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Abstract. The problem of interest is covering a given point set with
homothetic copies of several convex containers C1, . . . , Ck, while the ob-
jective is to minimize the maximum over the dilatation factors. Such k-
containment problems arise in various applications, e.g. in facility
location, shape fitting, data classification or clustering. So far most at-
tention has been paid to the special case of the Euclidean k-center prob-
lem, where all containers Ci are Euclidean unit balls. New developments
based on so-called core-sets enable not only better theoretical bounds
in the running time of approximation algorithms but also improvements
in practically solvable input sizes. Here, we present some new geomet-
ric inequalities and a Mixed-Integer-Convex-Programming formulation.
Both are used in a very effective branch-and-bound routine which not
only improves on best known running times in the Euclidean case but
also handles general and even different containers among the Ci.

Keywords: approximation algorithms, branch-and-bound, computa-
tional geometry, geometric inequalities, containment, core-sets, k-center,
diameter partition, SOCP, 2-SAT.

1 Introduction

The issue of the following is the k-containment problem, that is covering a given
point set with homothetic copies of several convex containers C1, . . . , Ck, while
the objective is to minimize the maximum over the dilatation factors used in the
covering. k-Containment problems arise in various applications, for instance in
facility location, shape fitting, data classification or clustering (see [2], [18], [31],
and [35] for several examples).

The k-center problem (the k-containment problem with identical containers)
is known to be NP-complete in general dimensions even when k ≥ 2 and all
containers are Euclidean unit balls (the Euclidean k-center problem) or k ≥ 3
and all containers are l∞ unit cubes [29]. Many approximation algorithms have
been suggested for solving k-center problems (see [1] and the surveys [2], [31]).
In many papers, the aim is improving complexity bounds and the presented
algorithms are mostly of theoretical value. For practical purposes many purely
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heuristic approaches exist (see e.g. [3], [19], [23], or [35]). Although they behave
well for many inputs, they fail to provide provable guarantees.

So far most attention has been paid to the Euclidean k-center problem. Until
recently it was believed that even in this case there is little hope to solve bigger
instances, i.e. n ≥ 3 or k ≥ 3 (see e.g. [31]). Therefore, the planar Euclidean
2-center problem has been studied separately, for instance in [13], [14], [21],
[24], and [32]. Recent progress is due to so-called core-sets [11], which gain a
polynomial time approximation scheme (PTAS) for Euclidean k-center. However,
the proposed full enumeration of all partitions of possible core-sets quickly causes
non-computability in practice, even for moderate approximation errors. A first
simple branch-and-bound (B&B) algorithm was suggested in [27].

Nevertheless, non-Euclidean containers are of practical interest, too. For in-
stance in data analysis, the goal is in finding “similar” data points. Usually, there
is no inherent reason why the 2-norm should be the better choice to express rela-
tions between data points than e.g. the 1- or ∞-norm. This is noteworthy as the
polytopal norms often simplify calculations, e.g. in pattern recognition [28]. Spe-
cial cases of rectilinear k-center problems have been addressed in [6] and [22]. In
facility location (see e.g. Sect. 6) and shape fitting (see e.g. [9]) even non-symmetric
and/or different container shapes may occur. Our algorithms allow both, general
shapes and different Ci’s within one instance (see Fig. 2 and 3 for examples).

Sections 2 and 3 address the basic definitions and a fundamental B&B pro-
cedure with good practical performance. In Sect. 4, a Mixed Integer Convex
Programming formulation is given and its relaxation is used for further per-
formance improvements. Especially if k = 2, further progress is achieved by
diameter partitioning algorithms. These are described in Sect. 5, also including
a couple of new geometric inequalities guaranteeing good bounds and a 2-SAT

formulation used for the 2-containment problem with different containers. Both
Sects. 2 and 3 are enhanced by some examples and experiments.1 We stress that
the new methods apply to a wider class of problems, therefore state them in full
generality and provide an example in Sect. 6 indicating the use of the extension.

2 Problem Formulation

A container C is a full dimensional, convex, and compact subset of R
n with

0 ∈ int(C). For any container C and any x ∈ R
n let ‖x‖C := minρ≥0{x ∈ ρC}.

