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On frationality of the path paking problem

Natalia Vanetik

∗

Abstrat

In an undireted graph G with node set N and a subset T ⊆ N , a frational multi�ow

problem is de�ned as �nding maxf
∑

(u,v) ω(u, v)f [u, v] over all olletions f of weighted

paths with ends in T (the ω-problem). f [u, v] denotes the total weight of paths with the

end-pair (u, v) in f . The paths of f must satisfy the edge apaity onstraint: total weight

of the paths traversing a single edge does not exeed 1. We study a frational multi�ow

problem with the reward funtion ω having values (0, 1) (a frational path paking problem),

and an auxiliary weak problem where ω is a metri. A. Karzanov in [K 1989℄ de�ned the

frationality of ω with respet to a given lass of networks (G,T ) as the least natural

D suh that for any network (G,T ) from the lass, the ω-problem has a solution whih

beomes integer-valued when multiplied by D. He proved that a frational path paking

problem has in�nite frationality outside a very spei� lass of networks, and onjetured

that within this lass, the frationality does not exeed 4 (2 for Eulerian networks). In this

paper we prove Karzanov's onjeture by showing that the frationality of both frational

path paking and weak problems is 1 or 2 for every Eulerian network in this lass.

1 Introdution

In this paper we study olletions of edge-disjoint paths in a network, also alled paths pakings

or multi�ows, addressing an optimization problem of the following form. Let G = (N,E) be a

multigraph with node-set N and edge-set E, and let T ⊆ N be a set of nodes distinguished as

terminals. By a T -path we mean an unlosed path with the ends in T, and by an integer T -�ow,

or an integer multi�ow, we mean a olletion of pairwise edge-disjoint T -paths in G. Let us

de�ne a frational T -�ow as a non-negative weight funtion f(P ) on the set of all T -paths in

(G, T ), satisfying the edge apaity onstraints:

∑
P f(P )I(P, (x, y)) ≤ c(x, y) for eah adjaent pair (x, y) of nodes in N (1.1)
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Here I(P, (x, y)) denotes the number of (x, y)-edges of G traversed by P , and c(x, y) is the

edge apaity, equal to the number of (x, y)-edges in G. Given non-negative "rewards" ω(u, v)

assigned to the unordered pairs of terminals, the problem is to

maximize

∑
u,v ω(u, v)f [u, v] over the frational T -�ows f in (G, T ), (1.2)

where f [u, v] denotes the total weight of the (u, v)-paths in f . For short, (1.2) will be referred

to as the ω-problem. This is one of the basi multi�ow problems, having numerous appliations,

suh as ommuniation and VLSI design. Not surprisingly, for most reward funtions the w-

problem is known to be NP-hard over integer multi�ows, not only when a network (G, T ) is

quite arbitrary, but even for suh friendly lasses as the planar or the Eulerian networks (the

latter lass is studied in this paper).

However, the more fragmented is f between various paths, the less is its utility for disrete path

paking. To make this preise, let us, following A. Karzanov [K 1989℄, de�ne the frationality of

the reward funtion ω with respet to a given lass of networks (G, T ): this is the least natural

D suh that for any network (G, T ) from the lass, the ω-problem has a solution f whih

beomes integer-valued when multiplied by D (in short, a

1
D

-integer solution). For ertain

reward funtions, frationality for the general networks was found to be 2 (see [IKL 2000℄ and

[L 2004℄); for some of them, the ω-problem was also shown to have an integer solution provided

that the non-terminal (inner) nodes of a network have even degrees; suh networks are alled

Eulerian.

Two spei� lasses of the reward funtion are of prinipal importane. One omprises the

(0, 1) reward funtions. It is onvenient to represent suh a funtion by a demand graph (or

sheme) (T, S) where S := (u, v) : ω(u, v) = 1, and to all (1.2) the S-problem. Let a path in

G be alled an S-path if its end-pair belongs to S, and a olletion of S-paths satisfying (1.1)

be alled an S-�ow. Thus, the S-problem may be stated as maximizing of

f [S] :=
∑

(u,v)∈S f [u, v]. A. Karzanov has desribed the frationality of the (0, 1) reward fun-

tions (or the shemes S) in [K 1989℄. Namely, the frationality of S is �nite i� any distint

pairwise interseting antiliques (i.e., inlusion-maximal stable sets) A,B,C of (T, S) satisfy

A ∩ B = A ∩ C = B ∩ C, (1.3)

and the �nite frationality an only equal 1, 2, or 4. He onjetured that this

�nite frationality an only be 1 or 2. (1.4)
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Figure 1: The frationality of S-problem and W -problem an be 2.

