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Abstract. This note confirms a conjecture of [Bramoullé, Anti-coordination and
social interactions, Games and Economic Behavior, 58, 2007: 30-49]. The problem,
which we name the maximum independent cut problem, is a restricted version of
the MAX-CUT problem, requiring one side of the cut to be an independent set. We
show that the maximum independent cut problem does not admit any polynomial
time algorithm with approximation ratio better than n

1−ǫ, where n is the number
of nodes, and ǫ arbitrarily small, unless P=NP. For the rather special case where
each node has a degree of at most four, the problem is still APX-hard.
Keywords. Anti-coordination game; The frustration function; The maximum
independent cut problem; APX-hard.

1 Introduction

Bramoullé (2007) introduces the anti-coordination game on networks. This is a very
promising model that captures the social interactions where two choices are strategic
substitutes. The game is described as follows. There is an undirected graph G = (N,E),
where each node stands for a player. Each pair of players that are neighbor to each other
on this graph play the following anti-coordination game:

A B
A (πAA, πAA) (πAB , πBA)
B (πBA, πAB) (πBB , πBB)

,

where πBA > πAA and πAB > πBB.
Obviously, this game is symmetric, and has two pure Nash equilibria, (A,B) and

(B,A) (notice that it also has a unique mixed Nash equilibrium). The name “anti-
coordination” comes from the fact that each player likes to choose a different action with
her opponent.

In Bramoullé’s model, each player plays the anti-coordination game once with each
of her neighbors, and she has to choose the same action among all the games she is
involved. Her payoff in the whole game is simply defined as the sum of her payoffs in all
the partial games involved.
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The relative payoffs, i.e. the gap between πBA and πAA, and that between πAB and
πBB , matter a lot. Define πA = πAB − πBB and πB = πBB − πAB. Players choosing
action A are called A players, and those choosing B are called B players. Intuitively, πA

is the payoff of the A player at equilibrium (A,B) minus the payoff obtained when she
deviates, and πB is the payoff of the B player at equilibrium (A,B) minus the payoff
obtained when she deviates.

The following frustration function is a powerful tool to study the anti-coordination
game on networks:

ϕ(s, πA, πB, G) = πAnBB + πBnAA,

where s is a pure action profile, nAA the number of edges between A players, and nBB

that between B players. In fact, the opposite of the frustration function, −ϕ, is a potential
function of the networked anti-coordination game. Therefore, the well-known result of
Monderer and Shapley (1996) tells us that: (i) the networked anti-coordination game
always has a pure Nash equilibrium, (ii) a pure action profile s is a Nash equilibrium
if and only if it is a local maximum of the potential function, or equivalently a local
minimum of the frustration function, and (iii) the (asynchronous) best response dynamic
leads any pure action profile to a Nash equilibrium. A more recent, and more general,
result of Hoefer and Suri (2009) shows that the best response dynamic terminates in
O(nm2), where n is the number of nodes and m the number of edges. Consequently,
finding an arbitrary pure Nash equilibrium for the networked anti-coordination game is
polynomially solvable.

The main concentration of Bramoullé (2007) is on the global minimums of the frus-
tration function. They correspond to special Nash equilibria. Bramoullé observes that
when πA = πB, minimizing the frustration function is generally NP-hard, because it
is equivalent to the well-known MAX-CUT problem, which is NP-hard (cf. Garey and
Johnson, 1979; or Korte and Vygen, 2008).

Bramoullé (2007) conjectures that in the polar case, where πA ≫ πB, minimizing
the frustration function is also NP-hard. He observes that in this case, a pure action
profile is a Nash equilibrium if and only if all the B players are independent on graph
G (because once a B player has one B neighbor, she will definitely deviate to A), and
each A player must have at least one B neighbor. The second condition requires that the
set of B players is a maximal independent set, because otherwise there must exist an A
player who has no B neighbor (we assume w.l.o.g. that the graph G is connected), who
can get strictly better off by deviating. We name this problem the maximum independent

cut problem, which, in the language of combinatorial optimization, is stated formally as
follows.

The maximum independent cut problem

Input. A graph G = (N,E).

Output. A maximal independent set C ⊆ N .