Furthermore, for any point set P ⊂ R
n let R(P, C) := minc∈Rn maxp∈P ‖p− c‖C

and d(P, C) := maxp,q∈P R({p, q}, C).
For any container C ⊂ R

n, let sC denote the Minkowski symmetry of C, that
is the maximal dilatation factor ρ such that some translate of −ρC is contained
in C, or for short sC = 1/R(−C, C). Obviously, sC ≤ 1, and we say that C is
symmetric if and only if sC = 1. In the latter case C can be translated such
1 The experiments are restricted to exemplary tests with balls and cubes as containers,

in order to allow valuation of the running times. Note that our results may be more
important for other container shapes, where no specialized methods such as the
core-set results apply.
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that C = −C, i.e. C is 0-symmetric. Furthermore, sC ≥ 1/n follows from John’s
theorem [25] (and can easily be shown directly).2

If C is 0-symmetric, ‖ · ‖C : R
n → R denotes the Minkowski norm with

unit ball C. In this case, R(P, C) and d(P, C) denote the outer radius and half-
diameter of P with respect to ‖ · ‖C . Furthermore, if P and C are symmetric,
R(P, C) = d(P, C) [16]. However, be aware that ‖x‖C 	= ‖ − x‖C for some
x ∈ R

n if C 	= −C. Now, the problem of interest can be stated. Let k ∈ N, and
for 1 ≤ i ≤ k, let Cn

i be families of n-dimensional containers and Pn the family
of finite point sets in R

n.

Minimal k-Containment Problem under Homothetics(k-MCPP
Hom)

Input: n ∈ N, m ∈ N, P = {p1, . . . , pm} ⊂ Pn, C1 ∈ Cn
1 , . . . , Ck ∈ Cn

k .
Task: min ρ, s. th. P = {p1, . . . , pm} ⊂

⋃
1≤i≤k(ci + ρCi), c1, . . . , ck ∈ R

n.

The optimal value ρ is denoted by R(P, C1, . . . , Ck). If k = 1, we get the
minimal 1-containment problem under homothetics, which indeed computes the
outer radius R(P, C) of P with respect to the (non-symmetric) norm ‖·‖C . When
solving k-containment problems for general containers C, many and therefore
fast computations of R(P, C) and especially R({p, q}, C) with {p, q} ⊂ P are
needed. An overview on good solution or approximation techniques for different
representations of the container C is given in [10]. k-MCPP

Hom becomes the well
known k-center problem when C = C1 = . . . = Ck:

k-Center Problem

Input: n ∈ N, m ∈ N, P = {p1, . . . , pm} ∈ Pn, C ∈ Cn.
Task: min ρ, s. th. ∀j ∈ {1, . . . , m} ∃i ∈ {1, . . . , k} : ‖pj − ci‖C ≤ ρ,

c1, . . . , ck ∈ R
n.

In this case the optimal radius ρ is denoted by Rk(P, C).

3 A Core-Set Based Branch-and-Bound Scheme

In this section, we describe a basic core-set based B&B algorithm for k-MCPP
Hom.

3.1 Core-Sets

Let S ⊂ P such that all points of S are assigned consistently with an optimal
solution of the full k-MCPP

Hom instance. For each of the k parts Si ⊂ S, let
ci denote a center in an optimal solution of the corresponding 1-containment
problem. Let ρ = maxi R(Si, Ci). If for all p ∈ P an index i exists such that
p ∈ ci + (1 + ε)ρCi, we have

ρ ≤ R(P, C1, . . . , Ck) ≤ (1 + ε)ρ
2 Note that sC of vertex- or facet-presented polytopes C can be computed via linear

programming [17].



New Algorithms for k-Center and Extensions 67

implying an ε-approximate solution of k-MCPP
Hom. Any such S is called an ε-

core-set of P (with respect to C1, . . . , Ck).
In [11] it was shown that if all Ci are Euclidean, the sizes of the core-sets

depend only on ε and neither on n nor m. Helly’s theorem [20] implies the
existence of core-sets whose size is independent of the number of points in P
for all container shapes. However, dimension independence does not hold true
for general (non-symmetric) containers [10].3 Furthermore, one should note that
in l∞-spaces every diametrical pair of points is a 0-core-set (see Sect. 5.1), but
that the algorithm as proposed in [11] may construct a core-set of size depending
on n [10].

