover, whend = q + 2 the packing arrangement achieves the bound.

Proof. Without loss of generality, supposeH1, . . . ,Hx intersect at some(k − 2)-dimensional subspace
V , and no otherHi containsV . Note that, in this case2 ≤ x ≤ q + 1, and thusx(x − d − 1) ≤
2(2− d− 1) = −2(d− 1). Relation (21) implies

|H1 ∪ · · · ∪Hd| ≤ d

[
k − 1

r

]
+
[
k − 2

r

]
− d

[
k − 3

r

]
− 2(d− 1)

([
k − 2

r

]
−
[
k − 3

r

])
= d

[
k − 1

r

]
− (2d− 3)

[
k − 2

r

]
+ (d− 2)

[
k − 3

r

]
.

Whend = q +2, we only have to verify that the right hand side of (23) is the same as that of (20), which
is mechanical.

Theorem 2.11. Supposed ≥ q + 3 and k > r ≥ 2. Then, for anyd hyperplanesH1, . . . ,Hd of a
k-dimensional vector spaceS overFq we have

|H1 ∪ · · · ∪Hd| ≤ d

[
k − 1

r

]
− (3d− 7)

[
k − 2

r

]
+ (2d− 6)

[
k − 3

r

]
. (24)

Moreover, whend = q + 3 the packing arrangement achieves the bound.
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Proof. Let x = x({H1, . . . ,Hd}). Without loss of generality, supposeH1, . . . ,Hx intersect at some
(k − 2)-dimensional subspaceV , and no otherHi containsV . Consider two cases as follows.

Case 1:x ≥ 3. Note that,x ≤ q + 1 ≤ d− 2, and thusx(x− d− 1) ≤ 3(3− d− 1) = −3(d− 2).
Relation (21) implies

|H1 ∪ · · · ∪Hd| ≤ d

[
k − 1

r

]
+
[
k − 2

r

]
− d

[
k − 3

r

]
− 3(d− 2)

([
k − 2

r

]
−
[
k − 3

r

])
= d

[
k − 1

r

]
− (3d− 7)

[
k − 2

r

]
+ (2d− 6)

[
k − 3

r

]
.

Case 2:x = 2. Applying Lemma 2.3 withl = k we get

|H1 ∪H2 ∪H3 ∪H4| ≤ max{g(4)
3 , g

(4)
4 } = g

(4)
3 = 4

[
k − 1

r

]
− 6
[
k − 2

r

]
+ 4
[
k − 3

r

]
−
[
k − 4

r

]
.

Consider anyHi with i > 4. For j = 1, 2, 3, 4, let Vj = Hi ∩ Hj . Then, theVj are four different
hyperplanes ofHi, becausex = 2. Applying Lemma 2.3 withl = k − 1 we get

|V1 ∪ V2 ∪ V3 ∪ V4| ≥ min{g(4)
1 , g

(4)
2 , g

(4)
3 , g

(4)
4 } = g

(4)
4 = 4

[
k − 2

r

]
− 6
[
k − 3

r

]
+ 3
[
k − 4

r

]
.

Hence,

|Hi \H1∪H2∪H3∪H4| = |Hi|− |V1∪V2∪V3∪V4| ≤
[
k − 1

r

]
−4
[
k − 2

r

]
+6
[
k − 3

r

]
−3
[
k − 4

r

]
.

Putting them all together, we get∣∣∣∣∣
d⋃

i=1

Hi

∣∣∣∣∣ = |H1 ∪H2 ∪H3 ∪H4|+
d∑

i=5

|Hi \H1 ∪H2 ∪H3 ∪H4|

≤
(

4
[
k − 1

r

]
− 6
[
k − 2

r

]
+ 4
[
k − 3

r

]
−
[
k − 4

r

])
+

(d− 4)
([

k − 1
r

]
− 4
[
k − 2

r

]
+ 6
[
k − 3

r

]
− 3
[
k − 4

r

])
= d

[
k − 1

r

]
− (4d− 10)

[
k − 2

r

]
+ (6d− 20)

[
k − 3

r

]
− (3d− 12)

[
k − 4

r

]
It is easy to see that, whenk > r ≥ 2 the last expression is at most the right hand side of (24).

Lastly, whend = q + 3 the fact that the packing arrangement achieves the bound (24) is straightfor-
ward.

Theorem 2.12. Supposed ≥ q + 4 and k > r ≥ 2. Then, for anyd hyperplanesH1, . . . ,Hd of a
k-dimensional vector spaceS overFq we have

|H1 ∪ · · · ∪Hd| ≤ d

[
k − 1

r

]
− (4d− 13)

[
k − 2

r

]
+ (3d− 12)

[
k − 3

r

]
. (25)

Moreover, whend = q + 4 the packing arrangement achieves the bound.

