
ar
X

iv
:0

90
5.

19
06

v1
  [

cs
.D

S]
  1

2 
M

ay
 2

00
9

Improved Adaptive Group Testing Algorithms with

Applications to Multiple Access Channels and Dead

Sensor Diagnosis

Michael T. Goodrich and Daniel S. Hirschberg∗†

October 25, 2018

Abstract

We study group-testing algorithms for resolving broadcast conflicts on a multiple
access channel (MAC) and for identifying the dead sensors in a mobile ad hoc wireless
network. In group-testing algorithms, we are asked to identify all the defective items in
a set of items when we can test arbitrary subsets of items. In the standard group-testing
problem, the result of a test is binary—the tested subset either contains defective items
or not. In the more generalized versions we study in this paper, the result of each test
is non-binary. For example, it may indicate whether the number of defective items
contained in the tested subset is zero, one, or at least two.

We give adaptive algorithms that are provably more efficient than previous group
testing algorithms. We also show how our algorithms can be applied to solve conflict
resolution on a MAC and dead sensor diagnosis. Dead sensor diagnosis poses an in-
teresting challenge compared to MAC resolution, because dead sensors are not locally
detectable, nor are they themselves active participants.

1 Introduction

Wireless communication has renewed interest in algorithms for dealing with conflicts and
failures among collections of communicating devices. For example, when a collection of
wireless devices compete to communicate with a particular access point, the access point
becomes a multiple access channel (MAC), which requires a conflict-resolution method to
allow all devices to send their packets in a timely manner. In large deployments, the need for
conflict resolution among devices may be further complicated by their physical distribution,
as the devices may form an ad hoc wireless network. The traditional way a base station
communicates with devices in an ad hoc network is via broadcast-and-respond protocols [1],
which have a simple structure: Messages are broadcast from a base station to the n sensors in
such a network using a simple flooding algorithm (e.g., see [2]) and responses to this message

∗Authors’ address: Department of Computer Science, University of California, Irvine, CA 92697-3435
†A preliminary version of this paper was presented at SPAA 2006.

1

http://arxiv.org/abs/0905.1906v1


are aggregated back along the spanning tree that is formed by this broadcast. Because
the flooding algorithm is topology-discovering, the spanning tree defined by the flooding
algorithm can be different with each broadcast. This mutability property is particularly
useful for mobile sensors, since their network adjacencies can change over time, although
we assume they are not moving so fast that the topology of the spanning tree defined by
a broadcast changes before the aggregate response from the broadcast is received back at
the base station. A new challenge arises in this context, however, when devices fail (e.g., by
running down their batteries) and we wish to efficiently determine the identities of the dead
sensors.

1.1 Group Testing

In this paper, we present and analyze new algorithms for group testing to solve conflict
resolution in MACs and dead sensor diagnosis. In the group testing problem, we are given a
set of n items, d of which are defective (bounds on the value of d may or may not be known,
depending on the context). A configuration specifies which of the items are defective. Thus,

there are
(

n
d

)

configurations of d defectives among the n items. To determine which of the
n items are defective, we are allowed to sample from the items so as to define arbitrary
subsets that can be tested for contamination. In the standard group testing problem, each
test returns one of two values—either the subset contains no defectives or it contains at least
one defective. Therefore, there is an information theoretic lower bound of lg

(

n
d

)

≈ d lg n
tests, in the worst case, for any binary-result group testing algorithm.

Motivated by the applications mentioned above, we consider generalizations of the stan-
dard group testing problem, where there can be three or more possible results of a contam-
ination test. In ternary-result group testing, a result indicates whether the subset contains
no defectives, one defective, or at least two defectives (i.e., the results are 0, 1, or 2+). Gen-
eralizing further, we may allow for counting tests that return the exact number of defective
items present in the test. In either case, a one-defective result may either be identifying,
returning a unique identifier of the defective item, or anonymous, indicating, but not iden-
tifying, that there is one defective item in the test. We are interested in the efficiency of
generalized group testing.

1.2 Multiple Access Channels

In the multiple access channel problem [3, 4, 5, 6] a set of n devices share a communication
channel such that a subset D of d of the devices wish to use the channel to transmit a data
packet. In any time slice, some subset T of the devices may attempt a transmission on the
channel. If there is only one device x from D in T , then it succeeds (and all parties learn the
identity of x). Alternatively, if no device attempts to transmit, then all parties learn this
as well. But if two or more devices attempt to transmit, then all parties learn only that a
conflict has occurred (and no transmission is successful during this time slice).

Each device independently decides whether to attempt to send a message based on what
it has observed and, if an attempt is to be made, the decision to send is made by flipping
a biased coin with probability p. We can reduce MAC conflict resolution to a group testing
problem.

2



For large n, this scenario can be approximated by using identifying ternary tests on a
size-pn random subset of a set of n items, d of which are defective. In the MAC situation,
the probability that exactly i devices will transmit is

PMAC(i) =

(

d

i

)

pi(1− p)d−i.

A conflict arises when two or more devices transmit.
In the testing situation, the probability that exactly i of the d defective items are within

the randomly selected subset of size pn is

Ptest(i) =

(

d

i

)

i−1
∏

j=0

pn− j

n− j

d−1
∏

j=i

n− pn− j + i

n− j
.

The subset is impure when two or more defective items are in that subset.

1.3 Dead Sensor Diagnosis

In dead sensor diagnosis, there is an ad hoc network of n sensors, which can communicate
with a base station using a broadcast-and-respond protocol along a broadcast tree that may
be different with each broadcast. Furthermore, d of the sensors have failed (e.g., d batteries
may have died, but we may not know the value of d), and we wish to identify which sensors
are dead. This problem is complicated by the dynamic nature of the mobile sensors, since
there is no local way to detect dead sensors—they simply become invisible to the sensors
around them and there is no local way to distinguish this bad event from the common event
of a live sensor moving out of range of the set of its former neighbors.

Of course, the group controller could send out n broadcasts, each of which asks an
individual sensor to send a “heartbeat” acknowledgment message back as a response. As-
suming a reasonable time-out condition for non-responding sensors, this naive solution to
the dead sensor diagnosis problem could identify the dead sensors using a total of O(n2)
messages spread across n communication rounds, which is inefficient. (It would violate the
broadcast-and-respond model to have the sensors respond individually to a single “who’s
alive” broadcast, since the responses would not be aggregated and would require an ex-
pected number of O(n1.5) messages for a planar sensor network, would require sensors close
to the base station do proportionally more work (hence, running down their batteries faster),
and it would still have a delay of O(n) communication rounds at the base station.) We are
interested in this paper in efficient solutions to the dead sensor diagnosis problem that fit
the broadcast-and-respond model.

1.4 Previous Related Work

For group testing, there is a tremendous amount of previous work on the standard (binary)
version of the problem (e.g., see [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]), and there has been
some work on anonymous generalized group testing algorithms (e.g., see [17, 18, 19]), some
of which require maintenance of large tables. The standard group testing problem has been

3



applied to several other problems, including testing DNA clone libraries [20], testing blood
samples for diseases, data forensics [21], and cryptography [22].

The best previous algorithms for the standard group testing problem are adaptive, as
are our algorithms. That is, tests are performed one at a time, with the processing of a
single step usually requiring a parallel invocation across test elements, such that the results
from previous tests allowed to be used to guide future tests. When the exact number,
d, of defective items is known, Hwang’s generalized binary splitting algorithm [11] for the
standard group testing problem exceeds the information theoretic lower bound by at most
d−1. This algorithm is basically a set of d parallel binary searches, which start out together
and eventually are split off. When d is not known but is an upper bound on the number
of defective items, at most one additional test is required [24]. Alleman [7] gives a split-
and-overlap algorithm for the standard group testing problem that exceeds the information
theoretic lower bound on the number of tests by less than 0.255d+ 1

2
lg d+ 5.5 for d ≤ n/2.

The 0.255 is replaced with 0.187 when d ≤ n/38. When no constraint on the number, d, of
defectives is known in advance, Schlaghoff and Triesch [16] give algorithms that require 1.5
times as many tests as the information theoretic lower bound for d defective out of n items.

Work on multiple access channels (MACs) dates back to before the invention of the
Ethernet protocol, and there has been a fair amount of theoretical work on this problem
as well (e.g., see [3, 4, 5, 6]). (Using our terminology, a MAC algorithm is equivalent to a
ternary-result group testing algorithm with identifying results in the 1-result case.) There
is a simple halfway-split binary tree algorithm that achieves an expected 2.885d number of
steps (e.g., see [3]), which correspond to group tests in our terminology, to send d packets.
This algorithm was improved by Hofri [6], using a biased splitting strategy (which we review
below) to achieve an expected 2.623d steps. The best MAC algorithm we are familiar with
is due to Greenberg and Ladner [4], who claim that their algorithm uses 2.32d expected
number of steps, assuming d is known in advance. Interestingly, in the lower-bound paper
of Greenberg and Winograd [5], the Greenberg-Ladner paper [4] is referenced as achieving
2.14d expected tests and, indeed, our analysis confirms this better bound for their algorithm,
if d is known. Greenberg and Ladner [4] also present an algorithm for estimating d if it is not
known in advance and, by our analysis, using this approximation algorithm with their MAC
algorithm achieves 2.25d+O(log d) expected number of steps (which is also better than the
bound claimed in [4]).