3.2 Branch-and-Bound Scheme

At each node in the B&B tree, we regard a core-set S ⊂ P already partitioned
into clusters Si which have to be covered by homothetic copies of the containers
Ci. For the branching, a point p∗ ∈ P \ S not (yet) covered is chosen and
added to each of the sets Si consecutively. We choose the point p maximizing
mini ‖p − ci‖Ci

4, or, in case the maximum is too expensive to compute, any
point p with ‖p − ci‖Ci bigger than the current (1 + ε)maxi ρi. The remaining
points play no further role in this step of the basic B&B procedure. (This will
be improved in Sect. 4.)

For the branching, the clusters are sorted according to the distances ‖p−ci‖Ci

and then p∗ is assigned to the nearest cluster first. With this greedy-like strategy,
good upper bounds are computed at an early stage of the algorithm, resulting
in fast truncation of many branches and shorter overall running time. Solving
the 1-center instances for each Ci and its assigned core-set points generates first
lower bounds on the optimal value for the subtree below the current node.5

The algorithm returns an ε-core-set S ⊂ P consisting of the points chosen
at the nodes of an optimal branch, partitioned into k subsets S1, . . . , Sk, corre-
sponding to the assignment of the points to the containers C1, . . . , Ck.

Algorithm 16

initialize: set Si = ∅, ρi = 0, ci arbitrarily for all i,
and ρ̄ to an upper bound for R(P, C1, . . . , Ck)

k-containment(Si, ρi, ci):
update the global upper bound ρ̄
compute δ = maxp∈P\⋃

Si
mini(‖p − ci‖Ci)

let p∗ the point where the maximum is attained

3 In case of general symmetric containers the existence of dimension independent ε-
core-sets is open.

4 In [27] p∗ maximizes mini(‖p − ci‖Ci − ρi), but our choice yields better results.
5 It is recommendable to compute the ‖.‖Ci -distances between the new point and the

points already assigned to Si first to prevent unnecessary radius computations.
6 The algorithm is written down recursively for better readability. However, to gain

good running times, recursion in implementations should be avoided.
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if (1 + ε)maxi ρi ≥ δ: return
else: sort cluster indices descending according to ‖p∗ − ci‖Ci

for j = i1, . . . , ik:
recompute cj and ρj for Sj = Sj ∪ p∗

if maxi ρi ≤ ρ̄(1 + ε):
k-containment(Si, ρi, ci)

return the best Si, ρi, and ci found

Testing the (1 + ε)-containment condition at each node of the tree yields an
approximation algorithm with a running time of O(khnm), where h is the size
of a maximal core-set constructed during the algorithm. It follows from [11]
that for Euclidean k-center this B&B algorithm is a PTAS as h = O(k/ε2) in
this case.

If an upper bound for the optimal radius is known, ρ̄ can be initialized ac-
cordingly. Since the first k steps of Algorithm 1 (i.e. when each cluster contains
exactly one point), match the first k steps of the greedy algorithm in [15] (as-
suming that the distance to an empty cluster is set to zero), in the symmetric
case an approximation factor of at least 2 can be guaranteed at that stage.

According to [27], the implementation reported there is the first to practically
solve huge k-center instances. The experiments in that paper show that the B&B
algorithm used performs much better on practical data sets than the predicted
worst case running times suggest. It is concluded that in dimensions 2 and 3,
Euclidean k-center is practical for ε ≥ 0.01 and k ≤ 4, whereas computations
in 3-space are significantly more expensive than in 2-space. The latter is caused
in the fact, that though the upper bounds on core-set sizes are dimension inde-
pendent, in practical computations the core-set sizes in lower dimensions are far
from the upper bounds and grow noticeably with the dimension (and so do the
running times of the B&B procedure). However, it is also reported that “some
of the data sets [...] solved in 3D [...], ran for almost a week on an Intel Ita-
nium system”. Our implementation allows solving Euclidean k-center instances
with bigger input sizes even in higher dimensions and for greater k values within
some hours (at most) on an Intel Core 2 system7. Our realization of Algorithm
1 already substancially improves the running times as reported in [27] and fur-
ther improvements are obtained by the methods presented in the following. In
addition to that, our methods apply to general k-containment problems.