Proof. The proof is similar to the previous theorem with three cases to consider:x ≥ 4, x = 3, and
x = 2. This time we make use of Lemma 2.4 and its various relations.
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3 Tighter analysis ofMq(m, k, r)

The results of the previous section help us analyze theMq(m, k, r) construction. Firstly, we show that
Mq(m, k, 1) is not a good design whend ≥ q + 1. The result is a direct corollary of Theorem 2.5.

Corollary 3.1. Whend ≥ q + 1, thenMq(m, k, 1) is notd-disjunct.

Proof. Let C0 be ak-dimensional subspace ofFm
q . Let H1, . . . ,Hq+1 be hyperplanes ofC0 chosen

according to Theorem 2.5. Letv be any vector inFm
q not belonging toC0. For i = 1, . . . , d, let

Ci = span{Hi, v}. Choose arbitrarilyk-dimensional subspacesCq+2, . . . , Cd. Then, it is easy to see
thatC0 \ C1 ∪ · · · ∪ Cd = ∅.

Secondly, the number of columns ofMq(m, k, r) is
[
m
k

]
, which is exponentially larger than[k], the

number of hyperplanes in ak-dimensional vector space. The following theorem shows a limit of the
pooling design.

Theorem 3.2. If d ≥ [k], thenMq(m, k, r) is notd-disjunct.

Proof. Consider anyk-dimensional subspaceC0 of Fm
q . Let H1, . . . ,H[k] be the set of all hyperplanes

of C0. Let v be any vector inFm
q \ C0. For anyi = 1, . . . , [k], defineCi = span{v,Hi}. For i =

[k] + 1, . . . , d, choosek-dimensional subspacesCi arbitrarily as long as they have not been chosen
before. Then,|C0 \ C1 ∪ · · · ∪ Cd| = 0, namelyMq(m, k, r) is notd-disjunct. This is because anyr-
dimensional subspace ofC0 is also a subspace of someHi, i = 1, . . . [k]; thus, it is also anr-dimensional
subspace ofCi.

Henceforth, we only need to consider the case whenr ≥ 2 andq + 2 ≤ d ≤ [k]. The following
corollaries follow from Theorems 2.10, 2.11, and 2.12, respectively.

Corollary 3.3. Whend ≥ q + 2 andm > k > r ≥ 2, Mq(m, k, r) is dz-disjunct, where

z =
[
k

r

]
− d

[
k − 1

r

]
+ (2d− 3)

[
k − 2

r

]
− (d− 2)

[
k − 3

r

]
Moreover, the construction is exactlydz-disjunct whend = q + 2.

Corollary 3.4. Whend ≥ q + 3 andm > k > r ≥ 2, Mq(m, k, r) is dz-disjunct, where

z =
[
k

r

]
− d

[
k − 1

r

]
+ (3d− 7)

[
k − 2

r

]
− (2d− 6)

[
k − 3

r

]
.

Moreover, the construction is exactlydz-disjunct whend = q + 3.

Corollary 3.5. Whend ≥ q + 4 andm > k > r ≥ 2, Mq(m, k, r) is dz-disjunct, where

z =
[
k

r

]
− d

[
k − 1

r

]
+ (4d− 13)

[
k − 2

r

]
− (3d− 12)

[
k − 3

r

]
.

Moreover, the construction is exactlydz-disjunct whend = q + 4.

Remark 3.6. Note that, to apply all the three corollaries above, we only need to find the range ofd which
makesz > 0. It turns out that this range is quite large, and the task is mechanical. We omit this step
here. Also, it is straightforward to check that the bounds in Theorems 2.10, 2.11, and 2.12 are better than
that of Theorem 2.1.
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4 Discussions

It is very natural to ask the converse of our hyperplane arrangement problem, leading to the following:

Problem 2 (Second Hyperplane Arrangement Problem).Given ak-dimensional vector spaceC over
Fq, and an integerd such that1 ≤ d ≤ [k], find d hyperplanesH1, . . . ,Hd of C that minimizesthe
following quantity

|H1 ∪ · · · ∪Hd|.

Historically, there have been quite a lot of studies on hyperplane arrangements. The extremal prob-
lems such as the problem of dividing a space into as many regions as possible given a fixed number
of hyperplanes are mostly on infinite vector spaces. Arrangement problems and results on finite fields
mostly are about algebraic and structural information (Möbius functions, Poincaré polynomials, ...) or
topological structures. The reader is referred to [23] for a good treatment of such problems. Our two
hyperplane arrangement problems are new, to be best of the author’s knowledge.

It is possible to show that the packing arrangement is the best ford = q + 5 (q ≥ 3) and so on, but
the current method becomes too tedious to be useful. We conjecture that the packing arrangement is best
for Problem 1 when1 + q < d ≤ 1 + q + q2. We also leave open Problem 2 at this point.
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