

McDermid, E. and Irving, R.W. (2009) Popular matchings: structure and
algorithms. Lecture Notes in Computer Science, 5609 . pp. 506-515.
ISSN 1611-3349

http://eprints.gla.ac.uk/6701/

Deposited on: 13 August 2009

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Popular Matchings: Structure and Algorithms

Eric Mc Dermid and Robert W. Irving⋆

Department of Computing Science, University of Glasgow G12 8QQ, UK
{mcdermid,rwi}@dcs.gla.ac.uk

Abstract. An instance of the popular matching problem (POP-M) con-
sists of a set of applicants and a set of posts. Each applicant has a
preference list that strictly ranks a subset of the posts. A matching M of
applicants to posts is popular if there is no other matching M ′ such that
more applicants prefer M ′ to M than prefer M to M ′. This paper pro-
vides a characterization of the set of popular matchings for an arbitrary
POP-M instance in terms of a structure called the switching graph, a di-
rected graph computable in linear time from the preference lists. We show
that the switching graph can be exploited to yield efficient algorithms for
a range of associated problems, including the counting and enumeration
of the set of popular matchings and computing popular matchings that
satisfy various additional optimality criteria. Our algorithms for comput-
ing such optimal popular matchings improve those described in a recent
paper by Kavitha and Nasre [5].

1 Introduction and background

An instance of the popular matching problem (POP-M) consists of a set A of n1

applicants and a set P of n2 posts. Each applicant a ∈ A has a strictly ordered
preference list of the posts in P that she finds acceptable. A matching M is a
set of applicant-post pairs (a, p) such that p is acceptable to a, and each a ∈ A
and p ∈ P appears in at most one pair in M . If (a, p) ∈ M we write p = M(a)
and a = M(p). An applicant prefers a matching M to a matching M ′ if (i) a is
matched in M and unmatched in M ′, or (ii) a is matched in both M and M ′

and prefers M(a) to M ′(a). A matching M is popular if there is no matching M ′

such that more applicants prefer M ′ to M than prefer M to M ′. We let n = n1

+ n2, and let m denote the sum of the lengths of the preference lists. It is easy
to show that, for a given instance of POP-M, a popular matching need not exist,
and if popular matchings do exist they can have different sizes. Abraham et al
[1] described an O(n+m) time algorithm for computing a maximum cardinality
popular matching, or reporting that none exists.

The results of Abraham et al [1] led to a number of subsequent papers cover-
ing variants and extensions of POP-M. See, for example, [2, 3, 6–8, 10]. Kavitha
and Nasre [5] recently described algorithms to determine an optimal popular
matching for various interpretations of optimality; in particular they gave an

⋆ Both authors supported by EPSRC research grant EP/E011993/1.

2 Eric Mc Dermid and Robert W. Irving

O(n2+m) time algorithm to find mincost, rank-maximal and fair popular match-
ings (see Section 3.5 for definitions of these terms).

Our goal in this paper is to characterize the structure of the set of pop-
ular matchings for an instance of POP-M, in terms of the so-called switching
graph. This structure is exploited to yield efficient algorithms for a range of
extensions, such as counting and enumerating popular matchings, generating a
popular matching uniformly at random, and finding popular matchings that sat-
isfy additional optimality criteria. In particular, we improve on the algorithm of
Kavitha and Nasre by showing how mincost popular matchings can be found in
O(n+m) time, and rank-maximal and fair popular matchings in O(n log n+m)
time. Detailed proofs of the various lemmas and theorems stated in the subse-
quent sections of this paper may be found in the full version [9].

The terminology and notation is as in the previous literature on popular
matchings (for example, [1, 7]). For convenience, a unique last-resort post, de-
noted by l(a), is created for each applicant a, and placed last on a’s preference
list. As a consequence, in any popular matching, every applicant is matched,
although some may be matched to their last-resort. Let f(a) denote the first-
ranked post on a’s preference list; any post that is ranked first by at least one
applicant is called an f-post. Let s(a) denote the first non-f -post on a’s pref-
erence list. (Note that s(a) must exist, for l(a) is always a candidate for s(a)).
Any such post is called an s-post. By definition, the sets of f -posts and s-posts
are disjoint.

