
Priority Algorithms for the Subset-Sum Problem

Yuli Ye and Allan Borodin

Department of Computer Science
University of Toronto

Toronto, ON, Canada M5S 3G4
{y3ye,bor}@cs.toronto.edu

Abstract. Greedy algorithms are simple, but their relative power is
not well understood. The priority framework [5] captures a key notion
of “greediness” in the sense that it processes (in some locally optimal
manner) one data item at a time, depending on and only on the current
knowledge of the input. This algorithmic model provides a tool to assess
the computational power and limitations of greedy algorithms, especially
in terms of their approximability. In this paper, we study priority algo-
rithm approximation ratios for the Subset-Sum Problem, focusing on the
power of revocable decisions. We first provide a tight bound of α ≈ 0.657
for irrevocable priority algorithms. We then show that the approximation
ratio of fixed order revocable priority algorithms is between β ≈ 0.780
and γ ≈ 0.852, and the ratio of adaptive order revocable priority algo-
rithms is between 0.8 and δ ≈ 0.893.

1 Introduction

Greedy algorithms are of great interest because of their simplicity and efficiency.
In many cases they produce reasonable (and sometimes optimal) solutions. Sur-
prisingly, it is not obvious how to formalize the concept of a greedy algorithm and
given such a formalism how to determine its power and limitations with regard to
natural combinatorial optimization problems. Borodin, Nielson and Rackoff [5]
suggested the priority model which provides a rigorous framework to analyze
greedy-like algorithms. In this framework, they define fixed order and adaptive
(order) priority algorithms, both of which capture a key notion of greedy algo-
rithms in the sense that they process one data item at a time. For fixed order
priority, the ordering function used to evaluate the priority of a data item is
fixed before execution of the algorithm, while for adaptive priority, the ordering
function can change during every iteration of the algorithm. By restricting al-
gorithms to this framework, approximability results and limitations 1 for many
problems have been obtained; for example, scheduling problems [5, 18], facility

1 We note that similar to the study of online competitive analysis, negative priority
results are in some sense incomparable with hardness of approximation results as
there are no explicit complexity considerations as to how a priority algorithm can
choose its next item and how it decides what to do with that item. Negative results
are derived from the structure of the algorithm.

2

location and set cover [1], job interval selection (JISP and WJISP) [12], and
various graph problems [6, 9]. The original priority framework specified that de-
cisions (being made for the current input item) are irrevocable. Even within this
restrictive framework, the gap between the best known algorithm and provable
negative remains significant for most problems. Following [10, 4], Horn [12] ex-
tended the priority framework to allow revocable acceptances when considering
packing problems. That is, input items could be accepted and then later rejected,
the only restriction being that a feasible solution is maintained at the end of each
iteration. The revocable (decision) priority model is intuitively more powerful
and almost as conceptually simple as the irrevocable model and it is perhaps
surprising that it is not a more commonly used type of algorithm. Erlebach and
Spieksma [10] and independently Bar-Noy et al. [4] provide a simple revocable
priority approximation algorithm for the WJISP problem, and Horn [12] formal-
izes this model and provides an approximation upper bound 2 of ≈ 1/(1.17) for
the special case of the weighted interval scheduling problem. Moore’s [17] opti-
mal “greedy algorithm” for the unweighted throughput maximization problem
without release times (i.e. 1||

∑
j Ūj in Graham’s scheduling notation) can be

implemented as a fixed order revocable priority algorithm. It is not difficult to
show that this problem cannot be solved optimally by an irrevocable priority
algorithm.

The Subset-Sum Problem (SSP) is one the most fundamental NP-complete
problems [11], and perhaps the simplest of its kind. Approximation algorithms
for SSP have been studied extensively in the literature. The first FPTAS (for
the more general knapsack problem) is due to Ibarra and Kim [13], and the best
current approximation algorithm is due to Kellerer et al. [15], having time and
space complexity O(min{n

ε
, n+ 1

ε2 log 1

ε
}) and O(n+ 1

ε
) respectively. Greedy-like

approximation algorithms have also been studied for SSP; an algorithm called
greedy but using multiple passes, has approximation ratio 0.75, see [16]. In this
paper, we study priority algorithms for SSP. Although in some sense one may
consider SSP to be a “solved problem”, the problem still presents an interesting
challenge for the study of greedy algorithms. We believe the ideas employed for
SSP will be applicable to the study of simple algorithms for other (say schedul-
ing) problems which are not well understood, such as the throughput maximiza-
tion problem (with release times) and some of its more tractable subcases. In
particular, can we derive priority approximation algorithms for throughput max-
imization when all jobs have a fixed processing time (i.e. 1|rj , pj = p|

∑
j wj Ūj)?