4 Convex Relaxation

In this section, a version of k-MCPP
Hom with additional information is considered.

It is assumed that the correct clusters are known for some of the points in P .
This is a natural hypothesis in the context of a B&B scheme and enhances the
chances to compute good upper and lower bounds for the optimal solution.

Especially good lower bounds are crucial for the performance of a B&B pro-
cedure. Whereas Algorithm 1 computes local lower bounds by determining the
7 Both implementations use Matlab and comparable SOCP solvers.



New Algorithms for k-Center and Extensions 69

radii of the current clusters, we now propose lower bounds taking both, assigned
and unassigned points, into account. The new bounds are at least as good as the
old ones, but usually much better.

4.1 A Mixed-Integer-Convex Program

Recall that the core-set S = S1 ∪ . . . ∪ Sk denotes the assigned subset of P ,
i.e. Si ⊂ ci + ρCi for some ci ∈ R

n and ρ > 0, i = 1, . . . , k. Now, let S0 ⊂ P \ S
denote some of the unassigned points. Then the k-MCPP

Hom with assigned points
in S1, . . . , Sk 	= ∅ can be formulated as a mixed integer convex program with
variables ρ, ci and λij ∈ {0, 1}. For this purpose for each pj ∈ S0 and each
possible cluster Si, a reference point qij ∈ conv(Si) is fixed (see Sect. 4.2 for
strategies for choosing these points).

min ρ
‖pj − ci‖Ci ≤ ρ ∀pj ∈ Si, i = 1, . . . , k

‖λijpj − ci + (1 − λij)qij‖Ci ≤ ρ ∀pj ∈ S0, ∀i = 1, . . . , k
k∑

i=1
λij = 1 ∀pj ∈ S0

λij ∈ {0, 1} ∀pj ∈ S0, ∀i = 1, . . . , k

(1)

So, whenever λij = 0 only the reference point qij has to be covered, a redun-
dant condition. In contrast, pj actually has to be contained in the homothetic
copy of Ci if λij = 1.

4.2 Relaxation

Relaxing the {0, 1}-condition on the multipliers λij yields a convex program,
providing a lower bound for R(P, C1, . . . , Ck). A possible interpretation of the
relaxation is including not the point pj itself but a point on the line section
between pj and qij for all i, whereas the constraint

∑k
i=1 λij = 1 enforces that

not all of these points can be close to the reference points (see Fig. 1).
Picking qij such that the distance between qij and pj is small gives the best

bounds. However, the projection of pj onto the convex hull of Si causes elongation
of overall computing time. Balancing between fast computations and a good
choice of qij , the most successful strategy seems choosing qij as the point in Si

closest to pj .
For polytopal Ci, the relaxation of (1) is a Linear Program; for Euclidean

containers, we get a Second-Order-Cone Program (SOCP). Many other cases
can be cast as SOCPs, too, for instance when the containers are intersections or
Minkowski sums of Euclidean balls and polytopes (compare [10]).

Obviously, the more points from P \S belong to S0, the better the lower bound
on R(P, C1, . . . , Ck) will be. However, as each p ∈ S0 results in at least k − 1
additional variables and constraints, the relaxation of (1) is practical only when
S0 is not too big. Experiments show that even very small sets S0 usually provide
enough potential to reduce the number of nodes in the B&B tree significantly
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p

S1

S2

q1 q2

λ1p + (1 − λ1)q1
λ2p + (1 − λ2)q2

Fig. 1. The geometric meaning of the relaxed program. Optimal cluster radii with
(black) and without (red resp. blue) considering the unassigned point p.

(compare Table 1, where 5 points have been chosen). There are different possible
strategies to select points for S0, e.g. randomly, maximizing the minimal distance
to a current cluster, maximizing the distance to the latest core-set point, or
maximizing the minimal distance to the unassigned points already chosen (which
is what we do in Table 1). The solution of the convex program provides not only
lower bounds. Upper bounds can easily be obtained by assigning the points
pj ∈ P \ S to the clusters, e.g by mini ‖pj − ci‖Ci or maxi λij if p ∈ S0.