Normally, such concern over small improvements in the constant factor for a leading term
of a complexity bound would be of little interest. In this case, however, the reciprocal of the
constant factor for this leading term corresponds to the throughput of the MAC; hence, even
small improvements can yield dramatic improvements in achievable bandwidth. Moreover,
with the expanding deployment of wireless access points, there is a new motivation for MAC
algorithms, particularly for environments where there are many wireless devices per access
point. We are not familiar with any MAC algorithms that achieve our degree of efficiency
without making additional probabilistic assumptions about the nature of packet traffic (e.g.,
see [3, 4, 5, 6]).

We believe the dead sensor diagnosis problem is new, but there is considerable previous
work on device fault diagnosis for the case in which devices can test each other and label the
other device as “good” or “faulty,” if the group controller can dictate the network’s topology.
For example, Yuan et al. [23] describe an aggregation protocol that assumes that sensors can

4



detect when neighbors are faulty.

1.5 Our Results

In this paper, we present algorithms for generalized group testing when the result of each
test may be non-binary.

Ternary-result group testing can be applied to multiple access channels. We provide
new MAC conflict-resolution algorithms that achieve an expected 2.054d steps if d is known
and 2.08d + O(log d) tests if d is not known. Both of these bounds improve the previous
constant factors for MAC algorithms and are based on the use of a new deferral technique
that demonstrates the power of procrastination in the context of MAC algorithms. We also
show that our MAC algorithm uses O(d) steps with high probability, even if we reduce the
randomness used, and we provide an improved algorithm for estimating the value of d if it
is not known in advance.

Our group testing algorithms can be applied to dead sensor diagnosis, where the items are
sensors and the defective items are the dead sensors. Our algorithms also are concise, which
implies that each test can be formulated as a constant-size broadcast query from the base
station such that the aggregated response to such a query can provide the possible results
needed for ternary-result and counting group testing. This immediately implies efficient
algorithms for the dead sensor diagnosis problem based on our ternary-result group testing
algorithms. We also provide a novel counting-based group testing algorithm that uses an
expected 1.89d tests to identify the d defective items. In addition, we give new deterministic
ternary-result group-testing algorithms using O(d lgn) broadcast rounds (which would use
a total of O(dn logn) messages for dead sensor diagnosis), with constant factors below the
lower bound for binary-result group testing.

2 Motivation and Definitions

We have already discussed how collision resolution for a multiple access channel corresponds
to ternary-result (0/1/2+) group testing, with identifying tests in the 1-result case. In this
section, we discuss further motivation for our other generalizations of group testing and we
give some needed definitions as well.

2.1 Some Definitions for Group Testing

Recall that in the group testing problem we are given a set S of n items, d of which are
defective. We are allowed to form an arbitrary subset, T ⊆ S, and perform a group test on
T which, in the case of ternary-result group testing, has a ternary outcome. We say that T
is pure if T contains no defective items, tainted if it contains exactly one defective item, and
impure if it contains at least two defective items.

Furthermore, as mentioned above, in the case when T is tainted, we distinguish two
possible variations in the way the test result is conveyed to us. We say that the result is
identifying if it reveals the specific item, x ∈ T , that is defective. Otherwise, we say that

5



the result is anonymous if it states that T is tainted but does not identify the specific item
x in T that is defective.

Finally, we say that a testing scheme is concise if each test subset T ⊆ S that might
be formed by this scheme can be defined with an O(1)-sized expression E that allows us
to determine, for any item x ∈ S, whether x is in T in O(1) time using information only
contained in E and x (that is, we allow for a limited amount of memory to be associated
with x itself). For example, a test T might be defined by a simple regular expression,
101*10**011, for the binary representation of the name of each x in T (we assume that item
names are unique). The applications of MAC conflict resolution and dead sensor diagnosis
both require that the corresponding testing scheme be concise. Incidentally, most MAC
algorithms (e.g., see [3, 4, 5, 6]) also require that all devices have access to independent
random bits, but we show that this requirement is not strictly necessary.

2.2 Group Testing for Dead Sensor Diagnosis

In this subsection, we present some simple reductions of the dead sensor diagnosis problem to
generalized group testing. Our reductions fit the broadcast-and-respond paradigm of sensor
communication, where the base station issues a broadcast and receives back an aggregated
response, which is the result of an associative function applied to the sensor responses, and
which is computed by the sensors routing the combined response back to the base station.

Although the sensors may be mobile, we assume that they are stable enough to support
the broadcast-and-respond paradigm in a coarse-grain synchronous fashion, so that a message
can be broadcast to all the active sensors and an aggregated response can come back in the
same broadcast tree. From the standpoint of an individual sensor, this implies that it
can receive a message from a neighbor, acknowledge that receipt, and rebroadcast to its
neighbors (with similar receipts) as a coarse-grain atomic action. This assumption allows
us pragmatically to be able to implement the broadcast-and-respond protocol. That is, by
a simple induction it implies that a sensor at height h in the broadcast tree need only wait
for h coarse-grain steps before it will have received all the aggregated responses from its
children, which allows it to then send its aggregated response to its parent.

Given a concise ternary-result group testing algorithm, A, we can use A to perform
dead sensor diagnosis by simulating each step of A with a broadcast and response. Because
A is concise, each test in A can be defined by a constant-sized expression E that is then
broadcast to each live sensor. Moreover, each live sensor x can determine in O(1) time
whether it belongs to the set T defined by E and can participate in an aggregate response
back to the base station. Thus, the remaining detail is to define possible aggregate responses
that support useful responses, with either identifying or anonymous results in the tainted
cases:

• Count. We aggregate a simple count of the live sensors in T . Each live sensor x can
determine if it belongs to T in O(1) time, since the broadcast is concise. Likewise,
each sensor y routing an answer back to the base station need only sum the counts
it receives from downstream routers (plus 1 if y is in T ). This aggregation function
supports ternary responses, since the base station knows |T | and can compare this
value with the count performed by the live sensors. The count function is associative,

6



but it does not allow for identifying the dead sensor in the tainted case.

• Large-ID summation. Suppose that the n sensors are assigned ID numbers that are
guaranteed to all be greater than 2n such that no ID number can be formed as the sum
of two or more other ID numbers. Then a summation of the ID numbers of the live
sensors in T can be used to perform a ternary-result test, which will be an identifying
test in the case of a result indicating that T is tainted. Specifically, the difference
between

∑

x∈T x and the returned value will either be 0, the ID of a single sensor, or a
value that is the sum of two or more sensor IDs. Of course, this function requires that
sensors can add integers as large as

∑

x∈S x.

Thus, we can use dead sensor diagnosis to motivate identifying ternary-result (0/1/2+) group
testing as well as anonymous counting group testing. Of course, if we combine these two
functions to operated on paired responses, we can implement an identifying counting group
testing algorithm. These aggregation functions are not meant to be exhaustive.

3 The Binary Tree Algorithm for Ternary-Result Group

Testing

Since it provides a starting point for our more sophisticated algorithms, we review in this
section the binary tree algorithm for ternary-result group testing with identifying results for
tainted tests, which was originally presented in the context of MACs [3]. That is, we consider
the problem of identifying the defective items in a set of items when we can adaptively
test arbitrary subsets and each test result indicates whether the number of defective items
contained in the tested subset is zero, one, or at least two. We also provide a simplified
analysis of its expected performance.

The main idea of the binary tree algorithm (parameterized by p) is to partition a set
known to be impure into two unequal-sized subsets, of sizes p and q = 1 − p of the set’s
size, and to recursively test each of these subsets. However, the algorithm takes advantage
of one simple optimization—if the first subset in a recursive call turns out to be pure (i.e.,
having 0 defectives), we avoid the top level testing of the second subset and go immediately
to splitting it in two and testing the two parts.

The original algorithm used p = 0.5 and it has been shown [6] that p ≈ .4175 minimizes
the expected number of tests. We make use of the smaller root of the equation p2 = (1−p2)2,
which is solved by p2 =

3−
√
5

2
≈ 0.38197, and of q2 = (1− p2) ≈ 0.61803.