Not long ago, H. Ilani and E. Barsky observed that the problem of disrete path paking is

NP-hard, even for Eulerian networks, for eah demand graph violating (1.3). So, investigating

the S-problem has foused on the shemes satisfying (1.3). In this paper we onsider the S-

problem for S satisfying (1.3) together with an auxiliary weak problem, denoted a W -problem:

an ω-problem where ω is a metri de�ned by ω(u, v) = 1 for (u, v) ∈ S, 1
2
for (u, v) overed

by exatly one antilique of (T, S), and 0 for the others (i. e., those overed by at least two

antiliques). An antilique lutter of (T, S) satisfying (1.3) is alled a K-lutter, and an Eulerian

network (G, T,K) with an antilique K-lutter K of (T, S) is alled a K-network. The maxima

of S- and W -problems are denoted by η and θ respetively.

In this paper, we prove onjeture (1.4). Additionally, we show that the W -problem in a K-

network also admits a solution of frationality at most 2. We use the following ruial fat: every

S-problem and W -problem in a network satisfying (1.3) have a ommon solution (Theorem 1

of [Va 2007℄).

The bound on frationality is tight in both ases, as an example in Figure 1 demonstrates.

There we have K = {{si, tj}}, i, j ∈ {1, 2, 3}, and every integer multi�ow in this network has

no more than 2 S-paths, for example, paths P and Q in Figure 1(a). The maximum of the

W -problem among integer multi�ows is 21
2
. However, in this network there exists a half-integer

multi�ow h = {P1, P2, P3, Q1, Q2, Q3} with weight of every path

1
2
being (see Figure 1(b)). The

value of

∑
u,v ω(u, v)h[u, v] for both S-problem and W -problem is 3. Thus, an integer solution

to the S-problem or the W -problem does not always exist. Table 1 summarizes notation used

in this paper.

3



Notation De�nition

(G,T,K) a network (G, (T, S)) and the antilique lutter K of (T, S)

S-path a path whose end-pair is in S

W -path a path whose end-pair is overed by exatly one member of K

zero path a path whose end-pair is overed by two members of K

d(X), X ⊂ N the number of (X,X)-edges in G

λ(A), A ⊆ T min{d(X) : X ⊂ N, X ∩ T = A}

β(A), A ⊆ T 1
2(
∑

t∈A λ(t)− λ(A)); is an integer in Eulerian networks

Ac
, A ⊆ T T \A

A, A ⊆ N N \ A

an (A,B)-path (an A-path), A,B ⊆ N a path ends in A and B (in A)

f [A,B] the number of (A,B)-paths in f (f [A] when A = B)

w(P ) the weight of path P

xPy an (x, y)-segment of a path P , where x and y are nodes

|f | the size of a multi�ow f : the total weight of its paths

a maximum multi�ow a multi�ow of maximum size

the frationality of a multi�ow the largest denominator among its paths' weights

s ∼ t, s, t ∈ T (s, t) is a zero pair

an atom a set of terminals not separated by a member of K

K is simple every atom in K has size 1

Table 1: Notation

2 Outline of the proof

We observe K-networks that are ounterexamples to the frationality onjeture for either W -

or S-problem. First, we prove the frationality onjeture for the W -problem by showing that

a half-integer simple multi�ow of the smallest size solving the W -problem exists. Seond, we

observe a minimal K-network that fails to satisfy the S-problem frationality onjeture and

show that it admits a half-integer solution.

3 Operations on paths and loking

A pair of paths with disjoint end-pairs and a ommon node forms a ross. A path is ompound

if it traverses a terminal di�erent from its ends, and simple otherwise. A multi�ow is alled
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simple if it ontains only simple paths.