The test results in Table 1 show that the MISOCP-relaxation significantly
reduces the size of the B&B scheme for Euclidean k-center. Since solving the
convex program at each node of the B&B tree is expensive, the improvement in
the running time is still considerable but not as big as in the number of nodes.
Further speedup should be possible by advanced strategies for the MISOCP-
relaxation. In particular, we expect that improvements can be achieved through
more elaborate techniques for determining the nodes at which to solve the convex
program, the accuracy to which it should be solved, and the points in |S0|.
Moreover, practical solutions may be accelerated significantly by replacing the
pure B&B algorithm by some kind of branch-and-cut routine.

5 Diameter Partitioning

Another possibility to improve the performance of Algorithm 1 is to consider
R({p, q}, Ci) for all pairs of points {p, q} ⊂ P , and all i = 1, . . . , k. The distances
between point pairs provide information about optimal partitionings which can
be used to compute bounds for R(P, C1, . . . , Ck). The approach is useful espe-
cially when k = 2 and R({p, q}, Ci) can easily be computed. Surely, computing
all pairwise distances is quadratic in the number of input points, so the approach
is practical mainly for moderate point sets P .

5.1 Identical Containers

The information about the pairwise distances is captured in the ρ-distance graph:

Definition 1. For every ρ > 0 we call the graph G(ρ) = (P, E) with edges for
every pair {p, q} with R({p, q}, C) > ρ the ρ-distance graph of (P, C).
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Table 1. The B&B algorithm with and without SOCP bounds for Euclidean k-center
and an approximation error of 0.01. The 3D geometric model data sets are comparable
to the ones used in [27]. The 5D “rand. box” data sets refer to equally distributed points
within boxes with randomly scaled axes. (We assume that this is more appropriate for
k-center problems than, e.g., equally distributed points within the unit cube.) Sizes
of the B&B tree and running times (in seconds) are listed – in case of the random
data sets, the mean over samples of 20. We use a 2.0 GHz Intel Core 2 system running
Matlab R2006B and SeDuMi [30], [33]. The code for Euclidean distance computations
is provided by [12].

pure B&B B&B with relaxed MISOCP
data set m n k nodes leaves time nodes leaves time
cat 352 3 4 10353 2138 505.6 2380 144 207.7
shark 1744 3 4 649 126 26.1 225 27 13.6
seashell 18033 3 4 12718 2365 925.6 3266 479 371.0
dragon 437645 3 3 341 96 154.9 161 43 89.2
rand. box 1000 5 3 889.3 57.8 44.6 623.9 35.7 45.6
rand. box 1000 5 4 20919.9 3249.8 1272.6 6544.0 238.4 611.2
rand. box 10000 5 3 2595.1 167.6 166.6 1577.7 84.3 139.0
rand. box 10000 5 4 32611.9 3021.6 2273.7 13768.3 808.1 1459.4

The next algorithm computes the maximal ρ such that G(ρ) is k-colorable. Find-
ing a k-coloring of G(ρ) corresponds to partitioning the point set P into k subsets,
where no pair of points with R({p, q}, C) > ρ lies within one set.

Algorithm 2
for all l pairs {p, q} of points in P :

compute ρj = R({p, q}, C), 1 ≤ j ≤ l
label such that ρ1 ≥ . . . ≥ ρl

for j = 1, . . . , l:
if G(ρj) is not k-colorable

break
set ρ = ρj

return ρ

Deciding whether a graph is k-colorable is itself a hard problem if k ≥ 3 and
Algorithm 2 may not be polynomial. Still, good bounds may be obtained from
heuristic coloring algorithms.

If k = 2, Algorithm 2 can be implemented by maintaining a 2-coloring of G(ρ)
while successively inserting new edges. One should note that since G(ρ) may be
not connected, more than two labels (or colors) may be necessary. When an edge
is inserted which is not connected to the subgraph already built, a new pair of
labels is created. When an edge joins two previously disconnected components,
the relevant labels are merged.