The binary tree algorithm begins by testing the set, S, of items. If the test indicates that
S is pure or tainted, in which case the one defective item will have been identified, then the
algorithm is done. Otherwise, initialize the set L of identified defective items to empty and
proceed with subroutine Identify(S) as follows:

1. Partition S into two subsets, A and B, where |A| = p|S|.

2. Test subset A.

(a) If A is impure, then recursively invoke Identify(A).

7



(b) If A is tainted with item z, then add z to list L.

3. If A is pure then we know that subset B is impure, and so there is no need to test B.
In this case, recursively invoke Identify(B). Otherwise, test subset B.

(a) If B is impure, then recursively invoke Identify(B).

(b) If B is tainted with item z, then add z to list L.

When partitioning S into A and B, we can select A as consisting of those items whose
ID values are ranked contiguously, 1 through p|S|. The items in A, or B, can be specified
by giving lower and upper limits on ID values. Thus, the binary tree algorithm is concise.

Theorem 1 w2d lgn+ o(lgn) ternary tests under the identifying model suffice, in the worst
case, to identify all defectives in a set containing n items of which d are defective, where
w2 = −(1/ lg p2) ≈ 0.720210.

Proof: We analyze the performance of the binary tree algorithm with p = p2. Let Xd(n) be
the worst case number of tests required by algorithm Identify(S) when S is a set of n items
of which d turn out to be defective.

For d = 2 and d = 3, we have the following recurrence. (Note that sets with 0 or
1 defective items require no further testing, thus Xd(1) = 1, and that it is assumed that
X3(n) ≥ X2(n).)

Xd(n) = max

{

2 +Xd(p2n)
1 +Xd(q2n)

(1)

If the first term of the recurrence were to be the maximum term, then Xd(n) = 2+Xd(p2n) =
−(2/ lg p2) lgn. If the second term of the recurrence were to be the maximum term, then
Xd(n) = 1 +Xd(q2n) = −(1/ lg q2) lg n.

We see that X2(n) = X3(n) = −(1/ lg q2) lgn = 2w2d lgn ≈ 1.4404 lgn.
For d ≥ 4, we have the following recurrence. (It is assumed that Xd(n) ≥ Xd−1(n).)

Xd(n) = max











2 +Xi(p2n) +Xd−i(q2n), for 1 ≤ i ≤ d− 2
2 +Xd(p2n)
1 +Xd(q2n)

(2)

Consider Xd(n) = x lg n+ o(lg n), and we shall solve for x.
Assume that, for even 1 < i < d, Xi(n) = w2i lg n+ o(lg n), and that, for odd 1 < i < d,

Xi(n) = w2(i− 1) lgn+ o(lg n).
Consider any d ≥ 4. If the first term of the recurrence were to be the maximum term,

then x ≥ (d − 1)w2 > 2.16, since d ≥ 4. If the second term were to be the maximum
term, then x = −2/ lg p2 ≈ 1.44. If the third term were to be the maximum term, then
x = −1/ lg q2 ≈ 1.44.

Thus, the first term is the maximum term and Xd(n) ≈ dX2(n)/2 = w2d lgn, for even d,
and Xd(n) ≈ (d− 1)X2(n)/2 = w2(d− 1) lgn, for odd d.

Thus, the binary tree algorithm has good worst-case performance. It also has good
average-case performance, as the following theorem shows1.

1 This theorem simplifies a result of [6] and it implies a randomized algorithm with the same performance
if we preface the binary tree algorithm with an initial random permutation of the items.

8



Theorem 2 On average, when p = p2, Identify requires fewer than 2.64d − 2 ternary tests
to identify all defectives in a set containing n items of which d are defective, for n >> d.
Thus, the binary tree algorithm requires fewer than 2.64d− 1 ternary tests.

Proof: Let Ed be the average number of tests required by algorithm Identify(S) when S is
a set of n items of which d turn out to be defective and where n >> d.

A set having d defectives will be split into two subsets having i and d − i defectives,
with both subsets being subsequently tested and processed, except when a subset’s test
reveals that it has at most one defective, in which case that subset will not be subsequently
processed. Also, when the first subset has no defectives the second subset is processed but
not tested. The probability that the first subset has no defectives is qd. The probability that
the first subset has one defective is dpqd−1. The probability that the second subset has no
defectives is pd. The probability that the second subset has one defective is dpd−1q.

For d = 2, we have the following recurrence.

E2 = 2− q2 + E2(p
2 + q2) (3)

This simplifies to

E2 =
2− q2

1− p2 − q2
=

2− q2

2pq
≈ 3.42705 (4)

Thus, the binary tree algorithm with p = p2 requires approximately 4.427 tests when d = 2.
For d = 3, we have the following recurrence.

E3 = 2 + q3(E3 − 1) + 3pq2E2 + 3p2qE2 + p3E3 (5)

This simplifies to

E3 =
2− q3 + 3pq2E2 + 3p2qE2

1− q3 − p3
=

2− q3 + 3pqE2

1− q3 − p3
≈ 5.91776 (6)

Thus, the binary tree algorithm with p = p2 requires approximately 6.91776 tests when
d = 3.

For d > 3, we have the following recurrence, where i denotes the number of defectives in
the first subset.

Ed = 2 + qd(Ed − 1) + dpqd−1Ed−1 +
d−2
∑

i=2

{
(

d

i

)

piqd−i(Ei + Ed−i)}+ dpd−1qEd−1 + pdEd (7)

Using the value of E1 = 0, this simplies to

Ed =
2− qd +

∑d−1
i=1 {

(

d
i

)

piqd−i(Ei + Ed−i)}
1− qd − pd

(8)

Starting with E0 = E1 = 0 and iterating, this yields results as shown in Table 1.
It is observed that for large d, 1− qd − pd ≈ 1, and (Ei + Ed−i) ≈ 2Ed/2. Together with

particular values of Ed for d < 1000 suggests that, for p = p2, Ed < 2.631d. We prove here
a slightly weaker result.

9



Table 1: Expected number of tests used by Identify

E2 3.427051 E7 16.413785 E30 76.926328 E300 787.262001
E3 5.917763 E8 19.046426 E40 103.234985 E400 1050.349326
E4 8.520000 E9 21.678383 E50 129.543603 E500 1313.436665
E5 11.147797 E10 24.309752 E100 261.087360 E800 2102.698664
E6 13.780589 E20 50.617127 E200 524.174671 E1000 2628.873328

It is seen that, for all 3 ≤ d ≤ 330, Ed < 2.64d − 2. We show by induction that this is
true for all larger d. The numerator of equation (8) contains a weighted sum of Ei + Ed−i.
By the inductive hypothesis, that weighted sum will total at most (2.64d− 4)(1− (pd+ qd)),
and the entire numerator will total at most 2 − qd more. We focus on the contributions of
the small pieces Ej , for j = 1, 2, 3. Ej contributes

(

d
j

)

(pjqd−j+pd−jqj)Ej , which we bounded
using Ed < 2.64d− 2 to be at most

X = d(pqd−1 + pd−1q)(.64) +

(

d

2

)

(p2qd−2 + pd−2q2)(3.28) +

(

d

3

)

(p3qd−3 + pd−3q3)(5.92) (9)

But we actually get a contribution of

Y =

(

d

2

)

(p2qd−2 + pd−2q2)(3.42705) +

(

d

3

)

(p3qd−3 + pd−3q3)(5.91776) (10)

Adding Y −X and reordering the terms, we can bound the numerator as being at most
(2.64d− 2)(1− (pd + qd)) +W , where

W < 2pd+qd−.64dpd−1q−.64dpqd−1+.1471

(

d

2

)

(p2qd−2+pd−2q2)−.0022
(

d

3

)

(p3qd−3+pd−3q3)

(11)
Observing that W < 0 for all 3 ≤ d ≤ 330, we show that W < 0 for all d > 330

by demonstrating that each positive term is more than offset by a different negative term.
Compare the positive term P = .1471

(

d
2

)

p2qd−2 to the negative term N = −.0022
(

d
3

)

p3qd−3.

Their absolute ratio, |P/N | = .1471q
.0022p(d−2)/3

< 1, for d ≥ 327. The positive term .1471
(

d
2

)

pd−2q2

is smaller than the absolute value of the negative term −.0022
(

d
3

)

pd−3q3 for d ≥ 126. The

remaining positive terms, 2pd and qd, are neutralized by −.64dpd−1q and −.64dpqd−1 when,
respectively, d ≥ 2 and d ≥ 3. We conclude that, for p = p2, Ed < 2.64d− 2.

Using different values of p yields different results. To minimize E2, a value of p =
√
2−1 ≈

0.4142 is best [6], requiring 3.414 tests. To minimize E3, p ≈ 0.4226 is best and requires 5.884
tests. To minimize E4, p ≈ 0.4197 is best and requires 8.482 tests. p = p∗ ≈ 0.41750778
is asymptotically optimal for large d. The curves are fairly flat, so, although one could
tune p depending on the expected distribution of the values of d, choosing p = p∗ is a good
choice for most distributions and, as noted by Hofri [6], is optimal for the naturally arising
distribution, when the defective items are i.i.d., requiring ≈ 2.6229d tests.