Objective. Maximizing the number of edges between C and N \ C.
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The maximum independent cut problem is obviously a restricted version of the MAX-
CUT problem. Not surprisingly, as conjectured by Bramoullé (2007), it is NP-hard. In
fact, we shall show in the next section that it is even hard to approximate, and does not
admit a PTAS even for a rather special case where each node has at most four neighbors.

2 The results

Theorem 1. The maximum independent cut problem is NP-hard.

Proof. We prove by reduction from the maximum independent set problem. Given an in-
stance of the maximum independent set problem G = (N,E), suppose N = {1, 2, · · · , n}.
We assume w.l.o.g. that G is not a complete graph. Construct an instance of the max-
imum independent cut problem G′ = (N ′, E′) as follows: (a) N ′ = N ∪ {n + 1, n +
2, · · · , n2 + n}; (b) For any 1 ≤ i < j ≤ n, i and j are connected in G′ if and only if
they are connected in G; (c) For all n + 1 ≤ i < j ≤ n2 + n, they are connected in G′;
(d) For all 1 ≤ i ≤ n and n + 1 ≤ j ≤ n2 + n, they are connected in G′. Let C∗ be a
maximum independent cut of G′, we prove that it is also a maximum independent set of
G. We claim that C∗ ⊆ N . In fact, if there exists n+ 1 ≤ i ≤ n2 + n such that i ∈ C∗,
then it must be true that C∗ = {i}, because each node in {n + 1, n + 2, · · · , n2 + n}
is connected to all other nodes in G′. And hence the objective value of this solution is
n2 + n − 1. However, the maximum independent set of G has at least two members,
because it is not a complete graph as we assume. If this set is chosen as a solution to
G′, the corresponding objective value is at least 2n2, which is bigger than n2 + n − 1.
Suppose C1 ⊆ N and C2 ⊆ N are two independent sets of G. Because the number of
neighbors that each node in N has is at least n2, and at most n2+n−1, we know that the
objective value of C1 is greater than that of C2 if and only if C1 has a bigger cardinality
than C2. Therefore, to be an optimal solution, C∗ must be a maximum independent set
of G. Hence the theorem. ⊓⊔

Recent results (H̊astad, 1999; Khot, 2001; Zuckerman, 2006) show that the maximum
independent set problem does not admit a polynomial time algorithm with approximation
ratio less than O(n1−ǫ), where ǫ is arbitrarily small, unless P = NP . Their results are
stated for the maximum clique problem, which is equivalent to the maximum independent
set problem. Using the same reduction as in the proof to Theorem 1, it can be trivially
shown that this result also holds for the maximum independent cut problem.

Corollary 1. The maximum independent cut problem does not admit a polynomial time

algorithm with approximation ratio less than O(n1−ǫ), where ǫ is arbitrarily small, unless

P = NP .

It can be observed also that the graph we construct in the above proof is rather dense.
When the graph is sparse, the maximum independent cut problem is still hard. In fact,
we can prove that a rather sparse version is APX-hard, which tells us that this special
case does not admit any PTAS, unless P=NP.

To ease the presentation, we define the 4-sparse maximum independent cut problem

as the restricted version of the maximum independent cut problem where each node has
a degree of at most four.
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Theorem 2. The 4-sparse maximum independent cut problem is MAXSNP-hard, and

thus APX-hard.

For the reader who is not familiar with the concepts of APX-hard or MAXSNP-hard,
or their relation, we refer her to Korte and Vygen (2008), Papadimitriou and Yannakakis
(1991), and Khanna et. al. (1998).

We shall prove the above theorem by reduction from a restricted version of the MAX-
SAT problem, the 3-OCC-MAX-2SAT problem. In this problem, each clause has exactly
two literals, and each literal occurs in at most three clauses. The 3-OCC-MAX-2SAT
is MAXSNP-hard (Berman and Karpinski, 1995). This problem is stated formally as
follows. Note that for any Boolean variable x, we use x to denote its negation.

The 3-OCC-MAX-2SAT problem

Input. n Boolean variables: x1, x2, · · · , xn, and m clauses, each having two literals:
x11∨x12, x21∨x22, · · · , xm1∨xm2, where ∀1 ≤ j ≤ m, xj1, xj2 ∈ {x1, x1, x2, x2, · · · , xn, xn}.
For each literal x, it occurs in at most three clauses.