Let paths P andQ of a multi�ow f traverse an inner node x, so that P = P ′xP ′′
andQ = Q′xQ′′

.

Swithing P and Q in x transforms them into K = P ′xQ′
and L = P ′′xQ′′

and f into the

multi�ow f \ {P,Q} ∪ {K,L}. A split of an inner node x is a graph transformation onsisting

of removal of x and linking its neighbors by

d(x)
2

edges so as to preserve their degrees. Given a

multi�ow h in a network, an h-split of an inner node is a split preserving the paths of h.

A maximum multi�ow f loks a set A ⊆ T if it ontains a maximum (A,Ac)-�ow, that is, if

f [A,Ac] = λ(A). Otherwise, f unloks A. In other words, f loks A if it ontains the smallest

possible number of A-paths. A. Karzanov and M. Lomonosov have introdued in [KL 1978℄

the following appliation of the Ford-Fulkerson augmenting path proedure, assuming that a

multi�ow traverses eah edge. A maximum multi�ow unloks A ∈ K if and only if it ontains an

augmenting sequene P1, x1, ..., xi−1Pixi, ...., Pn of paths P1 (an A-path), P2, ..., Pn−1 ((A,Ac)-

paths) Pn (an Ac
-path) and inner nodes x1, ..., xn−1 so that xi ∈ Pi, Pi+1 for i ∈ 1, ..., n− 1

and xi is loated on Pi between xi−1 and the A-end of Pi. In the paper, we use the fat that

unloking a member of K and existene of the alternating sequene are equivalent. When K is

a K-lutter, there exists a series of swithes of P1, ..., Pn in x1, ..., xn−1 that reates a maximum

multi�ow f ′
ontaining a ross and having Θ(f ′) ≥ Θ(f). If f solves the W -problem and

unloks A ∈ K, swithing P1, ..., Pn−1 in x1, ..., xn−2 reates a multi�ow f ′
with A-path P ′

0 and

Ac
-path P ′

1 having a ommon node xn−1, so that every swith of P ′
0 and P ′

1 in xn−1 preserves

Θ(f ′) = θ.

Let P and Q be an A- and Ac
-paths of a multi�ow h with a ommon inner node so that w(P ) =

w(Q) and no swith of P and Q hanges Θ(h). Let us denote the ends of P and Q by p1, p2 and

q1, q2 respetively. Let w.l.o.g. (p1, p2), (p1, q1), (p1, q2) ∈ W , (p2, q1), (p2, q2), (q1, q2),∈ S. A

multi�ow transformation that replaes P and Q with three (p2, q2)-, (p2, q2)- and (q1, q2)-paths

of weight

w(P )
2

(see Figure 2), is alled a

3
2
-operation. It preserves Θ(h) and inreases h[S] by

w(P )
2

.

4 Frationality of the W -problem

To prove the frationality onjeture for the W -problem, we show the following:

Theorem 4.1 In every K-network (G, T,K) there exists a simple W -problem solution of the
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smallest size that is half-integer.

We later use this Theorem to prove the frationality onjeture for the S-problem. Let us

observe a K-network (G, T,K) whih is a minimal ounterexample to Theorem 4.1. We assume

that (G, T,K) has inner node degree 4, by the known redution (see, e.g. [F 1990℄), is

simple (sine atom ompression preserves all W -problem solutions) and is minimal �rst in

frationality k of the smallest size W -problem solution, and then in E as a set. Then k = 4, for

otherwise we an dupliate eah edge in E and obtain a network with W -problem frationality

⌈k
2
⌉. In this setion, f denotes a quarter-integer simple multi�ow of the smallest size solving

the W -problem in (G, T,K). For simpliity, we assume that the paths of f have weight

1
4
. Let

us denote

η̂:=maximum of the S-problem among simple multi�ows in (G, T,K). (4.5)

In the Appendix we prove the max-min theorem for the W -problem in Theorem 7.1, whih

implies that for every K-network (G, T,K), 2θ(G, T,K) ∈ N and 2η̂ ∈ N. We use these fats in

the proof.