10



4 The Deferral Algorithm

In this section, we describe how to substantially improve on the average case of the binary
tree algorithm under the assumption that we have a good approximation on the number,
d, of defective items. This algorithm is especially useful for the Multiple Access Channel
problem.

The main idea of our algorithm, which we call Deferral, begins by using an approach used
by Greenberg and Ladner [4] where we use knowledge of the approximate number of defective
items to randomly partition the set of items into a set, L, of buckets such that the expected
number of defective items in each bucket is a constant. This process is called a spreading
action and, for |L| = sd, the parameter s is called the spread factor. Greenberg and Ladner’s
algorithm performs a spreading action using an appropriate spread factor (they recommend
s = 0.8), performs a test on each bucket, and then applies the binary tree algorithm to each
bucket that has a 2+ result.

Our approach does something similar, but augments it with a new deferral technique
that may at first seem counter-intuitive. We also perform a spreading action, perform a
test for each bucket, and apply the binary tree algorithm recursively to any bucket with a
2+ result, except that we cut recursive calls short in certain cases and defer to the future
all items whose status remains unclear from all such calls. We then recursively apply the
entire algorithm on these deferred items. As we show in our analysis, this is a case when
procrastination provides asymptotic improvements, for this deferral algorithm has a better
average-case performance than does the direct do-it-now approach of Greenberg and Ladner.

Deferral proceeds as follows.

1. Initialize a deferral bucket to empty.

2. For each bucket K in set L, identify some of the defective items in K (and defer others)
as follows.

Test K. If the test shows that K is pure or tainted, all defective items of K will
have been identified. Otherwise, use algorithm BucketSearch on bucket K.

3. Finally, if the deferral bucket is non-empty then recursively apply Deferral to the set
of items in the deferral bucket.

Algorithm BucketSearch proceeds as follows.

1. Partition K into a first portion A having fraction p of the items in K, and a second
portion B having the remainder fraction q = 1− p of K’s items.

2. Test A. One of three results will occur:

(a) If A is pure, then recursively invoke BucketSearch(B).

(b) If A is tainted, then the lone defective item in A will have been identified. In this
case, test B and, only when B is impure, recursively invoke BucketSearch(B).

(c) If A is impure, recursively invoke BucketSearch(A). Finally, merge B with the
deferral bucket.

11



It might not be immediately obvious, but this algorithm can be made concise, using O(1)
words of memory per test element (one of which, for example, can keep the state of whether
an item is being deferred or not).

4.1 Analysis of the Deferral Algorithm

Let Ps(k) be the probability of a bucket containing exactly k defective items, given that we
are using |L| = sd buckets, i.e., we have a spread factor of s. Then

Ps(k) =

(

d

k

)

(

1

sd

)k (

1− 1

sd

)d−k

≈ 1

k!ske1/s

For example, if we use a spread factor of s = .75, then Ps(0) < 0.2636, Ps(1) < 0.3515,
Ps(2) < 0.2344, . . . , Ps(6) < 0.0021, and Ps(7) < 0.0004. We observe that we expect that
99.9% of all buckets contain fewer than seven defective items in this case (and this is true for
all spread factors greater than 0.5). Furthermore, Ps(i) is monotonic decreasing for i > 2.
Therefore, in analyzing the expected behavior of algorithms that use a spreading step with a
reasonable spread factor, the expected number of tests is dominated by the expected number
of tests performed on buckets with fewer than seven defective items.

Analyzing the Expected Number of Tests per Bucket

We begin by evaluating the expected number, Ed, of tests performed in a bucket containing
d defectives (not counting the global test for the bucket or future deferred tests for items
currently in the bucket). We determine Ed for small values of d. By construction, E0 =
E1 = 0. For d > 1, we consider the cases x-y that arise when partitioning a set containing
d defective items into two subsets that turn out to contain, respectively, x and y defective
items. If d = 2, then the 2-0 case entails 1 test and a recursive call (and a deferral of a pure
set), the 1-1 case entails 2 tests, and the 0-2 case entails 1 test and a recursive call. Thus,
letting q = 1− p,

E2 = p2(E2 + 1) + 2pq(2) + q2(E2 + 1) = p2E2 + (p2 + 2pq + q2) + 2pq + q2E2

=
1 + 2pq

1− p2 − q2
=

1 + 2pq

2pq
.

Likewise, if d = 3, the 3-0 case entails 1 test and a recursive call (and a deferral of a pure
set), the 2-1 case entails 1 test and a recursive call on a 2-defective set (and a deferral of a
1-defective set), the 1-2 case entails 2 tests and a recursive call on a 2-defective set, and the
0-3 case entails 1 test and a recursive call. Thus,

E3 = p3(E3 + 1) + 3p2q(E2 + 1) + 3pq2(E2 + 2) + q3(E3 + 1) =
1 + 3pq2 + (3p2q + 3pq2)E2

1− p3 − q3
.

Similarly,

E4 =
1 + 4pq3 + (4p3q + 4pq3)E3 + 6p2q2E2

1− p4 − q4
.

12



Likewise,

E5 =
1 + 5pq4 + (5p4q + 5pq4)E4 + 10p3q2E3 + 10p2q3E2

1− p5 − q5
.

Moreover,

E6 =
1 + 6pq5 + (6p5q + 6pq5)E5 + 15p4q2E4 + 20p3q3E3 + 15p2q4E2

1− p6 − q6
.

Finally (which will be sufficient for our analysis),

E7 =
1 + 7pq6 + (7p6q + 7pq6)E6 + 21p5q2E5 + 35p4q3E4 + 35p3q4E3 + 21p2q5E2

1− p7 − q7
.

But this is only for the first round. We still need to account for the expected number of
defective items deferred from this round to future rounds.

Analyzing the Expected Number of Deferred Defective Items

Let Dd denote the expected number of defective items deferred in a bucket with d defective
items. Certainly, since we are guaranteed to find at least 2 defective items for any bucket with
d ≥ 2, we can bound Dd ≤ d− 2 for d ≥ 2. Moreover, we trivially have that D0 = D1 = 0.
We evaluate Dd for some small values of d, beginning with D3.

When d = 3, the 3-0, 1-2, and 0-3 cases all entail recursive calls, but only the 2-1 case
causes a defective item to be deferred. Thus,

D3 = p3D3 + 3p2q + q3D3 =
3p2q

1− p3 − q3
= p.

For d = 4, the 4-0 and 0-4 cases both entail recursive calls, the 3-1 case entails a 3-
defective recursive call and 1 deferral, the 2-2 case entails 2 deferrals, and the 1-3 case
entails a 3-defective recursive call. Thus,

D4 = p4D4 + 4p3q + (4p3q + 4pq3)D3 + 12p2q2 + q4D4 =
4p3q + 12p2q2 + (4p3q + 4pq3)D3

1− p4 − q4
.

Likewise,

D5 =
5p4q + 20p3q2 + 30p2q3 + (5p4q + 5pq4)D4 + 10p3q2D3

1− p5 − q5
.

Finally (which will be sufficient for our analysis),

D6 =
6p5q + 30p4q2 + 60p3q3 + 60p2q3 + (6p5q + 6pq5)D5 + 15p4q2D4 + 20p3q3D3

1− p6 − q6
.

It does not result in elegant equations, but we can nevertheless combine this analysis
with the previous bounds on Ed and Ps(k) to derive the expected number of tests performed
by our algorithm. For example, with a spread factor of s = 0.8 and a split parameter of
p = 0.479, we obtain that the expected number of tests is less than 2.054d.

13



4.2 Estimating the Number of Defectives

Greenberg and Ladner [4] give a simple repeated doubling algorithm for estimating the
number of transmitting devices, d, in a set. In their algorithm, each transmitting device
repeatedly transmits with probability 2−i, for i = 1, 2, . . ., until there is a non-collision. It
then sets its estimate of the number of defectives as d̂ = 2i.

For combinatorial testing to determine the number of defective items, d, in a large set of
items, this is equivalent to repeatedly testing a random set of size n2−i, for i = 1, 2, . . ., until
a test obtains a 0- or 1-result. Unfortunately, this simple approximation is not sufficiently
accurate for our purposes, so we provide in this section a simple improvement of the doubling
algorithm, which increases the accuracy of the estimate while only increasing the number of
tests by a small additive factor.

We begin by applying the simple doubling algorithm. This algorithm is 99.9% likely to
use O(log d) tests and produce an estimate, d̂, such that d/32 ≤ d̂ ≤ 32d. However, the
estimate is within a factor of 2 of d only about 75% of the time. (It varies, approximately
65% to 90%, depending on how close d is to a power of 2.) While this is insufficient to
produce a useful estimate of d for the sake of computing a spread factor, it is sufficient as a
first step for coming up with a better approximation for d.