(We note that Horn’s [12] 1/(1.17) bound also applies to this problem.) Bap-
tiste [3] optimally solves this special case of throughput maximization using a
dynamic programming algorithm with time complexity O(n7). (See also Chuzhoy
et al. [8] and Chrobak et al. [7] for additional throughput maximization results.)

In spite of the conceptual simplicity of the SSP problem and the priority
framework, there is still a great deal of flexibility in how one can design algo-
rithms, both in terms of the ordering and in terms of which items to accept and

2 As we are considering maximization problems in this paper, all approximation ratios
will be ≤ 1 so that negative results become upper bounds on the ratio.

3

(for the revocable model) which items to discard in order to fit in a new item.
We give a tight bound of α ≈ 0.657 for irrevocable priority algorithms showing
that in this case adaptive ordering does not help. For fixed order revocable algo-
rithms, we can show that the best approximation ratio is between β ≈ 0.780 and
γ ≈ 0.852; for adaptive revocable priority algorithms, the best approximation
ratio is between 0.8 and δ ≈ 0.893. All omitted proofs can be found in [19].

2 Definitions and Notation

We use bold font letters to denote sets of data items. For a given set R of data
items, we use |R| to denote its cardinality and ‖R‖, its total weight. For a data
item u, we use u to represent the singleton set {u} and 2u, the multi-set {u, u};
we also use u to represent the weight of u since it is the only attribute. The
term u here is an overloaded term, but the meaning will become clear in the
actual context. For set operations, we use ⊕ to denote set addition, and use ⊖
to denote set subtraction.

2.1 The Subset-Sum Problem

Given a set of n data items with positive weights and a capacity c, the max-
imization version of SSP is to find a subset such that the corresponding total
weight is maximized without exceeding the capacity c. Without loss of gener-
ality, we make two assumptions. First of all, the weights are all scaled to their
relative values to the capacity; hence we can use 1 instead of c for the capacity.
Secondly, we assume each data item has weight ∈ (0, 1]. An instance of SSP
is a set I = {u1, u2, . . . , un} of n data items, where the set I is the input set,
and u1, u2, . . . , un are the data items. A feasible solution is a subset B of I such
that ‖B‖ ≤ 1. An optimal solution is a feasible solution with maximum weight.
Let A be an algorithm for SSP, we denote ALG the solution achieved by A and
OPT, the optimal solution, then the approximation ratio of A on that instance

is denoted by ρ = ‖ALG‖
‖OPT‖ . The approximation ratio of A is the infimum of the

set of ratios achieved by A over all instances of SSP.

2.2 Priority Model

We base our terminology and model on that of [5], and start with the class of
fixed order irrevocable priority algorithms for SSP. For a given instance, a fixed
order irrevocable priority algorithm maintains a feasible solution B throughout
the algorithm. The structure of the algorithm 3 is as follows:

3 We formalize the allowable (fixed) orderings by saying that the algorithm specifies
a total ordering on all possible input items. The items that constitute the actual
input set I will then inherit this ordering. That is, the priority model insists that
the ordering satisfies Arrow’s Independence of Irrelevant Attributes IIA Axion [2].
For adaptive orderings the algorithm can construct a new IIA ordering based on all
the items that it has already seen as well as those items it can deduce are not in the
input set.

4

Fixed Order Irrevocable Priority

Ordering: Determine a total ordering of all possible data items
while I is not empty

next := index of the data item in I that comes first in the ordering
Decision: Decide whether or not to add unext to B, and then remove unext

from I

end while

An adaptive irrevocable priority algorithm is similar to a fixed order one, but
instead of looking at a data item according to some pre-determined ordering, the
algorithm is allowed to reorder the remaining data items in I at each iteration.
This gives the algorithm an advantage since now it can take into account the
information that has been revealed so far to determine which is the best data
item to consider next. The structure of an adaptive irrevocable priority algorithm
is described as follows:

