Skip to main content
Log in

Structure of Fibonacci cubes: a survey

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

The Fibonacci cube Γ n is the subgraph of the n-cube induced by the binary strings that contain no two consecutive 1s. These graphs are applicable as interconnection networks and in theoretical chemistry, and lead to the Fibonacci dimension of a graph. In this paper a survey on Fibonacci cubes is given with an emphasis on their structure, including representations, recursive construction, hamiltonicity, degree sequence and other enumeration results. Their median nature that leads to a fast recognition algorithm is discussed. The Fibonacci dimension of a graph, studies of graph invariants on Fibonacci cubes, and related classes of graphs are also presented. Along the way some new short proofs are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandelt H-J, van de Vel M (1989) Embedding topological median algebras in products of dendrons. Proc Lond Math Soc (3) 58(3):439–453

    Article  MATH  Google Scholar 

  • Brešar B, Klavžar S, Škrekovski R (2003) The cube polynomial and its derivatives: the case of median graphs. Electron J Comb 10:11. Research Paper 3

    Google Scholar 

  • Cabello S, Eppstein D, Klavžar S (2011) The Fibonacci dimension of a graph. Electron J Comb 18(1): 23. Research Paper 55

    Google Scholar 

  • Castro A, Mollard M (2011) The eccentricity sequences of Fibonacci and Lucas cubes. Manuscript

  • Castro A, Klavžar S, Mollard M, Rho Y (2011) On the domination number and the 2-packing number of Fibonacci cubes and Lucas cubes. Comput Math Appl 61(9):2655–2660

    Article  MathSciNet  MATH  Google Scholar 

  • Cong B, Zheng S, Sharma S (1993) On simulations of linear arrays, rings and 2d meshes on fibonacci cube networks. In: Proceedings of the 7th international parallel processing symphosium, pp 747–751

    Google Scholar 

  • Dedó E, Torri D, Zagaglia Salvi N (2002) The observability of the Fibonacci and the Lucas cubes. Discrete Math 255(1–3):55–63

    Article  MathSciNet  MATH  Google Scholar 

  • Djoković DZ (1973) Distance preserving subgraphs of hypercubes. J Comb Theory, Ser B 14:263–267

    Article  MATH  Google Scholar 

  • Egiazarian K, Astola J (1997) On generalized Fibonacci cubes and unitary transforms. Appl Algebra Eng Commun Comput 8(5):371–377

    Article  MathSciNet  MATH  Google Scholar 

  • Ellis-Monaghan JA, Pike DA, Zou Y (2006) Decycling of Fibonacci cubes. Australas J Combin 35:31–40

    MathSciNet  MATH  Google Scholar 

  • Eppstein D (2005) The lattice dimension of a graph. Eur J Comb 26(5):585–592

    Article  MathSciNet  MATH  Google Scholar 

  • Feder T (1992) Product graph representations. J Graph Theory 16(5):467–488

    Article  MathSciNet  MATH  Google Scholar 

  • Greene C, Wilf HS (2007) Closed form summation of C-finite sequences. Trans Am Math Soc 359(3):1161–1189

    Article  MathSciNet  MATH  Google Scholar 

  • Gregor P (2006) Recursive fault-tolerance of Fibonacci cube in hypercubes. Discrete Math 306(13):1327–1341

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu W-J (1993) Fibonacci cubes—a new interconnection technology. IEEE Trans Parallel Distrib Syst 4(1):3–12

    Article  Google Scholar 

  • Hsu W-J, Chung MJ (1993) Generalized Fibonacci cubes. In: Proceedings of the 1993 international conference on parallel processing—ICPP’93, vol 1, pp 299–302

    Google Scholar 

  • Hsu W-J, Page CV, Liu J-S (1993) Fibonacci cubes—a class of self-similar graphs. Fibonacci Q 31(1):65–72

    MathSciNet  MATH  Google Scholar 

  • Ilić A, Milošević M (2011) The parameters of Fibonacci and Lucas cubes. Manuscript

  • Ilić A, Klavžar S, Rho Y (2012) Generalized Fibonacci cubes. Discrete Math 312(1):2–11. doi:10.1016/j.disc.2011.02.015

    Article  MathSciNet  MATH  Google Scholar 

  • Imrich W, Žerovnik J (1994) Factoring Cartesian-product graphs. J Graph Theory 18(6):557–567

    Article  MathSciNet  MATH  Google Scholar 

  • Imrich W, Klavžar S, Mulder HM (1999) Median graphs and triangle-free graphs. SIAM J Discrete Math 12(1):111–118

    Article  MathSciNet  MATH  Google Scholar 

  • Imrich W, Klavžar S, Rall DF (2008) Topics in graph theory: graphs and their Cartesian product. AK Peters, Wellesley

    Google Scholar 

  • Klavžar S (2005) On median nature and enumerative properties of Fibonacci-like cubes. Discrete Math 299(1–3):145–153

    Article  MathSciNet  MATH  Google Scholar 

  • Klavžar S, Kovše M (2007) Partial cubes and their τ-graphs. Eur J Comb 28(4):1037–1042

    Article  MATH  Google Scholar 

  • Klavžar S, Mollard M (2012a) Cube polynomial of Fibonacci and Lucas cubes. Acta Appl Math. doi:10.1007/s10440-011-9652-4 To appear

    Google Scholar 

  • Klavžar S, Mollard M (2012b) Wiener index and Hosoya polynomial of Fibonacci and Lucas cubes. To appear in MATCH Commun Math Comput Chem