Let us, therefore, assume we have computed the estimate d̂. We next perform a sequence
of experiments, for i = j, j+1, . . ., where experiment i involves choosing a constant number, c,
of random subsets of size n2−i/a and performing a test for each one, where j = max{1, a(lg d̂−
5)} with a a small integer such as 2 or 4. We stop the sequence of experiments as soon as
one of the c tests returns a result of 0 or 1. We then use the value of i to produce a refined
estimate, d̂′, for d. We use d̂′ = f(a, c) · 2i/a, where f is a normalizing function so that
E[d̂′] = d.

The probability that all c subsets for experiment i contain collisions quickly approaches
1 − (1− (t+ 1)e−t)

c
, where t = d/2i/a. This fact can then be used to find a good estimate

of d, based on the values of a and c. When a = 4 and c = 8, using f(a, c) = 4.3 results
in the estimate being within a factor of 2 of d about 99.3% of the time (varying about 98%
to 100%, depending on d). Moreover, combining this estimate algorithm with our deferred
binary tree algorithm results in a testing algorithm that uses an expected 2.08d + O(log d)
tests, and which does not need to know the value of d in advance.

4.3 Reducing the Randomness of the Deferral Algorithm

In this subsection, we show how to reduce the randomness needed for the deferral algorithm,
while keeping it concise. In particular, we do not need O(logn) random bits associated with
each defective item; we can use an expected O(logn) random bits associated with a group
controller instead. Moreover, even with this reduced randomness, we show that we will make
only O(d) tests, with high probability, 1−O(1/d).

The main idea of our modified algorithm is to apply the Deferral algorithm, as described
above, but use a random hash function to define the top-level partitioning to be performed.
Indeed, the top-level distribution of our algorithm is closely related to the hashing of d out
of n elements into a table of size O(d), in that mapping items to cells without collisions is
quite helpful (corresponding to identifying tests in our case). The main difference between

14



our problem and the hashing problem is that, in the case of a collision (corresponding to
an impure test set in our case), we do not know which items or even how many items have
collided.

Our algorithm is the same as the deferral algorithm, except that instead of using random
bits associated with the items, we define the top-level buckets as follows:

1. Assign m two times the value of d, the number of remaining defective items.

2. Choose a prime number r > m and choose a random set of integers, {a1, a2, a3}, from
the interval [1, r− 1], and a random integer, b, from the interval [0, r− 1]. Define h as

h(x) = (a3x
3 + a2x

2 + a1x+ b mod r) mod m.

Comment : It is well known (e.g., see [25]) that such a hash function, h, comes from a 4-
universal family of hash functions, which implies that the probability that h maps
four different items x1, x2, x3, x4 to four specific (but not necessarily distinct)
values y1, y2, y3, y4 is 1/m4. That is, the assignment of items to hash values is
four-wise independent. Note further that a function like h is defined using O(1)
parameters and can be evaluated in O(1) time; hence, such functions can be used
in a concise testing algorithm.

3. Choose parameters a3, a2, a1, and b to define a random hash function h, as defined
above. Apply the deferral algorithm to each bucket, where each y ∈ [0, m− 1] defines
a bucket that contains every item x from the set of items, S such that h(x) = y.

Comment : We assume that there is enough state information associated with each of the
items for an item to “know” that it is no longer in S, so that we can express the
test sets for each iteration using O(1)-sized expressions.

4. Remove from S each item x that is in a tainted set Ty, taking note of the item z
identified as defective by the test for Ty (recall that we assume the test for such a Ty

is an identifying test), and decrement d by the number of tainted sets.

5. If S = ∅ after removing all such items, then the algorithm has succeeded and is done.
Otherwise, repeat the above steps for the remaining items in S.

Let T (d) denote the expected number of tests performed by the above algorithm, and
let X be the number of defective items that are not detected in the first iteration of our
algorithm (i.e., they belong to impure test sets). Since there are d defective items and 2d
possible tests, E(X) ≤ d/2. Thus, by the linearity of expectation, T (d) satisfies the following
recurrence equation:

T (d) ≤ T (d/2) + 2d,

which implies that T (d) is at most 4d. In fact, we can prove that the number of tests used
by the above algorithm is O(d) with high probability.

Let us begin our justification of this fact by analyzing a single iteration of our algorithm.
Let d̂ denote the number of defectives present at the beginning of an iteration i, and say
that iteration i is good if the number of defective items detected in iteration i is at least d̂/4.
Otherwise, iteration i is bad.

15



Lemma 1 The probability that an iteration i is bad is at most min{2/3, 70/d̂2}.

Proof: Similar to our usage above, let X be the number of items that are not detected in the
given iteration i and note that E(X) ≤ d̂/2. Then, by Markov’s inequality (e.g., see [25]),

Pr(X ≥ (3/4)d̂) ≤ E(X)

(3/4)d̂
≤ d̂/2

(3/4)d̂
=

2

3
.

Note that X can be written as X = X1 + · · ·Xm to be a random variable defined as the
sum of m 4-wise independent 0/1 random variables, with expected value µ = E(X) ≤ d̂/2
and variance σ2 ≤ d̂/4, since X is Binomial and each Xi is 1 with probability at most 1/2.
By an inequality due to Schmidt et al. [26], which requires that the variables defining X be
4-wise independent,

Pr(X ≥ 3d̂/4) = Pr(X − d̂/2 ≥ d̂/4) ≤ Pr(|X − µ| ≥ d̂/4) ≤ 2

(

4σ2

e(d̂/4)2

)2

≤ 2

(

d̂

e(d̂/4)2

)2

=
512

e2d̂2
<

70

d̂2
.

Combining the above bounds proves the lemma.

Thus, if there are d̂ defectives remaining at the beginning of an iteration i, then with high
probability there will be at most (3/4)d̂ defectives remaining after the iteration completes.

Theorem 3 Given a set of n items with d defectives, the number of tests performed by the
reduced-randomness ternary-result group testing algorithm is O(d) with probability 1−O(1/d).

Proof: For the sake of the analysis, we divide the iterations of the randomized ternary-result
group testing algorithm into two phases:

• Phase 1 : Each iteration i such that i ≤ log4/3 log d and the number of undetected
defectives is more than d/ log d at the beginning of the iteration

• Phase 2 : The remaining iterations.

Let us analyze each phase separately. By Lemma 1, the probability that a particular iteration
i in Phase 1 is bad is at most min{2/3, 70 log2 d/d2}. Thus, the probability that any iteration
i in Phase 1 is bad is at most min{(2/3) log4/3 log d, 70 log2 d log4/3 log d/d2}, which is O(1/d).
That is, with high probability, all the iterations in Phase 1 are good, which implies that,
with at least the same probability, the number of tests performed in Phase 1 is O(d) and
the number of defectives remaining at the beginning of Phase 2 is at most d/ log d. So, let
us assume that this many defectives remain at the beginning of Phase 2.

Unfortunately, we cannot claim with high probability that all the iterations in Phase 2
are good. But we do know that once we have g = log4/3 d/ log d good iterations in Phase 2,
we are done. Let Z denote the number of iterations we make in Phase 2. By Lemma 1,
E(Z) ≤ 3g. Note further that whether any given iteration is good is independent of whether

16



any other iteration is good (since we use a different random hash function, h, for each
iteration). Thus, we can use a Chernoff bound (e.g., see [25]) to show that

Pr(Z ≥ 8g) = Pr(Z ≥ (1 + 5/3)3g) ≤ Pr(Z ≥ (1 + 5/3)E(Z)) ≤ 2−E(Z) ≤ 2−g < (log d/d)2.

Thus, Phase 2 uses at most O(log d/ log d) iterations, with probability at least 1 − O(1/d).
Since we are assuming that each iteration in Phase 2 will require at most d/ log d tests
(which we have already shown to hold with high probability), this implies that Phase 2 will
require O(d) tests with high probability, that is, with probability that is at least 1−O(1/d).
Combining this bound with the bound for Phase 1 completes the proof.

Thus, assuming we know the value of d, then the randomized ternary-result group testing
algorithm uses O(d) tests, with high probability. This fact can itself be used to estimate
d, of course, by a simple doubling strategy. We start such a strategy by assuming that the
number of defectives is at most d = 2 and we run our algorithm based on this assumption,
except that we stop the algorithm short if it uses more than cd tests, where c is the constant
“hiding” behind the big-Oh in the high-probability bound on the number of tests needed.
We then double the value of d and repeat. Since we double the number of tests with each
round, we will quickly come to a round that succeeds within the claimed number of tests.
Moreover, since we double the number of tests we perform with each round, this implies
that the total number of tests is O(d) with high probability. Therefore, we can achieve this
bound, with high probability, even without knowing the value of d in advance. Of course,
there is a trivial lower bound of Ω(d) tests for any ternary-result group testing algorithm
with identifying tests in the tainted case, so our performance bound is within a constant
factor of optimality, with high probability.

