Skip to main content
Log in

Finding nucleolus of flow game

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We study the algorithmic issues of finding the nucleolus of a flow game. The flow game is a cooperative game defined on a network D=(V,E;ω). The player set is E and the value of a coalition SE is defined as the value of a maximum flow from source to sink in the subnetwork induced by S. We show that the nucleolus of the flow game defined on a simple network (ω(e)=1 for each eE) can be computed in polynomial time by a linear program duality approach, settling a twenty-three years old conjecture by Kalai and Zemel. In contrast, we prove that both the computation and the recognition of the nucleolus are \(\mathcal{NP}\) -hard for flow games with general capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aumann RJ, Maschler M (1985) Game theoretic analysis of a bankruptcy problem from the Talmud. J Econ Theory 36:195–396

    Article  MATH  MathSciNet  Google Scholar 

  • Brânzei R, Solymosi T, Tijs SH (2003) Strongly essential coalitions and the nucleolus of peer group games. CentER Discussion Paper 2003-19

  • Deng X, Papadimitriou CH (1994) On the complexity of cooperative solution concepts. Math Oper Res 19:257–266

    Article  MATH  MathSciNet  Google Scholar 

  • Deng X, Ibaraki T, Nagamochi H (1999) Algorithmic aspects of the core of combinatorial optimization games. Math Oper Res 24:751–766

    Article  MATH  MathSciNet  Google Scholar 

  • Deng X, Fang Q, Sun X (2006) Finding nucleolus of flow game. In: Proceedings of the 17th annual ACM-SIAM symposium on discrete algorithms (SODA 2006), pp 124–131

  • Edmonds J (1965) Paths trees, and flowers. Can J Math 17:449–467

    MATH  MathSciNet  Google Scholar 

  • Faigle U, Kern W (1995) Partition games and the core of hierarchically convex cost games. Universiteit Twente, faculteit der toegepaste wiskunde, Memorandum, No. 1269

  • Faigle U, Kern W, Kuipers J (1998) Computing the nucleolus of min-cost spanning tree games is \(\mathcal{NP}\) -hard. Int J Game Theory 27:443–450

    Article  MATH  MathSciNet  Google Scholar 

  • Faigle U, Kern W, Kuipers J (2001) On the computation of the nucleolus of a cooperative game. Int J Game Theory 30:79–98

    Article  MATH  MathSciNet  Google Scholar 

  • Fang Q, Zhu S, Cai M, Deng X (2002) On computational complexity of membership test in flow games and linear production games. Int J Game Theory 31:39–45

    Article  MATH  MathSciNet  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of \(\mathcal{NP}\) -completeness. Freeman, San Francisco

    Google Scholar 

  • Goemans MX, Skutella M (2004) Cooperative facility location games. J Algorithms 50:194–214

    Article  MATH  MathSciNet  Google Scholar 

  • Granot D, Maschler M, Owen G, Zhu WR (1996) The kernel/nucleolus of a standard tree game. Int J Game Theory 25:219–244

    Article  MATH  MathSciNet  Google Scholar 

  • Granot D, Granot F, Zhu WR (1998) Characterization sets for the nucleolus. Int J Game Theory 27:359–374

    Article  MATH  MathSciNet  Google Scholar 

  • Grötschel M, Lovász L, Schrijver A (1993) Geometric algorithms and combinatorial optimization. Springer, Berlin

    MATH  Google Scholar 

  • Huberman G (1980) The nucleolus and the essential coalitions. In: Analysis and optimizations of systems. Springer, Berlin, pp 416–422

    Chapter  Google Scholar 

  • Kalai E, Zemel E (1982a) Totally balanced games and games of flow. Math Oper Res 7:476–478

    Article  MATH  MathSciNet  Google Scholar 

  • Kalai E, Zemel E (1982b) Generalized network problems yielding totally balanced games. Oper Res 30:498–1008

    Article  Google Scholar 

  • Kern W, Paulusma D (2003) Matching games: the least core and the nucleolus. Math Oper Res 28:294–308

    Article  MATH  MathSciNet  Google Scholar 

  • Kopelowitz A (1967) Computation of the kernels of simple games and the nucleolus of n-person games. RM-31, Math Dept, The Hebre University of Jerusalem

  • Kuipers J, Solymosi T, Aarts H (2000) Computing the nucleolus of some combinatorially structured games. Math Program 88:541–563

    Article  MATH  MathSciNet  Google Scholar 

  • Lemaire J (1984) An application of game theory: cost allocation. ASTIN Bull 14(1):61–81

    Google Scholar 

  • Malkevitch J (2005) Resolving bankruptcy claims. Feature column, monthly essays on mathematical topics, AMS, March 2005. http://www.ams.org/featurecolumn/index.html

  • Megiddo N (1978) Computational complexity and the game theory approach to cost allocation for ta tree. Math Oper Res 3:189–196

    Article  MATH  MathSciNet  Google Scholar 

  • Owen G (1975) On the core of linear production games. Math Program 9:358–370

    Article  MATH  MathSciNet  Google Scholar 

  • Potters J, Reijinierse H, Biswas A (2006) The nucleolus of balanced simple flow networks. Games Econ Behav 54:205–225

    Article  MATH  Google Scholar 

  • Raghavan TES, Solymosi T (1998) An algorithm to locate the nucleolus prices for a real estate game. GPI XII

  • Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM J Appl Math 17:1163–1170

    Article  MATH  MathSciNet  Google Scholar 

  • Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency. Springer, Berlin

    MATH  Google Scholar 

  • Shapley LS, Shubik M (1972) The assignment game. Int J Game Theory 1:111–130

    Article  MathSciNet  Google Scholar 

  • Solymosi T, Raghavan TES (1994) An algorithm for finding the nucleolus of assignment games. Int J Game Theory 23:119–143

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhi Fang.

Additional information

Supported by NCET, NSFC (10771200), a CERG grant (CityU 1136/04E) of Hong Kong RGC, an SRG grant (7001838) of City University of Hong Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, X., Fang, Q. & Sun, X. Finding nucleolus of flow game. J Comb Optim 18, 64–86 (2009). https://doi.org/10.1007/s10878-008-9138-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-008-9138-0

Keywords

Navigation