Adaptive Irrevocable Priority

while I is not empty
Ordering: Determine a total ordering of all possible (remaining) data items
next := index of the data item in I that comes first in the ordering
Decision: Decide whether or not to add unext to B, and then remove unext

from I

end while

The above defined priority algorithms are “irrevocable” in the sense that once a
data item is admitted to the solution it cannot be removed. We can extend our
notion of “fixed order” and “adaptive” to the class of revocable priority algo-
rithms, where revocable decisions on accepted data items are allowed. Accord-
ingly, those algorithms are called fixed order revocable and adaptive revocable pri-
ority algorithms respectively. The extension4 to revocable acceptances provides
additional power; for example, as shown in [14], online irrevocable algorithms
for SSP cannot achieve any constant bound approximation ratio, while online

revocable algorithms can achieve a tight approximation ratio of
√

5−1

2
≈ 0.618.

2.3 Adversarial Strategy

We utilize an adversary in proving approximation bounds. For a given priority
algorithm, we run the adversary against the algorithm in the following scheme.
At the beginning of the algorithm, the adversary first presents a set of data
items to the algorithm, possibly with some data items having the same weight.
Furthermore, our adversary promises that the actual input is contained in this
set5. Since weight is the only input parameter, the algorithm give the same

4 This extension applies to priority algorithms for packing problems.
5 This assumption is optional. The approximation bounds clearly hold for a stronger

adversary.

5

priority to all items having the same weight 6. At each step, the adversary
asks the algorithm to select one data item in the remaining set and make a
decision on that data item. Once the algorithm makes a decision on the selected
item, the adversary then has the power to remove any number of data items
in the remaining set; this repeats until the remaining set is empty, which then
terminates the algorithm.

For convenience, we often use a diagram to illustrate an adversarial strategy.
A diagram of an adversarial strategy is an acyclic directed graph, where each
node represents a possible state of the strategy, and each arc indicates a possible
transition. Each state of the strategy contains two boxes. The first box indicates
the current solution maintained by the algorithm, the second box indicates the
remaining set of data items maintained by the adversary. A state can be either
terminal or non-terminal. A state is terminal if and only if it is a sink, in the sense
that the adversary no longer need perform any additional action; we indicate
a terminal state using bold boxes. Each transition also contains two lines of
actions. The first line indicates the action taken by the algorithm and the second
line indicates the action taken by the adversary. Sometimes the algorithm may
need to reject certain data items in order to accept a new one, so an action may
contain multiple operations which occur at the same time; we use ⊘ if there
is no action. Note that to calculate a bound for the approximation ratio of an
algorithm, it is sufficient to consider the approximation ratios achieved in all
terminal states. We will see such diagrams in Sect. 3.

3 Priority Algorithms and Approximation Bounds

We first define four constants that will be used for our results. Let α, β, γ and δ
be the real roots (respectively) of the equations 2x3 +x2−1 = 0, 2x2 +x−2 = 0,
10x2 − 5x − 3 = 0 and 6x2 − 2x − 3 = 0 between 0 and 1. The corresponding
values are shown in Table 1.

Table 1. Corresponding values.

name α β γ δ

value ≈ 0.657 ≈ 0.780 ≈ 0.852 ≈ 0.893

We now give a tight bound for irrevocable priority algorithms. It is interesting
that there is no approximability difference between fixed order and adaptive
irrevocable priority algorithms.

6 Technically we can use an item number identifier to further distinguish items, but
by providing sufficiently many copies of an item the adversary can effectively achieve
what the statement claims.

6

Theorem 1. There is a fixed order irrevocable priority algorithm for SSP with
approximation ratio α, and every irrevocable priority algorithm for SSP has ap-
proximation ratio at most α.

The case for revocable priority algorithms is more interesting. The ability to
make revocable acceptances gives the algorithm a certain flexibility to “regret”.
The data items admitted into the solution are never “safe” until the termination
of the algorithm. Therefore, if there is enough “room”, it never hurts to accept
a data item no matter how “bad” it is, as we can always reject it later at any
time and with no cost. For the rest of the paper, we assume our algorithms will
take advantage of this property. We start with fixed order revocable priority
algorithm by giving two tight bounds for non-increasing order (i.e. items are
ordered so that u1 ≥ u2 . . . ≥ un) and non-decreasing order revocable priority
algorithms.

Theorem 2. There is a non-increasing order revocable priority algorithm for
SSP that has approximation ratio α, and every such algorithm has approximation
ratio at most α. (Note that the simple ordering here is different from the fixed
order irrevocable algorithm of Theorem 1.)