5 Our Anonymous Algorithm

In this section, we discuss an efficient concise deterministic ternary-result group testing
algorithm for the case in which a test of a tainted set does not identify the defective item.

Consider algorithm AN(S), shown in Figs. 1 and 2.
Subroutine Reduce reduces the original problem to one of identifying the d defective items

in a collection L of d tainted subsets. Note that Reduce is essentially our earlier Identify
algorithm, in which testing a tainted set immediately identified the defective item. Here,
we require additional testing to identify the defective item. When d = 2, subroutine Final2
iterates reducing the size of the two sets in L until they are singletons. When d ≥ 3,
subroutine Final3 iterates reducing the size of three of the sets in L until at most two of
the d sets are non-singleton, and then utilizes either Final2 or binary search to reduce the
remaining set(s) to become singleton(s).

All subsets can be selected so that the items of each subset have ID value ranks that
are contiguous. All tests involve the union of at most three subsets, each of which can be
specified as consisting of items whose ID values are in a specified range. Thus, algorithm
AN is concise.

17



Algorithm AN ( S )
// Given: set S of items
// Return: identity of all defective items

if test(S) ≤ 1 then identify the defective via binary search and exit

list L← ∅
Reduce(S)
if list L has only 2 sets, A and B then Final2(A,B)
else Final3(L)

Subroutine Reduce ( S )
// Given: set S of items that includes at least 2 defective items
// Return: list L of disjoint subsets of S that each contain one defective item

p2 ← 0.38196601
Partition S into two subsets, A and B, where |A| = p2|S|
t1 ← test(A)
if t1 ≥ 2 then Reduce(A)
if t1 = 1 then add A to list L
if t1 = 0 then t2 ← 2

else t2 ← test(B)
if t2 ≥ 2 then Reduce(B)
if t2 = 1 then add B to list L

Subroutine Final2 ( A,B )
// Given: two disjoint tainted sets
// Return: identity of the 2 defective items

p3 ← 0.3176722 // q3 = (1− p3)
while |A| > 1 and |B| > 1 // Start with sets (A,B) having sizes (x, y)

Partition A into A1 and A2, where |A1| = p3|A|
Partition B into B1 and B2, where |B1| = p3|B|
t1 ← test(A1 ∪B1)
if t1 = 0 then 〈A,B〉 ← 〈A2, B2〉 // R0: sizes (q3x, q3y), 1 test
else if t1 = 1 then

t2 ← test(A1)
if t2 = 0 then 〈A,B〉 ← 〈A2, B1〉 // R1: sizes (q3x, p3y), 2 tests
else 〈A,B〉 ← 〈A1, B2〉 // R1: sizes (p3x, q3y), 2 tests

else /* (t1 = 2) */ 〈A,B〉 ← 〈A1, B1〉 // R2: sizes (p3x, p3y), 1 test
use binary search to identify defectives in the (at most 1) set of A and B whose size > 1

Figure 1: Analysis algorithm using anonymous ternary tests

5.1 Correctness of Final3’s Reduction Process

Final3 partitions each of three tainted non-singleton sets into two subsets – a relatively small
subset and a relatively large subset – and makes the determination as to which three of the
six newly created subsets are tainted. It first tests the union of the three smaller subsets. If
this union is pure then the three larger subsets are tainted. Otherwise, one or two further
tests suffice to make the determination, as shown in the following lemmata.

18



Subroutine Final3 ( L )
// Given: list L of d ≥ 3 disjoint tainted sets
// Return: identity of the d defective items

p4 ← 0.27550804 // q4 = (1− p4)
while ∃ at least three non-singleton sets in L

〈a, b, c〉 ← indices of the largest three non-singleton sets in L

// Start with sets (La, Lb, Lc) having sizes (x, y, z)
Partition La into A1 and A2, where |A1| = p4|La|
Partition Lb into B1 and B2, where |B1| = p4|Lb|
Partition Lc into C1 and C2, where |C1| = p4|Lc|
t1 ← test(A1 ∪B1 ∪ C1)
if t1 = 0 then 〈La, Lb, Lc〉 ← 〈A2, B2, C2〉 // R0: sizes (q4x, q4y, q4z), 1 test
else if t1 = 1 then

t2 ← test(A1 ∪B2)
if t2 = 0 then 〈La, Lb, Lc〉 ← 〈A2, B1, C2〉 // R1: sizes (q4x, p4y, q4z), 2 tests
else if t2 = 1 then 〈La, Lb, Lc〉 ← 〈A2, B2, C1〉 // R1: sizes (q4x, q4y, p4z), 2 tests
else /* (t2 = 2) */ 〈La, Lb, Lc〉 ← 〈A1, B2, C2〉 // R1: sizes (p4x, q4y, q4z), 2 tests

else // (t1 = 2)
t2 ← test(A1 ∪B2)
if t2 = 0 then 〈La, Lb, Lc〉 ← 〈A2, B1, C1〉 // R2: sizes (q4x, p4y, p4z), 2 tests
else if t2 = 1 then

t3 ← test(C1)
if t3 = 0 then 〈La, Lb, Lc〉 ← 〈A1, B1, C2〉 // R2: sizes (p4x, p4y, q4z), 3 tests
else 〈La, Lb, Lc〉 ← 〈A1, B1, C1〉 // R3: sizes (p4x, p4y, p4z), 3 tests

else /* (t2 = 2) */ 〈La, Lb, Lc〉 ← 〈A1, B2, C1〉 // R2: sizes (p4x, q4y, p4z), 2 tests
if ∃ two non-singleton sets (A and B) in L then Final2(A,B)
else if ∃ one non-singleton set, A, in L then identify A’s defective by using binary search

Figure 2: Final subroutine when d ≥ 3

Lemma 2 If we are given six sets, (A1, A2, B1, B2, C1, C2), such that each pair of sets
(X1, X2) consists of one pure and one tainted set, and that exactly one of the sub1 sets
(A1, B1, C1) is tainted, then one ternary test suffices to identify which three sets are tainted.

Proof: Test the union of sets A1 and B2.
If the test shows that the union is pure then B2 is pure, and so B1 is the tainted sub1

set. Consequently, the tainted sets are (A2, B1, C2).
If the test shows that the union is tainted then either (1) A1 is tainted and B2 is pure,

implying that B1 is also tainted which is inconsistent with the lemma’s hypothesis that there
is only one tainted sub1 set, or (2) A1 is pure and B2 is tainted, implying that B1 is pure
and thus that C1 is the one tainted sub1 set. Consequently, the tainted sets are (A2, B2,
C1).

Finally, if the test shows that the union is impure then both A1 and B2 are tainted, and
so A1 is the tainted sub1 set. Consequently, the tainted sets are (A1, B2, C2).

19



Lemma 3 If we are given six sets, (A1, A2, B1, B2, C1, C2), such that each pair of sets
(X1, X2) consists of one pure and one tainted set, and that at least two of the sub1 sets
(A1, B1, C1) are tainted, then two ternary tests suffice to identify which three sets are tainted.

Proof: Test the union of sets A1 and B2.
If the test shows that the union is pure, then A1 is pure and so the other two sub1 sets

must be tainted. Consequently, the tainted sets are (A2, B1, C1).
If the test shows that the union is tainted, then either (1) A1 is pure and B2 is tainted,

implying that B1 is also pure which is inconsistent with the lemma’s hypothesis that there
are at least two tainted sub1 sets, or (2) A1 is tainted and B2 is pure, implying that B1 is
also tainted. In this case, testing C1 will indicate either that C1 is pure, in which case the
tainted sets are (A1, B1, C2), or that C1 is tainted, in which case the tainted sets are (A1,
B1, C1).

Finally, if the test shows that the union is impure, then B2 is tainted and so B1 is pure.
We can conclude that the other two sub1 sets must be tainted. Consequently, the tainted
sets are (A1, B2, C1).

5.2 Analysis of Algorithm AN

Let Wd(n), for d > 1, be the worst-case numbers of tests made by AN(S) when |S| = n and
there turns out to be d defectives.

Theorem 4

W2(n) ≤ 1.8756 lgn + o(lgn)

and, for d ≥ 3, Wd(n) ≤ (0.3307 + 0.7202d) lgn + o(lg n).

Proof: We analyze Final2 to evaluate W2(n), and then analyze Final3 to evaluate Wd(n),
for d ≥ 3.