  • Klavžar S, Peterin I (2007) Edge-counting vectors, Fibonacci cubes, and Fibonacci triangle. Publ Math (Debr) 71(3–4):267–278

    MATH  Google Scholar 

  • Klavžar S, Žigert P (2005) Fibonacci cubes are the resonance graphs of fibonaccenes. Fibonacci Q 43(3):269–276

    MATH  Google Scholar 

  • Klavžar S, Žigert P, Brinkmann G (2002) Resonance graphs of catacondensed even ring systems are median. Discrete Math 253(1–3):35–43

    Article  MathSciNet  MATH  Google Scholar 

  • Klavžar S, Mollard M, Petkovšek M (2011) The degree sequence of Fibonacci and Lucas cubes. Discrete Math 311(14):1310–1322

    Article  MathSciNet  MATH  Google Scholar 

  • Lai P-L, Tsai C-H (2010) Embedding of tori and grids into twisted cubes. Theor Comput Sci 411(40–42):3763–3773

    Article  MathSciNet  MATH  Google Scholar 

  • Liu J, Hsu W-J, Chung MJ (1994) Generalized Fibonacci cubes are mostly Hamiltonian. J Graph Theory 18(8):817–829

    Article  MathSciNet  MATH  Google Scholar 

  • Mollard M (2011) Maximal hypercubes in Fibonacci and Lucas cubes. In: The second international symphosium on operational research, ISOR’11

    Google Scholar 

  • Mulder M (1978) The structure of median graphs. Discrete Math 24(2):197–204

    Article  MathSciNet  MATH  Google Scholar 

  • Munarini E, Perelli Cippo C, Zagaglia Salvi N (2001) On the Lucas cubes. Fibonacci Q 39(1):12–21

    MathSciNet  MATH  Google Scholar 

  • Munarini E, Zagaglia Salvi N (2002) Structural and enumerative properties of the Fibonacci cubes. Discrete Math 255(1–3):317–324

    Article  MathSciNet  MATH  Google Scholar 

  • Ou L, Zhang H, Yao H (2011) Determining which Fibonacci (p, r)-cubes can be Z-transformation graphs. Discrete Math 311(16):1681–1692

    Article  MathSciNet  MATH  Google Scholar 

  • Pike DA, Zou Y (2012) The domination number of Fibonacci cubes. To appear in J Comb Math Comb Comput

  • Qian H, Wu J (1996) Enhanced Fibonacci cubes. Comput J 39(4):331–345

    Article  Google Scholar 

  • Rispoli FJ, Cosares S (2008) The Fibonacci hypercube. Australas J Combin 40:187–196

    MathSciNet  MATH  Google Scholar 

  • Sloane NJA (2011) The on-line encyclopedia of integer sequences. Published electronically at http://oeis.org

  • Taranenko A, Vesel A (2007) Fast recognition of Fibonacci cubes. Algorithmica 49(2):81–93

    Article  MathSciNet  MATH  Google Scholar 

  • Vesel A (2005) Characterization of resonance graphs of catacondensed hexagonal graphs. MATCH Commun Math Comput Chem 53(1):195–208

    MathSciNet  MATH  Google Scholar 

  • Vesel A (2011) Fibonacci dimension of the resonance graphs of catacondensed benzenoid graphs. Manuscript

  • Whitehead C, Zagaglia Salvi N (2003) Observability of the extended Fibonacci cubes. Discrete Math 266(1–3):431–440

    Article  MathSciNet  MATH  Google Scholar 

  • Winkler PM (1984) Isometric embedding in products of complete graphs. Discrete Appl Math 7:221–225

    Article  MathSciNet  MATH  Google Scholar 

  • Wu J (1997) Extended Fibonacci cubes. IEEE Trans Parallel Distrib Syst 8(12):1203–1210

    Article  Google Scholar 

  • Wu J, Yang Y (2001) The postal network: a recursive network for parameterized communication model. J Supercomput 19(2):143–161

    Article  MATH  Google Scholar 

  • Wu R-Y, Chen G-H, Fu J-S, Chang GJ (2008) Finding cycles in hierarchical hypercube networks. Inf Process Lett 109(2):112–115

    Article  MathSciNet  Google Scholar 

  • Zagaglia Salvi N (1997) On the existence of cycles of every even length on generalized Fibonacci cubes. Matematiche (Catania) 51(suppl.):241–251

    MathSciNet  Google Scholar 

  • Zagaglia Salvi N (2002) The automorphism group of the Lucas semilattice. Bull Inst Comb Appl 34:11–15

    MathSciNet  MATH  Google Scholar 

  • Zelina I (2008) Hamiltonian paths and cycles in Fibonacci cubes. Carpath J Math 24(1):149–155

    MathSciNet  MATH  Google Scholar 

  • Zhang H, Zhang F (2000) Plane elementary bipartite graphs. Discrete Appl Math 105(1–3):291–311

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang H, Lam PCB, Shiu WC (2008) Resonance graphs and a binary coding for the 1-factors of benzenoid systems. SIAM J Discrete Math 22(3):971–984

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang H, Ou L, Yao H (2009) Fibonacci-like cubes as Z-transformation graphs. Discrete Math 309(6):1284–1293

    Article  MathSciNet  MATH  Google Scholar 

  • Žigert P, Berlič M (2012) Lucas cubes and resonance graphs of cyclic polyphenantrenes. To appear in MATCH Commun Math Comput Chem

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandi Klavžar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klavžar, S. Structure of Fibonacci cubes: a survey. J Comb Optim 25, 505–522 (2013). https://doi.org/10.1007/s10878-011-9433-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-011-9433-z

Keywords

Navigation