The following fundamental result, proved in [1], completely characterizes pop-
ular matchings, and is key in establishing the structural results that follow.

Theorem 1. (Abraham et al [1]) A matching M for an instance of POP-M
is popular if and only if (i) every f-post is matched in M , and (ii) for each
applicant a, M(a) ∈ {f(a), s(a)}.

In light of Theorem 1, given a POP-M instance I we define the reduced
instance of I to be the instance obtained by removing from each applicant a’s
preference list every post except f(a) and s(a). It is immediate that the reduced
instance of I can be derived from I in O(n + m) time. For an instance I of
POP-M, let M be a popular matching, and let a be an applicant. Denote by
OM (a) the post on a’s reduced preference list to which a is not assigned in M .

2 The structure of popular matchings – the switching
graph

Given a popular matching M for an instance I of POP-M, the switching graph
GM of M is a directed graph with a vertex for each post, and a directed edge
(pi, pj) for each applicant a, where pi = M(a) and pj = OM (a). A vertex v
is called an f-post vertex (respectively s-post vertex) if the vertex it represents
is an f -post (respectively s-post). We refer to posts and vertices of GM inter-
changeably, and likewise to applicants and edges of GM . An illustrative example
of a switching graph for a POP-M instance is given in the full version of this

Popular Matchings: Structure and Algorithms 3

paper [9]. The example also illustrates each of the forthcoming ideas regarding
switching graphs.

A similar graph was defined by Mahdian [6, Lemma 2] to investigate the
existence of popular matchings in random instances of POP-M. Note that the
switching graph is uniquely determined by a particular popular matching M ,
but different popular matchings for the same instance yield different switch-
ing graphs. The following easily proved lemma gives some simple properties of
switching graphs.

Lemma 1. Let M be a popular matching for an instance I of POP-M, and let
GM be the switching graph of M . Then
(i) Each vertex in GM has outdegree at most 1.
(ii) The sink vertices of GM are those vertices corresponding to posts that are
unmatched in M , and are all s-post vertices.
(iii) Each component of GM contains either a single sink vertex or a single cycle.

A component of a switching graph GM is called a cycle component or a tree
component according as it contains a cycle or a sink. Each cycle in GM is called
a switching cycle. If T is a tree component in GM with sink p, and if q is another
s-post vertex in T , the (unique) path from q to p is called a switching path.
It is immediate that the cycle components and tree components of GM can be
identified, say using depth-first search, in linear time.

Let C be a switching cycle of GM . To apply C to M is to assign each applicant
a in C to OM (a), leaving all other applicants assigned as in M . We denote by
M · C the matching so obtained. Similarly, let P be a switching path of GM .
To apply P to M is to assign each applicant a in P to OM (a), leaving all other
applicants assigned as in M . We denote by M · P the matching so obtained.

Theorem 2. Let M be a popular matching for an instance I of POP-M, and
let GM be the switching graph of M .
(i) If C is a switching cycle in GM then M · C is a popular matching for I.
(ii) If P is a switching path in GM then M · P is a popular matching for I.

Theorem 2 shows that, given a popular matching M for an instance I of
POP-M, and the switching graph of M , we can potentially find other popular
matchings. Our next step is to establish that this is essentially the only way to
find other popular matchings. More precisely, we show that if M ′ is an arbitrary
popular matching for I, then M ′ can be obtained from M by applying a sequence
of switching cycles and switching paths, at most one per component of GM . First
we state a simple technical lemma, the proof of which is an easy consequence of
the definition of the switching graph.