Theorem 3. There is a non-decreasing order revocable priority algorithm for
SSP that has approximation ratio β, and every such algorithm has approximation
ratio at most β.

The improvement using non-decreasing order is perhaps counter-intuitive 7

as one might think it is more flexible to fill in with small items at the end. Next,
we give a approximation bound for any fixed order revocable priority algorithm;
this exhibits the first approximation gap we are unable to close. The technique
used in the proof is based on a chain of possible item priorities. It turns out, in
order to achieve certain approximation ratio, some data items must be placed
before some other data items. This order relation is transitive and therefore, has
to be acyclic.

Theorem 4. No fixed order revocable priority algorithm of SSP can achieve
approximation ratio better than γ.

Proof. Let u1 = 0.2, u2 = 1

2
γ − 1

10
≈ 0.326, u3 = 0.5, and u4 = 0.8. For a data

item u, we denote by rank(u) its priority. There are four cases:

1. If rank(u4) > rank(u3), then the adversarial strategy is shown in Fig. 1.
If the algorithm terminates via state s1, then

ρ =
‖ALG‖

‖OPT‖
=

u3

u4

< γ.

If the algorithm terminates via state s2, then

ρ =
‖ALG‖

‖OPT‖
≤

u4

2u3

= u4 < γ.

2. If rank(u3) > rank(u2), then the adversarial strategy is shown in Fig. 2.

7 As another example, in the identical machines makespan problem, it is provably
advantageous to consider the largest items first.

7

s2

u3
⊕u3,⊖u4

⊖u3

u3u4

⊘

⊕u3,⊖u3

u4 2u3

s1

Fig. 1. Adversarial strategy for rank(u4) > rank(u3).

s1 ⊘

⊕u2,⊖u2⊕u2,⊖u3

⊖u2

u2 2u2u3 u3 u2 u2

s2

2u2

Fig. 2. Adversarial strategy for rank(u3) > rank(u2).

If the algorithm terminates via state s1, then

ρ =
‖ALG‖

‖OPT‖
=

2u2

u2 + u3

=
γ − 1

5

1

2
+ 1

2
γ − 1

10

=
10γ − 2

5γ + 4
< γ.

If the algorithm terminates via state s2, then

ρ =
‖ALG‖

‖OPT‖
≤

u2 + u3

3u2

=
1

2
+ 1

2
γ − 1

10

3

2
γ − 3

10

=
5γ + 4

15γ − 3
< γ.

3. If rank(u2) > rank(u1), then the adversarial strategy is shown in Fig. 3.

u1

⊘

⊕u1,⊖u1
⊘

⊕u1,⊖u1

⊘

⊕u1,⊖u1

⊕u1,⊖u2

⊖3u1

u12u2 u12u2 2u1

2u2 u1

⊕u1,⊖u2

s1 s2u2 2u1

2u2 u1 4u1 3u1

⊖2u1

⊕u1,⊖u2

⊖u1

Fig. 3. Adversarial strategy for rank(u2) > rank(u1).

If the algorithm terminates via state s1, then

ρ =
‖ALG‖

‖OPT‖
≤

2u1 + u2

u1 + 2u2

=
2

5
+ 1

2
γ − 1

10

1

5
+ γ − 1

5

=
1

2
γ + 3

10

γ
=

5γ + 3

10γ
= γ.

If the algorithm terminates via state s2, then

ρ =
‖ALG‖

‖OPT‖
≤

u1 + 2u2

5u1

= u1 + 2u2 =
1

5
+ γ −

1

5
= γ.

4. If rank(u1) > rank(u2) > rank(u3) > rank(u4), then the adversarial strat-
egy is shown in Fig. 4.

8

s1

u1 u3 u3 u4u2

⊖u4

⊕u3,⊖u2 ⊕u3,⊖u1

⊘

u2u1 u3 u4

s2

Fig. 4. Adversarial strategy for rank(u1) > rank(u2) > rank(u3) > rank(u4).

If the algorithm terminates via state s1, then

ρ =
‖ALG‖

‖OPT‖
=

u1 + u3

u2 + u3

=
1

5
+ 1

2

1

2
γ − 1

10
+ 1

2

=
7

5γ + 4
< γ.

If the algorithm terminates via state s2, then

ρ =
‖ALG‖

‖OPT‖
≤

u2 + u3

u1 + u4

= u2 + u3 =
1

2
γ −

1

10
+

1

2
< γ.