Analysis of Final2 We make use of the real root of the equation p3 = (1− p3)
3, which is

solved by

p3 = 1 +
3

√√
93

18
− 1

2
− 3

√√
93

18
+

1

2
≈ 0.3176722, (12)

and of q3 = (1 − p3) ≈ 0.6723278. We assign counts of tests performed in Final2 as follows.
Tests result in size reductions of the two sets, and we assign such tests to those sets in
proportion to the logarithms of the ratios of the before and after set sizes. For example, an
R1 scenario uses two tests to reduce sets of sizes x and y to sizes p3x and q3y, and so we
assign the size x set a count of 2 lg p3/(lg p3 + lg q3) tests. We define the normalized cost to
be the assigned count divided by the logarithm of the size reduction. Accordingly, both sets
would have the same normalized cost. For example, in an R1 scenario, both sets would have
a normalized cost of −2/(lg p3 + lg q3).

Let W1(n) be the worst-case number of tests made within Final2 that are assigned to a
set, having initial size n, to identify the defective item in that set. A set’s defective item will

20



be identified when that set has been reduced to size 1. Therefore, W1(n) is the product of
lg n and the maximum normalized cost, c2.

There are three scenarios of size reductions of the pair of sets. R0: 1 test reduces both
set sizes by a factor of 1/q3, each set is assigned a count of 1

2
test, and the normalized costs

are −1/(2 lg q3) ≈ 0.9067. R1: 2 tests reduce set sizes by factors of 1/p3 and 1/q3, the sets
are assigned counts 2 lg p3/(lg p3 + lg q3) and 2 lg q3/(lg p3 + lg q3) tests, and the normalized
costs are −2/(lg p3 + lg q3) ≈ 0.9067. R2: 1 test reduces both set sizes by a factor of 1/p3,
each set is assigned a count of 1

2
test, and the normalized costs are −1/(2 lg p3) ≈ 0.3022.

Therefore, c2 ≈ 0.9067 and W1(n) ≈ 0.9067 lgn.
However, to the extent that a set uses binary search at the last line of Final2, it does not

participate in size reductions of the R’s. In the worst case, scenario R1 recurs with one set’s
size consistently being reduced by p3 and the other’s size by q3. This can occur − lg n/ lg p3
times, at which point one set will have size 1 and the other will have size n1−lg q3/ lg p3. This
second set will then require (1−lg q3/ lg p3) lgn tests, for a total of [1−(2+lg q3)/ lg p3] lg n ≈
1.8756 lgn tests. Therefore, using W1(n) ≈ .9067 lgn leaves an undercount of at most
[1.8756− 2(0.9067)] lgn ≈ 0.0622 lgn.

We note that the problem of finding two defectives can be solved using about 1.4 lgn
tests (see [17] and [18]) but these other methods are much more complicated and may not
admit to concise implementation.

Evaluation of W2(n) We have the following recurrence.

W2(n) = max











2 +W1(p2n) +W1(p2n) + 0.0622 lgn
2 +W2(p2n)
1 +W2(p2n)

(13)

Consider W2(n) = x lg n+ o(lg n).
We use c2 ≈ 0.9067, defined above as the maximum normalized cost, giving W1(n) ≈

c2 lg n (excluding the undercount).
If the first term of the recurrence were to be the maximum term, then x = 2c2 > 1.81.

If the second term were to be the maximum term, then x = −2/ lg p2 ≈ 1.44. If the third
term were to be the maximum term, then x = −1/ lg q2 ≈ 1.44. Thus, the first term is the
maximum term and W2(n) ≈ (2c2 + 0.0622) lgn ≈ 1.8756 lgn.

Analysis of Final3 We make use of the real root with value less than one of the equation
p4 = (1− p4)

4, which is solved by

x =
3

√√
849

18
+

1

2
− 3

√√
849

18
− 1

2
(14)

p4 = 1 +

√
x

2
− 1

2

√

2√
x
− x ≈ 0.27550804, (15)

and of q4 = (1− p4) ≈ 0.72449196.
Tests result in size reductions of three sets. Our analysis is similar to that of Final2. We

assign tests to the three involved sets in proportion to the logarithms of the ratios of the

21



before and after set sizes. We define the normalized cost to be the assigned count divided
by the logarithm of the size reduction. All three involved sets will have the same normalized
cost.

Let W1(n) be the worst-case number of tests made within Final3 that are assigned to an
L-set, having initial size n, to identify the defective item in that set. An L-set’s defective
item will be identified when that set has been reduced to size 1. Therefore, W1(n) is the
product of lg n and the maximum normalized cost, c3.

There are four scenarios of size reductions of a triple of sets. R0: 1 test reduces three
set sizes by a factor of 1/q4, and the normalized costs are −1/(3 lg q4) ≈ 0.7169. R1: 2 tests
reduce one set size by a factor of 1/p4 and the other two set sizes by a factor of 1/q4, and the
normalized costs are −2/(lg p4+2 lg q4) ≈ 0.7169. R2: 2 or 3 tests reduce two of the set sizes
by a factor of 1/p4 and the other set size by a factor of 1/q4, and the normalized costs are
either −2/(2 lg p4 + lg q4) ≈ 0.4779, or −3/(2 lg p4 + lg q4) ≈ 0.7169. R3: 3 tests reduce all
three of the set sizes by a factor of 1/p4, and the normalized costs are −3/(3 lg p4) ≈ 0.5376.

Therefore, c3 ≈ 0.7169 and W1(n) ≈ 0.7169 lgn.
However, to the extent that a set uses Final2 or binary search at the last lines of Final3,

it does not participate in size reductions of the R’s. In the worst case, scenario R1 recurs
with two sets’ sizes consistently being reduced by q4 and the other set size by p4. This can
occur − lg n/ lg p4 times, at which point the two sets will have size n1−lg q4/ lg p4 = n0.75 and
the one set will have size 1. These two sets will then be reduced by Final2, requiring at most
(1.8756)(.75) lgn = 1.406 lgn tests, for a total of (1.406 − 2/ lg p4) lgn ≈ 2.4814 lgn tests.
Then, dW1(n) represents an undercount of the worst-case total number of tests in Final3 by
at most [2.4814− 3(.7169)] lgn = 0.3307 lgn.

Evaluation of Wd(n) DefineW ′
d(n) to beWd(n) minus the undercount of dW1(n) in Final3

which is at most 0.3307 lgn. Then, for d > 2, we have the following recurrence.

W ′
d(n) = max











2 +W ′
i (p2n) +W ′

d−i(q2n), for 1 ≤ i ≤ d− 1
2 +W ′

d(p2n)
1 +W ′

d(q2n)
(16)

Consider W ′
d(n) = x lg n + o(lg n), and we shall solve for x. Assume that, for 2 < i < d,

W ′
i (n) = xi lg n+ o(lg n), where x ≥ c3 ≈ 0.7169, and that W ′

2(n) = 2c2 lg n+ o(lgn), where
c2 ≈ 0.7202 is obtained from the solution to W ′

2(d) = max{2 +W ′
2(p2n), 1 +W ′

2(q2n)}.
If the first term of the recurrence were to be the maximum term, then x > dc3 > 2.15,

since d ≥ 3. If the second term were to be the maximum term, then x = −2/ lg p2 ≈ 1.44.
If the third term were to be the maximum term, then x = −1/ lg q2 ≈ 1.44. Therefore, the
first term is the maximum term and we obtain Wd(n) ≤ (0.3307 + 0.7202d) lgn+ o(lg n).

6 Using Counting Queries

In this section, we discuss a variant of our testing algorithm for the case when the queries
provide an exact count of the number of defectives in a test set, and the result in the case of a

22



1-result identifies the defective item in the test set. As we show, the expected performance of
this algorithm is significantly better than that of the ternary-result group testing algorithm.

We apply an initial spreading action to distribute items across a set of buckets and we
then perform a test for each bucket. The main difference is in the binary tree algorithm we
then apply to each bucket B whose test indicates it has t ≥ 2 defective items:

1. We set a partition factor, p, according to the analysis, and we split B into subsets B1

and B2 so that B1 has p|B| items from B and B2 has the remaining items.

2. We perform a test for B1 and, if the number, t1, of defective items in B1 is at least
two, then we recursively search in B1.

3. If the (possibly recursive) testing of B1 has revealed all t defective items from B, then
we skip the testing of B2, for it contains no defective items in this case.

4. Otherwise, if the test for B1 revealed t1 = t − 1 defectives, then we immediately test
B2 to identify its one defective item.

5. If, on the other hand, the test for B1 revealed t1 defectives, with 0 ≤ t1 < t− 1, then
we recursively search in B2 (without performing a global test for B2, since we know it
must have at least 2 defectives).

Note that no deferral is needed in this algorithm, because we can always infer whether or
not testing in a B2 set will be profitable.

6.1 Analysis of the Counting Algorithm

We begin by analyzing the expected number of tests of the counting binary tree algorithm,
without performing any spreading action. Our analysis parallels the one we performed for
Deferral.