Lemma 2. Let M be a popular matching for an instance I of POP-M, let GM

be the switching graph of M , and let M ′ be an arbitrary popular matching for I.
If the edge representing applicant a in GM connects the vertex p to the vertex q,
then
(i) a is assigned to p in M ;
(ii) if M ′(a) ̸= M(a) then a is assigned to q in M ′.

4 Eric Mc Dermid and Robert W. Irving

Lemmas 3 and 4 consider switching cycles and switching paths respectively.

Lemma 3. Let M be a popular matching for an instance I of POP-M, let T
be a cycle component with cycle C in GM , and let M ′ be an arbitrary popular
matching for I.
(i) Either every applicant a in C has M ′(a) = M(a), or every such a has
M ′(a) = OM (a).
(ii) Every applicant a in T that is not in C has M ′(a) = M(a).

Lemma 4. Let M be a popular matching for an instance I of POP-M, let T
be a tree component in GM , and let M ′ be an arbitrary popular matching for I.
Then either every applicant a in T has M ′(a) = M(a), or there is a switching
path P in T such that every applicant a in P has M ′(a) = OM (a) and every
applicant a in T that is not in P has M ′(a) = M(a).

In terms of the application of switching paths or cycles, separate components
of a switching graph behave independently, as captured in the following lemma.

Lemma 5. Let T and T ′ be components of a switching graph GM for a popular
matching M , and let Q be either the switching cycle (if T is a cycle component)
or a switching path (if T is a tree component) in T . Then, T ′ is a component in
the switching graph GM ·Q.

We can now characterize fully the relationship between any two popular match-
ings for an instance of POP-M.

Theorem 3. Let M and M ′ be two popular matchings for an instance I of POP-
M. Then M ′ may be obtained from M by successively applying the switching cycle
in each of a subset of the cycle components of GM together with one switching
path in each of a subset of the tree components of GM .

An immediate corollary of this theorem is a characterization of the set of
popular matchings for a POP-M instance.

Corollary 1. Let I be a POP-M instance, and let M be an arbitrary popular
matching for I with switching graph GM . Let the tree components of GM be
X1, . . . , Xk, and the cycle components of GM be Y1, . . . , Yl. Then, the set of
popular matchings for I consists of exactly those matchings obtained by applying
at most one switching path in Xi for each i (1 ≤ i ≤ k) and by either applying
or not applying the switching cycle in Yi for each i (1 ≤ i ≤ l).

3 Algorithms that exploit the structure

Each of the algorithms in this section begins in the same way – by constructing
the reduced instance, finding an arbitrary popular matching M (if one exists),
building GM , and identifying its components using, say, depth-first search. All
of this can be achieved in O(n + m) time. This sequence of steps is referred to
as the pre-processing phase.

Popular Matchings: Structure and Algorithms 5

3.1 Counting popular matchings

A tree component having q s-posts has exactly q − 1 switching paths. For a
tree component Xi, denote by S(Xi) the number of s-posts in Xi. The following
theorem is an immediate consequence of Corollary 1.

Theorem 4. Let I be a POP-M instance, and let M be an arbitrary popular
matching for I with switching graph GM . Let the tree components of GM be
X1, . . . , Xk, and the cycle components of GM be Y1, . . . , Yl. Then, the number of
popular matchings for I is 2l ∗

∏k
i=1 S(Xi).

It follows that an algorithm for counting the number of popular matchings need
only carry out the pre-processing phase, counting the number of cycle compo-
nents and the number of s-posts in each tree component, and all of this can be
achieved in linear time.

3.2 Random popular matchings

Corollary 1 facilitates the generation of a popular matching for a POP-M in-
stance, uniformly at random, in linear time. The pre-processing phase identifies
a popular matching M and the components of GM . For each cycle component
the unique switching cycle is applied or not according to a random bit. For each
tree component T , a (possibly empty) switching path is applied according to a
random value r in 0, 1, . . . , q − 1 where q is the number of s-post vertices in T .
The algorithm returns the popular matching obtained by applying this choice of
switching cycles and switching paths.