As a conclusion, no fixed order revocable priority algorithm of SSP can achieve
approximation ratio better than γ. This completes the proof. ⊓⊔

Finally, we study adaptive revocable priority algorithms. This is the strongest
class of algorithms studied in this paper and arguably represents the ultimate
approximation power of greedy algorithms (for packing problems). We show
that no such algorithm can achieve an approximation ratio better than δ, and
then we develop a relatively subtle algorithm having approximation ratio 0.8 in
Theorem 6, thus leaving another gap in what is provably the best approximation
ratio possible.

Theorem 5. No adaptive revocable priority algorithm of SSP can achieve ap-
proximation ratio better than δ.

Proof. Let u1 = 1

3
δ ≈ 0.298 and u2 = 0.5. For a given algorithm, we utilize

the following adversary strategy shown in Fig. 5. If the algorithm terminates via
state s1 or s2, then

ρ =
‖ALG‖

‖OPT‖
≤

3u1

2u2

= 3u1 = δ.

If the algorithm terminates via state s3 or s4, then

ρ =
‖ALG‖

‖OPT‖
≤

u1 + u2

3u1

=
1

3
δ + 1

2

δ
=

2δ + 3

6δ
= δ.

If the algorithm terminates via state s5, then

ρ =
‖ALG‖

‖OPT‖
=

2u1

u1 + u2

=
2

3
δ

1

3
δ + 1

2

=
4δ

2δ + 3
< δ.

In all three cases, the adversary forces the algorithm to have approximation ratio
no better than δ; this completes the proof. ⊓⊔

9

2u2

2u2

u1

u1

u1

u1

u2

u2

u2

u2

⊕u1

⊕u2

⊕u2

2u1

3u1

3u1

2u1

2u12u2 3u1

u1

u1 u2

2u2 2u1

u1 2u1

u2

⊕u1

⊕u1

⊕u1,⊖u2⊕u1,⊖u1⊕u1⊕u2,⊖u2 ⊕u2,⊖u1

⊕u2,⊖2u1 ⊕u2,⊖u2

⊖u2

⊖u2

⊖u2 ⊖u1

⊖u2

s1 s3 s5

s2s4

⊘

⊘

⊘ ⊘ ⊘

⊘

⊘

3u1

Fig. 5. Adversarial strategy for adaptive revocable priority algorithms.

Our 0.8 approximation adaptive priority algorithm is facilitated by a few simpli-
fying observations. First of all, since we are targeting a ratio of 0.8, the algorithm
can terminate whenever it detects an item u in the remaining input such that a
subset of (B⊕u) has total weight ≥ 0.8; such an item is adaptively given the high-
est priority and we call this a terminal condition. In our algorithm description,
it is understood that the algorithm first adaptively checks for such a condition,
and terminates if it is satisfied. Note that the running time of checking such
condition is bounded by a constant. Secondly, data items outside (0.2, 0.8) are
not needed for the analysis of the algorithm. That is, items in [0.8, 1] trivialize
the problem and items in (0, .2] can be considered at the end and added to B

(if necessary) to achieve the desired bound. Finally, we assume the current set
of accepted items B operates in one of the following four modes:

1. Queue Mode: In this mode, accepted items are discarded in the FIFO order
to accommodate the new data item u.

2. Queue_1 Mode: In this mode, the first accepted item is never discarded, the
rest data items are discarded in the FIFO order to accommodate the new
data item u.

3. Stack Mode: In this mode, accepted items are discarded in the FILO order
to accommodate the new data item u.

4. Optimum Mode: In this mode, accepted items are discarded to maximize ‖B‖;
the new data item u may also be discarded for this purpose.

We use Bmode to represent the operational mode of B. The algorithm can switch
among these four modes during the processing of data items; we do not explicitly
mention in the algorithm what data items are being discarded since it is well-
defined under its operational mode.

The algorithm uses an ordering of data items which is determined by its
distance to 0.3, i.e., the closer a data item to 0.3, the higher its priority is,

10

breaking tie arbitrarily. Note that by the first observation given earlier, this
ordering may be interrupted if at any point of time a terminal condition is
satisfied, so this is not a fixed order priority algorithm. The algorithm is described
below.