4.1 General �ow properties

Here, we study the behavior of W -problem solutions inside the members of K. The series of

properties below diretly follows diretly from the results of Lovãsz, Cherkassky and Lomonosov

desribed in Setion 3.

Claim 4.2 Let (G, T,K) be a simple K-network, and let h be a simple multi�ow of

frationality k in it suh that h[A] < β(A) for some A ∈ K. Then there exists a simple

multi�ow h′
of frationality k having Θ(h′) ≥ Θ(h) + 1

2
(β(A)− h[A]).

6



Proof. Sine h[A,Ac] ≤ λ(A) by de�nition, and

h[A] =
1

2
(
∑

t∈A

h[t, tc]− h[A,Ac]) <
1

2
(
∑

t∈A

λ(t)− λ(A)) = β(A),

∑
t∈A h[t, tc] <

∑
t∈A λ(t). We modify h by adding paths starting in t ∈ A until h[t, tc] =

λ(t) for all t ∈ A. Sine we use edges not saturated by h, we obtain a simple multi�ow of

frationality k, denoted h′
. If W - or S-paths of total weight no less than β(A) − h[A] were

added, h′
is the required multi�ow. Otherwise, some of these paths are yles that traverse

one terminal from A eah. Let us modify h′
into a multi�ow without yli paths traversing

terminals from A using Cherkassky proedure, and denote the resulting multi�ow by h′′
. If

Θ(h′′) ≥ Θ(h) + 1
2
(β(A) − h[A]), we are done. Otherwise, we have

∑
t∈A h′′[t, tc] =

∑
t∈A λ(t)

and h′′[A] < β(A), thus h′′[A,Ac] > λ(A) - a ontradition.

Corollary 4.3 Let (G, T,K) be a simple K-network, and let h be a simple multi�ow of the

smallest size solving the W -problem in (G, T,K). Then h loks K.

Proof. By Claim 4.2, h[A] ≥ β(A) for all A ∈ K. If h unloks some A ∈ K, i.e. has

h[A] > β(A), h ontains an augmenting sequene for A. Swithing paths of this sequene

reates a simple multi�ow h′
that has the same size as h, solves the W -problem and allows us

to perform a

3
2
-operation, whih preserves Θ(h′) but dereases the size of h′

- a ontradition.

4.2 Proof of the weak frationality theorem

Let us denote by (G′, T ′,K′) a network obtained from (G, T,K) by split-o�s in one or more

inner nodes. We denote the W -problem maximum in (G′, T ′,K′) by θ′, and let A′
and t′ denote

a lutter member and a terminal orresponding to some A ∈ K and t ∈ T . We let g denote

a simple half-integer W -problem solution of the smallest size in (G′, T ′,K′). g exists beause

(G, T,K) is minimal in E. Let us denote the value of (4.5) in (G′, T ′,K′) by η̂′. Note that

η̂′ ≤ η̂, (4.6)

beause by Theorem 1 from [Va 2007℄ f solves the S-problem in a network obtained from

(G, T,K) by splitting every terminal t into d(t) equivalent terminals of degree 1.

For this type of networks we prove the following series of laims.

Claim 4.4 Let θ′ = θ − 1
2
and η̂ − η̂′ ≤ 1. Then

∑
A′∈K′ β(A′) ≤

∑
A∈K β(A).

7



Proof. Let us assume that

∑
A′∈K′ β(A′) >

∑
A∈K β(A). As all β(A) and β(A′) are integers by

de�nition, we have

θ − θ′ =
1

2
= η̂ − η̂′ + (

∑

A∈K

β(A)−
∑

A′∈K′

β(A′)),

thus

1 ≥ η̂ − η̂′ =
1

2
+

∑

A′∈K′

β(A′)−
∑

A∈K

β(A) > 1,

a ontradition.

Corollary 4.5 Let θ′ = θ − 1
2
and η̂ − η̂′ ≤ 1. Then for all A ∈ K, β(A′) ≥ β(A).