3.3 Enumerating popular matchings

An algorithm for enumerating the popular matchings begins with the prepro-
cessing phase, during which a popular matching M and the components of GM

are identified. It is then straightforward to enumerate popular matchings by ap-
plying or not applying the switching cycle in each cycle component, and applying
in turn each switching path (including the empty path) in each tree component.
The pre-processing phase occupies O(n + m) time, and the delay in generating
each matching is linear in the size of the switching graph, namely O(n).

3.4 Popular pairs

A popular pair for an instance I of POP-M, is an applicant-post pair (ai, pj)
such that there exists a popular matching M with (ai, pj) ∈ M .

Lemma 6. Let M be a popular matching for an instance I of POP-M. Then,
(ai, pj) is a popular pair if and only if (i) (ai, pj) is in M , or (ii) ai is an
incoming edge to pj in GM , and ai and pj are in a switching cycle or switching
path in GM .

It follows from Lemma 6 that the popular pairs can be found in linear time
by executing the pre-processing phase followed by a simple traversal of each
component of the switching graph

6 Eric Mc Dermid and Robert W. Irving

3.5 Optimal popular matchings

Kavitha and Nasre [5] recently studied the following problem: suppose we wish
to compute a matching that is not only popular, but is also optimal with re-
spect to some additional well-defined criterion. They defined a natural optimality
criterion and described an augmenting path-based algorithm for computing an
optimal popular matching. In this section we will describe faster algorithms that
exploit the switching graph of the instance to find an optimal popular matching
with respect to certain optimality criteria.

For a POP-M instance with n1 applicants and n2 posts, we define the profile
ρ(M) of M to be the (n2 + 1)-tuple (x1, . . . , xn2+1) where, for each i (1 ≤ i ≤
n2 + 1), xi is the number of applicants who are matched in M with their ith-
choice post. The last-resort post is always considered to be the (n2 +1)th-choice
post.

Total orders ≻R and ≺F on profiles are defined as follows. Suppose that
ρ = (x1, . . . , xk) and ρ′ = (y1, . . . , yk). Then

– ρ ≻R ρ′ if, for some j, xi = yi for 1 ≤ i < j and xj > yj ;
– ρ ≺F ρ′ if, for some j, xi = yi for j < i ≤ n2 and xj < yj .

A rank-maximal popular matching [4] is one whose profile is maximal with re-
spect to ≻R. A fair popular matching is one whose profile is minimal with respect
to ≺F . (Note that, since the number of (n2 + 1)th choices is minimised, a fair
popular matching is inevitably a maximum cardinality popular matching.) Fi-
nally, a mincost popular matching is a maximum cardinality popular matching
for which Σixi is minimum.

If a weight w(ai, pj) is defined for each applicant-post pair with pj acceptable
to ai, then the weight w(M) of a popular matching M is

∑
(ai,pj)∈M w(ai, pj).

We call a popular matching optimal if it is of maximum or minimum weight
depending on the context.

With suitable choices of weights, it may be verified that rank-maximal, fair
and mincost popular matchings are all examples of optimal popular matchings:

– mincost: assign weight n2
2 to each pair involving a last resort post, a weight

of k to each other pair involving a kth choice, and find a minimum weight
popular matching.

– rank-maximal: assign weight (n2)n2−k+1 to each pair involving a kth choice,
and find a maximum weight popular matching.

– fair : assign weight (n2)k−1 to each pair involving a kth choice, and find a
minimum weight popular matching.

Kavitha and Nasre [5] described an O(n2 + m)-time algorithm for finding
mincost, rank-maximal and fair popular matchings. In what follows, we give an
O(n+m)-time algorithm for finding a mincost popular matching and O(n log n+
m)-time algorithms for finding rank-maximal and fair popular matchings.

We see from the above that very large weights may be assigned to the
applicant-post pairs, so we cannot assume that weights can be compared or

Popular Matchings: Structure and Algorithms 7

added in O(1) time. We assume that the time for comparison or addition of such
values is O(f(n)) for some function f .