Let Ed be the expected number of tests performed by the binary tree counting algorithm
(not counting the global test for all of the set), assuming there are d defectives. We evaluate
Ed for small values of d. By construction, E0 = E1 = 0. If d = 2, then the 2-0 case causes
1 test and a recursive call, the 1-1 case causes 2 tests, and the 0-2 case causes 1 test and a
recursive call. Thus, letting q = 1− p,

E2 = p2(E2 + 1) + 2pq(2) + q2(E2 + 1) = p2E2 + (p2 + 2pq + q2) + 2pq + q2E2

=
1 + 2pq

1− p2 − q2
=

1 + 2pq

2pq
.

Likewise, if d = 3, then the 3-0 case causes 1 test and a recursive call, the 2-1 case causes
2 tests and a 2-defective recursive call, while the 1-2 case causes 1 test and a 2-defective
recursive call, and the 0-3 case causes 1 test and a recursive call. Thus,

E3 = p3(E3 + 1) + 3p2q(E2 + 2) + 3pq2(E2 + 1) + q3(E3 + 1)

=
1 + 3p2q + (3p2q + 3pq2)E2

1− p3 − q3
.

23



Similarly,

E4 =
1 + 4p3q + (4p3q + 4pq3)E3 + 12p2q2E2

1− p4 − q4
.

Likewise,

E5 =
1 + 5p4q + (5p4q + 5pq4)E4 + (10p3q2 + 10p2q3)(E2 + E3)

1− p5 − q5
.

Finally (which will be sufficient for our analysis),

E6 =
1 + 6p5q + (6p5q + 6pq5)E5 + (15p4q2 + 15p2q4)(E2 + E4) + 40p3q3E3

1− p6 − q6
.

These values can then be combined with an analysis (as given above) for bounding the
number of buckets of various sizes to derive an expected bound on the number of tests
performed by our algorithm. For example, if we choose a spread factor of s = 0.58 and a
split parameter p = .4715, then we find that Ed ≤ 1.896d, which is significantly better than
that obtained by the ternary-result group testing algorithm.

7 Conclusion

We have presented several concise algorithms for ternary-result group testing, including a
randomized algorithm for the identifying case that uses O(d) tests with high probability, a
deterministic algorithm for the identifying case that uses O(d logn) tests and a deterministic
algorithm for the anonymous case that uses O(d logn) tests. We leave as an open problem
whether there is a deterministic group testing algorithm for the identifying case that uses
O(d) tests.

Acknowledgment

We thank David Eppstein for helpful discussions regarding topics of this paper.

References

[1] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact of network
density on data aggregation in wireless sensor networks,” in Proc. of Int. Conf. on
Distributed Computing Systems, 2002.

[2] N. A. Lynch, Distributed Algorithms. San Francisco: Morgan Kaufmann, 1996.

[3] J. I. Capetanakis, “Tree algorithms for packet broadcast channels,” IEEE Trans. Inf.
Theory, vol. IT-25, no. 5, pp. 505–515, 1979.

24



[4] A. G. Greenberg and R. E. Ladner, “Estimating the multiplicities of conflicts in multiple
access channels,” in Proc. 24th Annual Symp. on Foundations of Computer Science
(FOCS’83). IEEE Computer Society, 1983, pp. 383–392.

[5] A. G. Greenberg and S. Winograd, “A lower bound on the time needed in the worst
case to resolve conflicts deterministically in multiple access channels,” J.ACM, vol. 32,
no. 3, pp. 589–596, 1985.

[6] M. Hofri, “Stack algorithms for collision-detecting channels and their analysis: A limited
survey,” in Proc. Inf. Sem. Modelling and Performance Evaluation Methodology, ser.
Lecture Notes in Control and Info. Sci., A. V. Balakrishnan and M. Thoma, Eds.,
vol. 60, 1984, pp. 71–85.

[7] A. Allemann, “Improved upper bounds for several variants of group testing,” Ph.D.
dissertation, Rheinisch-Westfalischen Technischen Hochschule Aachen, November 2003.

[8] A. DeBonis, L. Gasieniec, and U. Vaccaro, “Generalized framework for selectors with
applications in optimal group testing,” in Proceedings of 30th International Colloquium
on Automata, Languages and Programming (ICALP’03). Springer, 2003, pp. 81–96.

[9] D.-Z. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications, 2nd ed.
World Scientific, 2000.

[10] D. Eppstein, M. T. Goodrich, and D. S. Hirschberg, “Improved combinatorial group
testing algorithms for real-world problem sizes,” SIAM J. Comput., 2007.

[11] F. K. Hwang, “A method for detecting all defective members in a population by group
testing,” J. Amer. Statist. Assoc., vol. 67, pp. 605–608, 1972.

[12] F. K. Hwang and V. T. Sós, “Non-adaptive hypergeometric group testing,” Studia
Scient. Math. Hungarica, vol. 22, pp. 257–263, 1987.

[13] W. H. Kautz and R. C. Singleton, “Nonrandom binary superimposed codes,” IEEE
Trans. Inf. Th., vol. 10, pp. 363–377, 1964.

[14] A. J. Macula and G. R. Reuter, “Simplified searching for two defects,” J. Stat. Plan.
Inf., vol. 66, pp. 77–82, 1998.

[15] M. Ruszinkó, “On the upper bound of the size of the r-cover-free families,” J. Combin.
Th. Ser. A, vol. 66, pp. 302–310, 1994.

[16] J. Schlaghoff and E. Triesch, “Improved results for competitive group testing,”
Forschungsinstitut fur Diskrete Mathematik, Institut fur Okonometrie und Opera-
tions Research, Rheinische Friedrich-Wilhelms-Universitat Bonn,” Report, 1997, report
97858.

[17] L. Gargano, V. Montuori, G. Setaro, and U. Vaccaro, “An improved algorithm for
quantitative group testing,” Discrete Applied Mathematics, vol. 36, pp. 299–306, 1992.

25



[18] C. A. Christen, “Search problems: one, two or many rounds,” Discrete Mathematics,
vol. 136, pp. 39–51, 1994.

[19] T. Berger, N. Mehravari, D. Towsley, and J. Wolf, “Random multiple-access commu-
nication and group testing,” IEEE Trans. Comm., vol. COM-32, no. 7, pp. 769–779,
1984.

[20] M. Farach, S. Kannan, E. Knill, and S. Muthukrishnan, “Group testing problems with
sequences in experimental molecular biology,” in SEQUENCES. IEEE Press, 1997, p.
357.

[21] M. J. Atallah, M. T. Goodrich, and R. Tamassia, “Indexing information for data foren-
sics,” in 3rd Applied Cryptography and Network Security Conference (ACNS), ser. Lec-
ture Notes in Computer Science, vol. 3531. Springer, 2005, pp. 206–221.

[22] Colbourn, Dinitz, and Stinson, “Applications of combinatorial designs to communi-
cations, cryptography, and networking,” in Surveys in Combinatorics, 1993, Walker
(Ed.), London Mathematical Society Lecture Note Series 187. Cambridge University
Press, 1999. [Online]. Available: citeseer.ist.psu.edu/colbourn99applications.html

[23] W. Yuan, S. V. Krishnamurthy, and S. K. Tripathi, “Improving the reliability of event
reports in wireless sensor networks,” in Proc. of IEEE Int. Symp. on Computers and
Communication (ISCC), 2004, pp. 220–225.

[24] F. K. Hwang, T. T. Song, and D. Z. Du, “Hypergeometric and generalized hypergeo-
metric group testing,” SIAM J. Alg. Disc. Meth., vol. 2, no. 4, pp. 426–428, 1981.

[25] R. Motwani and P. Raghavan, Randomized Algorithms. New York, NY: Cambridge
University Press, 1995.

[26] J. P. Schmidt, A. Siegel, and A. Srinivasan, “Chernoff-hoeffding bounds for
applications with limited independence,” in ACM-SIAM Symposium on Discrete
Algorithms (SODA), 1993. [Online]. Available: citeseer.ist.psu.edu/19779.html

26

citeseer.ist.psu.edu/colbourn99applications.html
citeseer.ist.psu.edu/19779.html

	Introduction
	Group Testing
	Multiple Access Channels
	Dead Sensor Diagnosis
	Previous Related Work
	Our Results

	Motivation and Definitions
	Some Definitions for Group Testing
	Group Testing for Dead Sensor Diagnosis

	The Binary Tree Algorithm for Ternary-Result Group Testing
	The Deferral Algorithm
	Analysis of the Deferral Algorithm
	Estimating the Number of Defectives
	Reducing the Randomness of the Deferral Algorithm

	Our Anonymous Algorithm
	Correctness of Final3's Reduction Process
	Analysis of Algorithm AN

	Using Counting Queries
	Analysis of the Counting Algorithm

	Conclusion