Output. A truth assignment of the n variables.
Objective. Maximizing the number of true clauses.

We assume w.l.o.g. in the above problem that for each clause xj1 ∨ xj2, xj1 and xj2

are not negation to each other. Because otherwise, we can simply delete these kinds of
clauses, without changing the problem at all. We also assume that for each variable xi,
both xi and its negation xi occurs in at least one clauses, because if xi does not occur
at all, we can safely let xi = 1, and similarly if xi does not occur, we can let xi = 0.

Proof. Given an instance I of the 3-OCC-MAX-2SAT problem, construct an instance G
of the 4-sparse maximum independent cut problem as follows. (a) For each variable xi

and its negation xi, there are two nodes Xi and Xi corresponding to them, respectively.
We call these nodes chief nodes. (b) For each pair Xi and Xi, there is an edge between
them. (c) For each clause xj1 ∨ xj2, let Xj1, Xj2 ∈ {X1, X1, X2, X2, · · · , Xn, Xn} be the
corresponding chief nodes for xj1 and xj2, respectively. Three accessory nodes, Yj1, Yj2

and Yj3, are associated, in a way as illustrated in Fig. 1. Therefore, noting that m ≤ 3n,
there are 2n+ 3m ≤ 2n+ 9n = 11n nodes, and n+ 5m ≤ n+ 15n = 16n edges in total.

First of all, notice that G is indeed an instance of the 4-sparse maximum independent
cut problem, because each node has a degree of at most four. We denote the above
construction as f , i.e. G = f(I).

Suppose C is a solution to G. We construct T , a truth assignment of I as follows: for
each variable xj , remember that Xj is the corresponding chief node. If Xj ∈ C, then let
xj = 1. Otherwise, let xj = 0. We call the above mapping g, i.e. T = g(C).

We prove that (f, g) is an L-reduction from the 3-OCC-MAX-2SAT problem to the
4-sparse maximum independent cut problem. We need to check three things:

(a) f and g are both polynomially computable.
(b) there exists a constant α such that OPT (f(I)) ≤ αOPT (I), where OPT (I) is

the optimal objective value of I, and OPT (f(I)) is the optimal objective value of f(I).
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Fig. 1. Gadget(Xj1, Xj2): chief nodes are denoted by large circles.

(c) there exists a constant β such that OPT (I) − u(I, g(C)) ≤ β(OPT (f(I)) −
v(f(I), C)), where u(I, g(C)) is the objective value of solution g(C) in instance I, and
v(f(I), C) is the objective value of solution C in instance f(I).

Condition (a) can be checked trivially from our constructions. Condition (b) is also
easy. In fact, we can safely choose α = 32, because (i) OPT (I) ≥ n/2: for each variable
xi, if it occurs more than its negation xi, we let xi = 1, and otherwise we let xi = 0.
Recall the assumption that both xi and xi occur in at least one clauses. This truth
assignment guarantees that there are at least n true literals, and hence at least n/2
true clauses. The lower bound is obtained when the n true literals are paired arbitrarily
(suppose w.l.o.g. that n is even). (ii) OPT (f(I)) ≤ 16n: this is an upper bound of the
number of all edges in f(I). So we are left to prove the last condition.

We analyze the structure of C, a solution to G = f(I). Recall by definition that C
is above all a maximal independent set. For each Gadget(Xj1, Xj2), we discuss in four
cases.

(i) If Xj1 ∈ C and Xj2 ∈ C, then it must be true that Yj3 ∈ C. Because Yj1 is
connected to Xj1, Yj2 is connected to Xj2, neither of them can be selected by C. In order
to be a maximal independent set, C must include Yj3. And in this case Gadget(Xj1, Xj2)
contributes 4 to the objective value.

(ii) If Xj1 ∈ C and Xj2 /∈ C, then it must be true that either Yj2 ∈ C or Yj3 ∈ C,
and Gadget(Xj1, Xj2) contributes either 4 or 3 to the objective value.

(iii) If Xj1 /∈ C and Xj2 ∈ C, then it must be true that either Yj1 ∈ C or Yj3 ∈ C,
and Gadget(Xj1, Xj2) contributes either 4 or 3 to the objective value.