Given an instance of POP-M and a particular allocation of weights, let M
be a popular matching, and Mopt an optimal popular matching. By Theorem 3,
Mopt can be obtained from M by applying a choice of at most one switching
cycle or switching path per component of GM . The key is to decide exactly which
switching cycles and paths need be applied. In the following, for simplicity of
presentation, we assume that “optimal” means “maximum”. Analogous results
hold in the “minimum” case.

If T is a cycle component of GM , an orientation of T is either the set of pairs
{(a,M(a)) : a ∈ T}, or the set {(a, M ·C(a)) : a ∈ T}, where C is the switching
cycle in T . Likewise, if T is a tree component of GM , an orientation of T is either
the set of pairs {(a,M(a)) : a ∈ T}, or the set {(a,M · P (a)) : a ∈ T}, for some
switching path P in T . The weight of an orientation is the sum of the weights
of the pairs in it, and an orientation of a component is optimal if its weight is at
least as great as that of any other orientation.

Lemma 7. If M is an arbitrary popular matching, T is a component of GM , and
Mopt is an optimal popular matching, then the set of pairs {(a, Mopt(a)) : a ∈ T}
is an optimal orientation of T .

In light of Lemma 7, an algorithm for computing an optimal popular match-
ing can be constructed as follows. For each cycle component T with switching
cycle C, an optimal orientation can be found by comparing

∑
a∈C w(a,M(a))

with
∑

a∈C w(a,M · C(a)), which is easily achieved in O(f(n)|T |) time. In the
case of a tree component T , a depth-first traversal of T can be carried out, start-
ing from the sink, and traversing edges in reverse direction. For an s-post vertex
v, the weight of the orientation of T resulting from the application of Pv can
easily be found in O(f(n)) time from the weight of the orientation resulting from
application of Pu, where u is the nearest s-post ancestor of v in the depth-first
spanning tree. So the weight of each orientation can be computed in O(f(n))
time, and hence an optimal orientation of each tree component T can be found
in O(f(n)|T |) time.

Theorem 5. There is an algorithm to compute an optimal popular matching in
O(m + nf(n)) time, where n is the number of posts, m is the sum of the lengths
of the original preference lists, and f(n) is the maximum time needed for a single
comparison of two given weights.

We use the uniform cost model, which assumes that an arithmetic or compar-
ison operation on numbers of size O(n) has cost O(1). In the case of a mincost
popular matching, all weights are O(n), so that, we can take f(n) = 1. However,
for rank maximal or fair matchings, we can only assume that the weights are
O(nn), so that f(n) = O(n). Hence we have the following corollary.

Corollary 2. (i) A mincost popular matching can be found in linear time.
(ii) A rank-maximal and a fair popular matching can be found in O(m + n2)
time.

8 Eric Mc Dermid and Robert W. Irving

3.6 Improving the running time

To improve the complexity of our algorithms for a rank-maximal and a fair pop-
ular matching, we discard the weights and work directly with matching profiles.
This improved algorithm is described for rank-maximal popular matchings; the
changes that need to be made to compute a fair popular matching are similar.

Let Z be a tree component of the switching graph with sink z, let u ̸= z be
an s-post vertex in Z, and let v ̸= u be a vertex such that there is a path P (u, v)
in Z from u to v. Any such path P (u, v) is the initial part of the switching path
P (u, z) starting at u.

The concept of profile change C(u, v) along a path P (u, v) quantifies the
effect on the profile of applying the switching path from u, but only as far as v
– we call this a partial switching path. More precisely, C(u, v) is the sequence of
ordered pairs ⟨(i1, j1), . . . , (ir, jr)⟩, where j1 < . . . < jr, ik ̸= 0 for all k, and, for
each k, there is a net change of ik in the number of applicants assigned to their
jkth choice post when P (u, v) is applied.