Depending on the shape of the container, different approximation qualities for
the underlying k-center problem can be guaranteed.
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Parallelotopes. If (and only if) C is a parallelotope (e.g. a unit cube, if ‖·‖C =
‖ · ‖∞) the Helly dimension of C is 1; that is, R(P, C) = d(P, C) for all P [8,
14.3]. This implies that P can be packed into k translates of ρC if and only if
G(ρ) is k-colorable [4], [29]. Hence, Algorithm 2 solves the k-center problem for
parallelotopes8 exactly.

Note that solving the 2-center problem in l∞ via diameter partitioning is not
optimal. A faster algorithm is proposed in [5]. It computes a minimal axis-parallel
enclosing box for P and determines the position of the two cubes in this box by
maximizing consecutively in the directions of the n coordinate axes. However,
Algorithm 2 has the advantage of being adaptable to general 2-containment
problems, whereas the algorithm in [5] is limited to two identical parallelotopal
containers.

Euclidean Containers. We get the following for Euclidean containers:

Lemma 1. Algorithm 2 computes a
√

2n
n+1 -approximation of Rk(P, C) for any

point set P and any ellipsoid C.

Proof. Surely, d(Pi, C) ≤ Rk(P, C) for all Pi when P1, . . . , Pk is a partition of P
such that every two points joint by an edge in the final distance-graph of Algo-
rithm 2 are in different Pi. If P ∗

1 , . . . , P ∗
k is an optimal partition, maxi R(Pi, C) ≥

maxi R(P ∗
i , C) = Rk(P, C). Hence, by Jung’s inequality [26],

max
i

d(Pi, C) ≤ Rk(P, C) ≤ max
i

R(Pi, C) ≤ max
i

√
2n

n + 1
d(Pi, C).

In computations, an incomplete partition can be extended in a greedy manner
upon all points in P . Besides the lower bound output ρ of Algorithm 2, an upper
bound ρ̄ = maxi R(Pi, C) is obtained. Surely, this upper bound is often much
smaller than

√
2n/(n + 1)ρ in practice (compare Table 2).

General, Identical Containers. For general containers C, the bounds are
weaker, but only slightly when C is (almost) symmetric.

Lemma 2. Algorithm 2 computes an n
n+1 (1+ 1

sC
)-approximation of the optimal

radius Rk(P, C) for any point set P ⊂ R
n and any container C ⊂ R

n.

Proof. Following the proof of Lemma 1 it suffices to show that R(P, C) ≤
n

n+1 (1 + 1
sC

)d(P, C) for any point set P . Suppose d(P, C) = 1, i.e. every two
points in P can be covered by a translate of C. It easily follows that every two
points of P − P can be covered by C − C, and since both P − P and C − C are
symmetric R(P − P, C − C) = d(P − P, C − C) = 1 [16]. Since (1 + sP )P can
be covered by a translate of P − P and C − C by a translate of (1 + 1

sC
)C, we

conclude with sP ≥ 1
n that P is contained in a translate of n

n+1 (1 + 1
sC

)C.

8 When the parallelotope is given in H-representation C =
⋂

i{x : aT
i x ≤ 1}, and

especially for l∞-containment, R({p, q}, C) = maxi aT
i (p−q) can easily be computed.
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Remark 1. a) If C is symmetric, a well known inequality about the ratio between
the outer radius and the diameter of convex sets (or point sets) in arbitrary
Minkowski spaces [7] can be obtained as a corollary of Lemma 2:

R(P, C)
d(P, C)

≤ 2n

n + 1
.

b) If Cn is a small subset of the set of convex bodies in R
n, like the parallelotopes

or ellipsoids (or – maybe even non-symmetric – sets close to these shapes)
in Sects. 5.1 and 5.1, the approximation error may be much better than
predicted by Lemma 2.

c) If a better guarantee on lower bounds on the Minkowski symmetry of the
input point set P can be given, the bounds in Lemma 2 can be improved.

5.2 Different Containers

Regarding the general k-MCPP
Hom, two points p and q which are far apart in

the (non-symmetric) norm induced by one container may be close in the norm
induced by another. Definition 1 has to be adapted.