Proof. Let β(A′) < β(A). Then by Claim 4.2, g an be ompleted to a half-integer simple

�ow g′ in (G, T,K) with Θ(g′) = θ. Sine |g| = η̂′ +
∑

A′∈K′ β(A′) < |f | by Claim 4.4 and (4.6),

we have |g′| ≤ |f | - a ontradition.

Corollary 4.6 Let θ′ = θ − 1
2
and η̂ − η̂′ ≤ 1. Then for all A ∈ K, β(A′) = β(A) and

η̂ − η̂′ = 1
2
.

Proof. Follows from Claim 4.4 and Corollary 4.5.

Claim 4.7 θ′ 6= θ.

Proof. Let us assume the ontrary. Then for all A ∈ K, β(A′) ≥ β(A), for otherwise by Claim

4.2, in (G, T,K) g an be modi�ed into a multi�ow g′ with Θ(g′) > θ - a ontradition. If

∑
A′∈K′ β(A′) >

∑
A∈K β(A), we have

θ − θ′ = 0 = η̂ − η̂′ + (
∑

A′∈K′

β(A′)−
∑

A∈K

β(A)) > 1,

a ontradition beause η̂ > η̂′ (otherwise, g is the solution we seek). Then g[W ] = f [W ] =
∑

A∈K β(A) and Θ(g) = Θ(f), resulting in |g| = |f | - a ontradition.

Let us all two paths traversing the same inner node x opposite in x if they do not traverse the

same edge inident to x.

Claim 4.8 Let x ∈ N \ T . Then there exists a split of x that dereases θ by no more than

1
2
.

Proof. Let us assume the ontrary. Let the number of paths of f destroyed by a split of x

be n. Then the split dereases Θ(f) by at least 1 by Corollary 7.4, thus 8 ≥ n ≥ 4. Clearly,

8
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Figure 3: Possible swithes of f in an inner node.

n 6= 7, 8 for otherwise x admits an f -split (see Figure 3(a)). Likewise, if n ∈ {5, 6}, then the

swith opposite to the hosen one destroys no more than two paths of f (see Figure 3(b)) - a

ontradition. Therefore, n = 4, and the paths destroyed by a split ontribute no more than

1 to Θ(f). By our assumption, the split dereases Θ(f) by 1, and these paths are S-paths of

f with two ommon ends. By our assumption, two of these paths annot be swithed so as

to omply with the remaining paths traversing x. If these two paths are opposite, we swith

one pair so as to omply with the other, and there are two options to do so (see Figure 3()).

The opposite swith a�ets the other 4 paths of f traversing x and, like above, those paths an

traverse x in two di�erent ways. We then selet a ommon swith and obtain a new multi�ow

f ′
that is a ommon solution in (G, T,K) and admits an f ′

-split in x - a ontradition. If the

paths in question are not opposite (see Figure 3(d)), all the paths of f traversing x end in two

terminals. Then there exists a swith of paths of f in x allowing an f -split - a ontradition.

We an now �nish the proof of the frationality theorem for the W -problem.

Theorem 4.1 Let (G, T,K) be a K-network. Then in (G, T,K) there exists a simple

half-integer W -problem solution of the smallest size.

Proof. Let (G′, T ′,K′) be the network with θ′ = θ− 1
2
and η̂− η̂′ ≤ 1, obtained from (G, T,K)

by the maximum number of split-o�s in inner nodes. At least one suh network exists beause

of Claim 4.8. By Claim 4.7 and Corollary 4.6, β(A′) = β(A) for all A ∈ K. Then η̂ − η̂′ = 1
2
.

Let g denote a simple W -problem solution of the smallest size in (G, T,K). Sine |g| = |f | − 1
2
,

9
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Figure 4: θ-preserving split of an inner node.

g is not maximum and we an add a half-integer zero path P to g with an end in t ∈ A. We

selet g so that P is the longest w.r.t. number of edges. Let P traverse edge (t, x). Then a

path Q ∈ g opposite to P in x has no end in t (otherwise, swithing P and Q prolongs P ).