We define a total order ≻ on profile changes (to reflect rank-maximality) in
the following way. If x = ⟨(p1, q1), . . . , (pk, qk)⟩ and y = ⟨(r1, s1), . . . , (rl, sl)⟩ are
profile changes (x ̸= y), and j is the maximum index for which (pj , qj) = (rj , sj),
we write x ≻ y if and only if

(i) k > l, j = l, and pj+1 > 0; or
(ii) k < l, j = k and rj+1 < 0; or
(iii) j < min(k, l), qj+1 < sj+1 and pj+1 > 0; or
(iv) j < min(k, l), qj+1 > sj+1 and rj+1 < 0; or
(v) j < min(k, l), qj+1 = sj+1 and pj+1 > rj+1.

A profile change ⟨(i1, j1), . . . , (ir, jr)⟩ is improving (with respect to ≻R) if
i1 > 0. So an improving profile change leads to a better profile with respect to
≻R. Moreover, if x and y are profile changes with x ≻ y, and if applying x and
y to the same profile ρ yields profiles ρx and ρy respectively, then ρx ≻R ρy.

As a next step, we define the following arithmetic operation, which captures
the notion of adding an ordered pair to a profile change. For a profile change C
= ⟨(i1, j1), . . . , (ir, jr)⟩ and ordered pair (i, j) (i ̸= 0, j > 0), define C + (i, j) as
follows:

j = jk, ik + i ̸= 0 ⇒ C + (i, j) = ⟨(i1, j1), . . . , (ik + i, jk), . . . , (ir, jr)⟩.
j = jk, ik + i = 0 ⇒

C + (i, j) = ⟨(i1, j1), . . . , (ik−1, jk−1), (ik+1, jk+1) . . . , (ir, jr)⟩.
jk−1 < j < jk ⇒ C + (i, j) = ⟨(i1, j1), . . . , (ik−1, jk−1), (i, j), (ik, jk) . . . , (ir, jr)⟩.

The algorithm computes an optimal orientation of a tree-component Z by
a post-order traversal, viewing Z as rooted at the sink. During this traversal,
processing a vertex v means determining the best improving profile change Cv

obtainable by applying a partial switching path that ends at v, together with
the starting vertex uv of a path P (uv, v) corresponding to Cv. If no path ending
at v has an improving profile change then Cv is null and uv is undefined.

Popular Matchings: Structure and Algorithms 9

Traverse(v) {
if v is a leaf

return null;
else

best = null; start = null;
for (each child w of v that is not an f -post leaf)

(Cw, uw) = Traverse(w);
C = Cw + (1, jw)) + (−1, lw); (1)
if (C ≻ best) (2)

best = Cw; start = uw;
return (best, start); }

Fig. 1. The postorder traversal of a tree component

For a leaf vertex v, Cv is trivially null. For a branch node v, Cv and uv are
computed using the best improving profile change Cw for each child w of v in the
tree (excluding any such w that is an f -post leaf, since no switching path can
begin in such a subtree of v). Let w be a child of v, and let a be the applicant
represented by the edge (w, v) of Z. Let posts v and w be the jwth and lwth
choices, respectively, of applicant a, so that if a were to be re-assigned from post
w to post v the profile would gain a jth

w choice and lose an lthw choice. It follows
at once that Cv is determined by the formula

Cv = max{(Cw + (1, jw)) + (−1, lw)}

where the maximum is with respect to ≻, and is taken over all children w of v.
A pseudocode version of the algorithm appears in Figure 1.

On termination of the traversal, we have determined Cz, the best improving
profile change, if any, of a switching path in Z, together with the starting point
of such a path. Application of this switching path yields an optimum orientation
of Z, or, in case null is returned, we know that Z is already optimally oriented.

From the pseudocode in Figure 1, we see that the complexity of the algorithm
is determined by the total number of operations involved in steps (1) and (2).