Definition 2. Let G = (V, E1, . . . , Ek) be an (edge-colored) multigraph with
vertex set V and edge sets E1, . . . , Ek. A generalized k-coloring of G is a partition
V1, . . . , Vk of the vertices V such that for any {v, w} ∈ Ei it follows {v, w} 	⊂ Vi,
i = 1, . . . , k.

Again, we can define the ρ-distance graph:

Definition 3. For every ρ > 0 the ρ-distance graph of (P, C1, . . . , Ck) is the
edge-colored multigraph G(ρ) = (P, E1, . . . , Ek) with edges in Ei for every pair
{p, q} with R({p, q}, Ci) > ρ.

Now a solution of the generalized k-coloring problem for the ρ-distance graph
G(ρ) implies again that ρ is a lower bound for R(P, C1, . . . , Ck).

Algorithm 3
for all l combinations of pairs {p, q} of points in P and i ∈ {1, . . . , k}:

compute ρj = R({p, q}, Ci), 1 ≤ j ≤ l
label such that ρ1 ≥ . . . ≥ ρl

for j = 1, . . . , l:
if G(ρj) has no valid generalized k-coloring

break
set ρ = ρj

return ρ

Respecting the edge colors seems to make generalized k-coloring more difficult
than usual coloring. Yet, if k = 2, the problem can still be solved efficiently:

Lemma 3. The generalized 2-coloring problem can be reduced to 2-SAT.
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Proof. By assigning boolean variables zi, where zi ⇔ (vi ∈ Vi), the generalized
2-coloring instance (V, E1, E2) is equivalent to the following instance of 2-SAT:

∧

(pi,pj)
E1-edges

(¬zi ∨ ¬zj) ∧
∧

(pi,pj)
E2-edges

(zi ∨ zj).

A valid assignment of a 2-SAT instance (or evidence that no valid assignment
exists) can be found in linear time (in the size of G(ρ)), see, e.g., [34].

Any valid assignment of the variables zi in the corresponding 2-SAT for-
mula yields a partition into two sets P1 and P2 with the following property:
R({p, q}, Ci) ≤ ρ, i = 1, 2 for any pair of points p, q ∈ Si.

Lemma 4. Algorithm 3 computes

a) an n
n+1 (max1≤i≤k( 1

sCi
) + 1)-approximation for the general k-MCPP

Hom.
b) a 2n

n+1 -approximation for k-MCPP
Hom if all containers are 0-symmetric.

c) a
√

2n
n+1 -approximation for k-MCPP

Hom if all containers are ellipsoids or par-
allelotopes.

d) an exact solution of k-MCPP
Hom if all containers are parallelotopes (compare

Fig. 2).

Proof. This follows directly from Lemma 3 and Sect. 5.1.

Fig. 2. An example of an optimal containment with two boxes as containers and the
corresponding edges in the final ρ-distance graph. For parallelotopal containers, Algo-
rithm 3 computes the exact solution.

5.3 Partitioning Procedures

Algorithms 2 and 3 approximate the 2-containment problem within the bounds
given in Lemmas 1, 2, and 4.9 For better approximations, we rely on the B&B
procedure. If |P | is not too big, the super-quadratic10 running time of the
diameter partitioning is not too expensive and it is even possible to combine
Algorithms 1 and 2 (resp. 3) to compute an (almost) exact solution of the un-
derlying 2-center problem (compare Table 2).
9 E.g., the error is at most 0.225 if both Ci are parallelotopes or ellipsoids and d ≤ 3.

10 Since the edges have to be sorted.
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Table 2. Test results for diameter partitioning where the containers are either two
Euclidean balls or two arbitrarily, independently rotated unit cubes. The “rand. box”
data sets refer to 100 equally distributed points within boxes with randomly scaled axes.
The “norm. dist.” data sets refer to 100 (0, 1)-normally distributed points. Due to the
page limit, we report only the mean running times (in seconds) and the approximation
quality after the diameter partitioning step (DP) over samples of 20 here. The accuracy
is ε = 0.01 for all tests. See Table 1 for details on the environment used.