Swithing of P and Q in x annot inrease g[S] for then the resulting half-integer �ow g′ has

Θ(g′) = θ and |g′| ≤ |f |. Likewise, swithing P and Q so as to allow a g-split in x annot

inrease Θ(g), for otherwise we obtain a network (G′′, T ′′,K′′) with θ′′ ≥ θ− 1
4
- a ontradition

to Claim 4.7. Therefore, Q is a tc-path and an S-path. Swithing P and Q in x so as to allow

a g-split of x produes two W -paths (see Figure 4). We swith P and Q in this way, obtain a

new multi�ow g′′ and a network denoted (G′′, T ′′,K′′). Then θ′′ = θ− 1
2
and η̂′′ ≥ η̂′− 1

2
= η̂−1

while (G′′, T ′′,K′′) ontains less inner nodes than (G′, T ′,K′), ontrary to our hoie.

5 Frationality of the S-problem

We use Theorem 4.1 to show that the frationality onjeture for the S-problem holds. Let us

selet a K-network (G, T,K) whih is a ounterexample to the onjeture,

minimal in frationality k and α :=
P

t∈T
|N(t)|

|T |
.

Like in Setion 4, we an assume that k = 4.

Claim 5.1 α = 1

Proof. Let us assume the ontrary and selet t ∈ T with |N(t)| ≥ 2. Let g be a quarter-integer

ommon solution to the W - and S-problems in (G, T,K). Let us suppose �rst that no path of

g has an end in t. We turn t into an inner node, adding a new terminal t′ ∼ t and an edge

10



(t, t′) if d(t) is odd. In the resulting network (G′, T ′,K′), η′ := η(G′, T ′,K′) = η beause the

reverse operation does not derease η′. Let us suppose now that g ontains paths with an end

in t. Let wg(t) denote the total weight of g's paths beginning in t. Then wg(t) ≤ 3
4
d(t), for

otherwise there exists an edge (t, x) traversed by four paths of weight

1
4
with an end in t. We

replae (t, x) with a new edge (t′, x), where t′ ∼ t is a new terminal, and turn t into an inner

node. We also add enough (t, t′)-edges to allow the paths of g with an end in t to end in t′

instead and the degree of t to be even. In the resulting network (G′, T ′,K′), α′ < α and η′ = η

beause the reverse operation does not derease η′.

Theorem 5.2 Every K-network (G, T,K) admits a half-integer least-size W -problem solution

f that also solves the S-problem.

Proof. Let (G, T,K) be a K-network (G, T,K). By Claim 5.1, we an transform (G, T,K)

into a K-network (G′, T ′,K′) with α = 1, η′ = η and θ′ = θ. Moreover, every S-problem or

W -problem solution in (G′, T ′,K′) remains suh in (G, T,K) after the reverse transformation.

By Theorem 4.1, (G′, T ′,K′) admits a simple half-integer W -problem solution of the smallest

size, denoted f ′
. By Theorem 1 of [Va 2007℄, f ′

solves the S-problem in (G′, T ′,K′). Then the

multi�ow f in (G, T,K), obtained from f ′
, solves both W - and S-problems.

Corollary 5.3 In a general, not neessarily Eulerian, network (G, T ) where the antilique

lutter of (T, S) is a K-lutter, both W -problem and S-problem have frationality 4.
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7 Appendix: ombinatorial max-min for the W -problem

Let E = {α, β, ...} be a partition of T suh that for eah α ∈ E any t′, t′′ ∈ α are equivalent

(an equi-partition). We all X = (Xα : α ∈ E) is an expansion if Xα ∩ T = α, α ∈ E .

Taking members of X as terminals and an indued lutter, we obtain a new network with a

11



graph GX , terminals X and a lutter KX on X (KX is a K-lutter if K is a K-lutter). For

Xα, Xβ ∈ X , we all (Xα, Xβ) strong or weak if for every s ∈ α and t ∈ β, (s, t) ∈ S or

(s, t) ∈ W respetively. Likewise, Xα ∼ Xβ if for every pair of terminals s ∈ α and t ∈ β,

s ∼ t. An X -path in G is an (x, y)-path with x, y lying in distint members of X . An X -�ow is

a �ow in the network (GX ,X ,KX ) onsisting of X -paths. The S-problem and the W -problem

in (GX ,X ,KX ) are de�ned in the same way as for (G, T,K), and their maxima are denoted by

ηX and θX respetively.