Algorithm ADAPTIVE

1: B := ∅;
2: if the first data item is in (0.2, 0.35) then

3: Bmode := Queue;
4: else

5: Bmode := Queue_1;
6: end if

7: while I contains a data item ∈ (0.2, 0.4] do

8: let u be the next data item in I;
9: I := I ⊖ u;

10: accept u;
11: end while

12: if B contains exactly three data items and all are ∈ (0.2, 0.3] then

13: Bmode := Stack;
14: else

15: Bmode := Optimum;
16: end if

17: while I contains a data item ∈ (0.4, 0.8) do

18: let u be the next data item in I;
19: I := I ⊖ u;
20: accept u;
21: end while

Theorem 6. Algorithm ADAPTIVE achieves approximation ratio 0.8 for SSP.

It is seemingly a small step from a 0.78 algorithm to a 0.8 algorithm, but
the latter algorithm requires a substantially more refined approach and detalied
analysis. The merit, we believe, in studying such a class of “simple algorithms”
is that the simplicity of the structure suggests algorithmic ideas and allows a
careful analysis of such algorithms. Limiting ourselves to simple algorithmic
forms and exploiting the flexibility within such forms may very well give us a
better understanding of the structure of a given problem and a better chance to
derive new algorithms.

4 Conclusion

We analyze different types of priority algorithms for SSP leaving open two ap-
proximability gaps, one for fixed order and one for adaptive revocable priority
algorithms. It is interesting that such gaps and non-trivial algorithms exist for
such a simple class of algorithms and such a basic problem as SSP. We opti-
mistically believe that surprisingly good algorithms can be designed within the

11

revocable priority framework for problems which are currently not well under-
stood.

References

1. Angelopoulos, S. and Borodin, A.: On the power of priority algorithms for facility
location and set cover. Algorithmica 40 (2004) 271–291

2. Arrow, K.: Social Choice and Individual Values. Wiley (1951)
3. Baptiste, P.: Polynomial time algorithms for minimizing the weighted number of

late jobs on a single machine with equal processing times. Journal of Scheduling 2

(1999) 245–252
4. Bar-Noy, A., Guha, S., Naor, J. and Schieber, B.: Approximating throughput in

real-time scheduling. SIAM Journal of Computing 31 (2001) 331–352
5. Borodin, A., Nielsen, M., and Rackoff C.: (Incremental) priority algorithms. Algo-

rithmica 37 (2003) 295–326
6. Borodin, A., Boyar, J., and Larsen K.: Priority algorithms for graph optimization

problems. Lecture Notes in Computer Science 3351 (2005) 126–139
7. Chrobak, M., Durr, C., Jawor, W., Kowalik, L. and Kurowski, M. On scheduling

equal length jobs to maximize throughput. To appear in Journal of Scheduling.
8. Chuzhoy, J., Ostrovsky, R. and Rabani, Y.: Approximation algorithms for the job

interval scheduling problem and related scheduling problems. In Proceedings of 42nd
Annual IEEE Symposium of Foundations of Computer Science (2001) 348–356

9. Davis, S. and Impagliazzo, R.: Models of greedy algorithms for graph problems. In
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(2004) 381–390

10. Erlebach, T. and Spieksma, F.: Interval selection: Applications, algorithms, and
lower bounds. Journal of Algorithms 46 (2003) 27–53

11. Garey, M. and Johnson, D.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman (1979)

12. Horn, S.: One-pass algorithms with revocable acceptances for job interval selection.
Master’s thesis, University of Toronto (2004)

13. Ibarra, O. and Kim, C.: Fast approximation algorithms for the knapsack and sum
of subset problem. Journal of the ACM 22 (1975) 463–468

14. Iwama, K. and Taketomi, S.: Removable online knapsack problems. Lecture Notes
in Computer Science 2380 (2002) 293–305

15. Kellerer, H., Mansini, R., Pferschy, U. and Speranza, M.: An efficient fully polyno-
mial approximation scheme for the subset-sum problem. Journal of Computer and
System Science 66 (2003) 349–370

16. Martello, S. and Toth, P.: Knapsack Problems: Algorithms and Computer Imple-
mentations. John Wiley and Sons (1990)

17. Moore, J.: An n-job, one machine sequencing algorithm algorithm for minimizing
the number of late jobs. Management Science 15 (1968) 102–109

18. Regev, O.: Priority algorithms for makespan minimization in the subset model.
Information Processing Letters 84 (2002) 153–157

19. Ye, Y. and Borodin, A.: Priority algorithms for the subset-sum problem. Technical
Report, University of Toronto (2007) http://www.cs.toronto.edu/˜bor