(iv) If Xj1 /∈ C and Xj2 /∈ C, then it must be true that either Yj1 ∈ C or Yj2 ∈ C or
Yj3 ∈ C, and this gadget contributes either 3 (in the first two cases) or 2 (in the third
case) to the objective value.

According to the above discussion, we can observe that edges within gadgets con-
tribute at most 4u(I, g(C)) + 3(m − u(I, g(C))) = 3m + u(I, g(C)). Since there are n
edges between chief nodes, we know that

(1) v(f(I), C) ≤ n+ 3m+ u(I, g(C)).
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Suppose now C∗ is an optimal solution to f(I). Then, in each of the first three
cases discussed above, where at least one of the chief nodes is selected, Gadget(Xj1, Xj2)
contributes 4, and in the last case, where no chief node is selected, Gadget(Xj1, Xj2)
contributes at most 3. Therefore, considering only edges within gadgets, C∗ is supposed
to maximize the number of gadgets such that at least one of its chief nodes is selected.
We consider now the edges between chief nodes. First of all, for each 1 ≤ i ≤ n, it cannot
happen that Xi /∈ C∗ and Xi /∈ C∗, because otherwise we can add Xi (or Xi) into C∗

and modify the selections in the affected gadgets to keep the new solution a maximal
independent set. This will make things strictly better. Second of all, since Xi and Xi

are connected, they cannot be selected simultaneously. Therefore, exactly one node in
{Xi, Xi} is selected by C∗, and hence it must be true that all the n edges between
chief nodes contribute to the objective value in C∗. Based on the above discussions, we
know that the number of gadgets that at least one of its chief nodes is selected by C∗ is
maximized, and hence

(2) OPT (f(I)) = n+ 3m+OPT (I).

Combining (1) and (2), we conclude that

OPT (f(I))− v(f(I), C)

≥ (n+ 3m+OPT (I))− (n+ 3m+ u(I, g(C)))

= OPT (I)− u(I, g(C)),

and hence we can take β = 1. ⊓⊔

By equation (2), we know that OPT (f(I)) ≤ n + 9n + OPT (I) ≤ 20OPT (I) +
OPT (I) = 21OPT (I). Therefore, we can take α = 21 to get a tighter lower bound for
the inapproximability of the maximum independent cut problem. We note first that there
is no polynomial algorithm for the 3-OCC-MAX-2SAT problem with approximation ratio
less than 2012/2011

.
= 1 + 5 · 10−4. This result is also proved by Berman and Karpinski

(1995).

Corollary 2. The maximum independent cut problem with maximum degree of four does

not admit a polynomial algorithm with approximation ratio less than 1 + 1/42231
.
=

1 + 2 · 10−5, unless P=NP.

Proof. Suppose not, and let A be an algorithm with approximation ratio less than
1 + 1/42231. Let the algorithm of the 3-OCC-MAX-2SAT problem derived by the L-
reduction (f, g) in the proof to Theorem 2 be A(f, g). For any instance I, we have

OPT (I)−A(f, g)(I)

≤ OPT (f(I))−A(f(I))

< (1/42231)OPT (f(I))

≤ (1/42231) · 21OPT (I)

= (1/2011)OPT (I).

This implies that OPT (I) < (2012/2011)A(f, g)(I), a contradiction with the result
of Berman and Karpinski (1995) . ⊓⊔
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3 Concluding remarks

In this note, we prove a conjecture of Bramoullé (2007) that a new combinatorial op-
timization problem, the maximum independent cut problem, is NP-hard. This confirms
the insight of Bramoullé that minimizing frustration is computationally hard even in the
polar case. It can be observed that none of the constructed graphs, neither in the proof to
Theorem 1 nor in that to Theorem 2, are claw-free. Since it is known that the maximum
independent set problem, in fact also its weighted version, is polynomially solvable for
claw-free graphs (Sbihi, 1980, Minty, 1980; see also the survey of Faudree, Flandrin and
Ryjác̆ek, 1999), it’s very interesting for future research to consider the claw-free graphs
for the maximum independent cut problem.

Other interesting directions include: (i) To study other cases of the networked anti-
coordination game, where πA 6= πB , and neither πA ≫ πB nor πB ≫ πA. (ii) To study
the PoA and PoS for the networked anti-coordination game. (iii) To design approximate
algorithms for various special cases of the maximum independent cut problem.
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