We de�ne a partial order on expansions as follows. Let E and F be equi-partitions of T and let

X = (Xα : α ∈ E) and Y = (Yα : α ∈ F) be expansions. Then X � Y if for every X ∈ X there

exists Y ∈ Y so that X ⊂ Y . Note that for every X � Y , every X -�ow is also a Y-�ow (but

the onverse may be not true). Sine for X � Y any X -�ow is also a Y-�ow, θY ≥ θX . Sine

T -�ow is also an X -�ow, θX ≥ θ. X is alled ritial if θY > θX for every Y ≻ X . A ritial X

with θX = θ is alled a dual solution. The triangle theorem ([L 1985℄) ensures that:

there exists a maximum X -�ow h suh that ΘX (h) = θX . (7.7)

We limit ourselves to networks (G, T,K) with simple K. The results of this setion that hold for

simple lutters hold for general networks as well, beause ompressing a non-trivial atom into

one terminal does not hange θ by triangle theorem from [L 1985℄ and metri properties of a

K-lutter. For a K-network with simple K, every subset in an expansion X ontains exatly one

terminal; Xt denotes a member of X ontaining t ∈ T . Then (7.7) implies that for a maximum

X-�ow h (even when X = T ):

ΘX (h) = |h| −
1

2
h[W ]. (7.8)

We aim to prove the following max-min theorem for the frational W -problem.

Theorem 7.1 In a K-network (G, T,K):

maxfΘ(f) = minX (
1
2

∑
t∈T d(Xt)−

1
2

∑
A∈KX

β(A)). (7.9)

The maximum is taken over the frational multi�ows in (G, T,K), and the minimum is taken

over all expansions in (G, T,K). Moreover, (7.9) holds as equality for every dual solution X .

To prove this theorem, we state the following inequality for an expansion X and a T -�ow f :

Θ(f)

(a)

≤ θ

(b)

≤ ΘX (h)

(c)

≤
1

2

∑

t∈T

d(Xt)−
1

2

∑

A∈KX

β(A) (7.10)
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We aim to show that (7.10) holds as inequality for every expansion and as equality for every

ritial expansion. (7.10)(a) follows diretly from the de�nition of θ. (7.10)(b) holds beause

f is also an X -�ow. (7.10)() holds beause there exists a maximum X -�ow h that solves the

W -problem in X . For suh h the minimum of

∑
A∈KX

h[A] is ahieved when all A ∈ KX are

loked by h, i.e.
∑

A∈KX
h[A] ≤

∑
A∈KX

β(A) and |h| = 1
2

∑
t∈T λ(Xt) by the Lovãsz-Cherkassky

theorem ([Lo 1976, Ch 1977℄). We need the following two laims to show that (7.10)() is an

equality.

Claim 7.2 Let (G, T,K) be a simple K-network, and let X be a dual solution in it. A

maximum frational X -�ow h that satis�es ΘX (h) = θX (that is, solves the W -problem in

(GX ,X ,KX )) loks Xt for all t ∈ T .

Proof. First, let us show that h saturates every (Xt, Xt)-edge. Let e be an (x, y)-edge with

x ∈ Xt and y ∈ Xt. Let Y ≻ X be an expansion where Ys = Xs for terminal s 6= t and

Yt = Xt ∪ {y}. Sine X is ritial, θY > θX and there exists a Y-�ow g suh that ΘY(g) > θX .

Let us denote the unused apaity of e by ε and let δ = g[y,∪s 6=tXs]. Clearly, ε < δ. We turn g

into an X -�ow by prolonging all its paths starting in y to x instead through the edge e. Let g′

be the funtions on X -paths thus obtained; g′ does not satisfy the apaity onstraint on (x, y).

Then there exists 0 < α < 1 suh that h′ = (1−α)h+αg′ is an X -�ow. h′
satis�es all apaity

onstraints and has ΘX (h
′) ≥ (1− α)ΘX (h) + αΘY(g) > θX , ontraditing the de�nition of X .