pure B&B B&B with diameter partitioning
containers data set n time DP error DP time B&B time overall time
Euclidean rand. box 10 7.2 0.06 0.5 2.6 3.1
Euclidean rand. box 20 26.2 0.11 0.5 14.1 14.6
Euclidean rand. box 30 88.3 0.15 0.8 67.3 68.2
Euclidean norm. dist. 10 10.9 0.12 0.5 7.1 7.6
Euclidean norm. dist. 20 56.1 0.15 0.6 32.5 33.1
Euclidean norm. dist. 30 135.5 0.17 0.8 89.0 89.9
rot. cubes rand. box 10 12.8 < ε 2.1 - 2.1
rot. cubes rand. box 20 103.2 < ε 2.4 - 2.4
rot. cubes rand. box 30 639.9 < ε 3.1 - 3.1
rot. cubes norm. dist. 10 21.5 < ε 1.1 - 1.1
rot. cubes norm. dist. 20 210.9 < ε 2.1 - 2.1
rot. cubes norm. dist. 30 1153.1 < ε 2.7 - 2.7

Combining the two algorithms is accomplished as follows. First, consider
identical containers. A good upper bound obtained by Algorithm 2 decreases
the running time as many branches need not be considered. Secondly, it pro-
vides a-priori information about point pairs not fitting in the same container:
If R({p, q}, C) > ρ̄ for two points in P , assigning one of them to P1 forces the
other one into P2. Since all pairwise distances have been computed and sorted,
all such pairs of points can easily be identified and assigned to different partition
sets. This is equivalent to building the distance graph G(ρ̄) and 2-coloring it. As
all possible 2-colorings have to be considered and the resulting bipartite graph
is not connected in general, this leads to (usually several) disjoint subset pairs
of P . During the B&B routine, each of those subset pairs can be considered as
a whole and requires only one node in the B&B tree. For instance, when we
choose such a point as first core-set point, we can assign all the points from
the corresponding pair of colored subsets to the right cluster – even before the
branching has started. The same can be done for 2-containment problems with
different containers using Algorithm 3. Yet, here, each color yields a distinct set
of subset pairs which has to be taken into account in the B&B procedure.

As one can conclude from the experiments in Table 2, Euclidean 2-center
problems can be approximated to a good level of accuracy even in higher dimen-
sions. One should especially recognize the quality of the bounds computed by
the diameter partitioning before starting the B&B. Of course, the approximation
quality achieved by the diameter partitioning is even better for some classes of
non-Euclidean containers where nothing is known about the existence of small
core-sets or even fast algorithms to compute those. This becomes clear when
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looking at the results in Table 2 for applying an implementation of Algorithm 3
on 2-containment problems with rotated cubes.

Algorithms 2 and 3 get slow on large point sets. However, it is not necessary to
abandon their advantages. We restrict the algorithms to small subsets (e.g. ran-
dom samples) of the input data, perform the diameter partitioning, compute
an upper bound ρ̄ (for the complete point set) and apply the pre-partitioning
only to the sample. Any time the B&B algorithm picks a new core-set point,
we test whether this point supplies additional information and if applicable add
more points from the sample to the core-set. Surely, there is no guarantee for
the quality of the computed bounds. But even this simple strategy improves the
running times in experiments. Further reductions should be possible by more
advanced strategies to avoid the evaluation of the complete graph over P .

6 An Application of Non-euclidean Container Shapes

In the case of non-Euclidean containers, a typical setting for instance in facility
location is covering a 2D (point) set with several objects. However, different
from the problems addressed before, rotations of the containers in addition to
homothetics are of interest.

Fig. 3. Solution of a 4-containment problem with 18512 data points allowing rotations
of the containers (accuracy 2%)

Figure 3 depicts the solution of such a 4-containment problem with identi-
cal 2-dimensional containers being conical sections of circles. These ‘pie slice’
shapes arise in applications when points should be within the sight of cameras,
in the transmission range of oriented senders, or reachable by robot arms with
joint limits [18]. A discretization of the possible space of rotations is consid-
ered, and included in the B&B algorithm. Note that the computational effort
increases severely since the rotations of the four containers have to be addressed
independently of each other. Still, the full computation takes less than 5 hours.
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