To deal with (1), we represent a profile change by a balanced binary tree
B whose nodes contain the pairs (i, j), ordered by the second member. The +
operation on profile changes involves amendment, insertion, or deletion of a node
in B, which can be accomplished in time logarithmic in the size of B. Since the
number of pairs in a profile change cannot exceed the number of edges in Z, this
is O(log t), and since step (1) is executed at most t times, the total number of
operations carried out by step (1), summed over all iterations, is O(t log t).

As far as (2) is concerned, we first note that two profile changes, involving
c1 and c2 pairs, with c1 < c2, can be compared in O(c1) time. So the cost of a
comparison is linear in the size of each of the balanced trees involved. Once a
profile change is the ‘loser’ in such a comparison, the balanced tree representing
it is never used again. Hence the cost of all such comparisons is linear in s,
the sum of the sizes of all of the balanced trees constructed by the algorithm.

10 Eric Mc Dermid and Robert W. Irving

But each tree node originates from one or more edges in Z, and each edge in Z
contributes to at most one node in one tree. So s is bounded by the number of
edges in Z, and hence the total number of operations in step (2), summed over
all iterations, is O(t).

It follows that the postorder traversal of a tree component Z with t edges can
be completed in O(t log t) time, and once the optimal switching path is found
it can be applied in O(t) time. Hence, since the total number of edges in all
tree components is O(n), this process can be applied to all tree components in
O(n log n) time.

Finally, we observe that the optimal orientation of each cycle component can
be computed efficiently. For a cycle component Y with switching cycle C, we
need only check if the profile change obtained by applying C is an improving
profile change, and, if so, C is applied. Hence, the optimal orientation of a
cycle component Y with y edges can be computed in O(y) time. This process
can therefore be applied to each cycle component in O(n) time. Since the pre-
processing phase of the algorithm requires O(n + m) time, we conclude that a
rank-maximal popular matching, and by similar means a fair popular matching,
can be found in O(n log n + m) time.

References

1. Abraham D.J. , Irving R.W., Kavitha T., Mehlhorn K.: Popular matchings, SIAM
Journal on Computing, 37, 1030–1045, (2007)

2. Abraham D.J. , Kavitha T.: Dynamic matching markets and voting paths. In: 10th
Scandinavian Workshop on Algorithm Theory, LNCS, vol. 4059, pp. 65–76, (2006)

3. Huang C-C., Kavitha T., Michail D., Nasre M.: Bounded unpopularity matchings.
In: 12th Scandinavian Workshop on Algorithm Theory, LNCS, vol. 5124, pp. 127-
137, (2008)

4. Irving R.W., Kavitha T., Mehlhorn K., Michail D., Paluch K.: Rank-maximal
matchings, ACM Transactions on Algorithms, 2, 602-610, (2006)

5. Kavitha T., Nasre M.: Optimal Popular Matchings. In: Proceedings of MATCH-
UP: Matching Under Preferences - Algorithms and Complexity, satellite workshop
of ICALP 2008.

6. Mahdian M.: Random popular matchings. In: 7th ACM Conference on Electronic
Commerce, pp. 238-242, (2006)

7. Manlove D.F., Sng C.T.S.: Popular Matchings in the capacitated house allocation
problem, In: 14th Annual European Symposium on Algorithms, LNCS, vol. 4168,
pp. 492–503, Springer, (2006)

8. McCutchen R.: The least-unpopularity-factor and least-unpopularity-margin cri-
teria for matching problems with one-sided preferences, In: 8th Latin American
Symposium on Theoretical Informatics, LNCS vol. 4957, pp. 593-604, (2008)

9. E. McDermid and R. Irving, Popular Matchings: Structure and Algorithms, Tech-
nical Report TR-2008-292, Department of Computing Science, University of Glas-
gow, November 2008.

10. J. Mestre: Weighted popular matchings. In: 33rd International Colloquium on Au-
tomata, Languages and Programming LNCS, vol. 4051, pp 715–726, (2006)

	citation_temp.pdf
	http://eprints.gla.ac.uk/6701/