Let us assume now that a (p, q)-path P of h, p ∈ Xt, ontains two (Xt, Xt)-edges, e1 = (x1, y1)

and e = (x2, y2) where x1, x2 ∈ Xt, y1, y2 ∈ Xt and y1, x1, x2, y2 appear on P in this order. Then

by replaing P with x2Pq we obtain an X -�ow g for whih ΘX (g) = θX and the edge (x1, y1)

is not saturated by g, a ontradition.

Claim 7.3 Let (G, T,K) be a simple K-network, and let X be a dual solution. A maximum

frational X -�ow h would then satisfy ΘX (h) = θX i� every A ∈ KX is loked by h.

Proof. The �if� diretion is trivial. Let h be a maximum X -�ow with ΘX (h) = θX that

loks every member of KX . Beause of Claim 7.2 and the simpliity of KX , we get Θ(h) =

1
2

∑
X∈X d(X)− 1

2

∑
A∈KX

βA and thus Θ(h) ≥ θX by (7.10)().

For the �only if� diretion, assume that h is a maximum X -�ow that has ΘX (h) = θX and

unloks A ∈ KX . Let Ac
in the ontext of KX denote the members of X that do not lie in

A. Then h ontains an augmenting sequene P0, x0, ..., xm−1, Pm, where P0 is an A-path, Pm is

13
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x0
α−ε

β−ε/2

ε/2

ε/2

Figure 5: The frational

3
2
-operation.

an Ac
-path, and eah one of P1, ..., Pm−1 is an (A,Ac)-path. We an hoose h so that m = 1.

Let P0 and P1 be (s′, t′)- and (q′, r′)-paths with weights α and β respetively where s′ ∈ Xs,

t′ ∈ Xt, q
′ ∈ Xq and r′ ∈ Xr. Sine a swith of P0 and P1 in x0 annot inrease Θ(h), we an

assume that w.l.o.g. (Xq, Xr), (Xt, Xr) and (Xt, Xq) are S-pairs while (Xs, Xq) and (Xs, Xr)

are W -pairs by the simpliity of KX .

We onstrut a new �ow f from h by replaing P0 and P1 with (t′, r′), (t′, q′), (q′, r′) and

(s′, t′)-paths of weights ε
2
,

ε
2
, β − ε

2
and α − ε respetively (this is the

3
2
-operation, see Figure

5). It follows that |f | = |h|− ε
2
and f [W ] = h[W ]− ε sine (Xq, Xt), (Xq, Xr), (Xr, Xt) ∈ S and

ΘX (f) = ΘX (h).

The subpath s′P0x0 does not have ommon nodes with any other X -path Q whose ends do

not lie in Xs ∪ Xt. If it were so, then the above

3
2
-operation ould be applied to both P0, P1

and P0, Q and a �ow f ′
with |f ′| = |h| − ε

2
and f ′[W ] = h[W ] − 2ε ould be reated, whih

ontradits the maximality of ΘX (h). Therefore, there exists an edge (s′, x) of s′Lv whih is

not saturated by f - a ontradition to Claim 7.2.

Theorem 7.1 follows from Claims 7.2 and 7.3.

Corollary 7.4 2θ(G, T,K) ∈ N.

Proof. Let X be an expansion that ahieves equality in Theorem 7.1 for (G, T,K). Then

θ(G, T,K) = 1
2

∑
X∈X d(X) − 1

2

∑
A∈KX

β(A), while
∑

X∈X d(X) is always even in an Eulerian

network and every β(A) is an integer by de�nition. Thus, a split of an inner node in (G, T,K)

dereases θ by

k
2
, k ∈ N ∪ {0}.

Corollary 7.5 Let (G, T,K) be a simple K-network and let h be a simple W -problem

solution in (G, T,K) with
∑

A∈K h[A] =
∑

A∈K β(A). Then 2h[S] ∈ N.

Proof. 2h[S] is an integer beause θ = h[S]+ 1
2
h[W ] = h[S]+ 1

2

∑
A∈K β(A) and θ is half-integer

14



by Corollary 7.4.
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