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Abstract

A k-colouring of a graph G = (V,E) is a mapping c : V →
{1, 2, . . . , k} such that c(u) 6= c(v) whenever uv is an edge. The re-
configuration graph of the k-colourings of G contains as its vertex set
the k-colourings of G, and two colourings are joined by an edge if
they differ in colour on just one vertex of G. We introduce a class of
k-colourable graphs, which we call k-colour-dense graphs. We show
that for each k-colour-dense graph G, the reconfiguration graph of
the `-colourings of G is connected and has diameter O(|V |2), for all
` ≥ k + 1. We show that this graph class contains the k-colourable
chordal graphs and that it contains all chordal bipartite graphs when
k = 2. Moreover, we prove that for each k ≥ 2 there is a k-colourable
chordal graph G whose reconfiguration graph of the (k+ 1)-colourings
has diameter Θ(|V |2).

Keywords reconfigurations, graph colouring, graph diameter, chordal
graphs.

1 Introduction

The reconfiguration graph of the k-colourings of a graph G contains as its
vertex set the k-colourings of G, and two colourings are joined by an edge in
the reconfiguration graph if they differ in colour on just one vertex of G. In
this paper, we determine sufficient conditions for the reconfiguration graph
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to have a diameter that is at most quadratic in the number of vertices. We
give examples of graph classes, such as chordal graphs and chordal bipartite
graphs, that satisfy these conditions and describe a class of graphs that show
that our quadratic bound is tight.

This work continues the study of reconfiguration problems found in a
number of recent papers. We can define the reconfiguration graph for any
search problem: the vertex set contains all solutions to the problem; the
edge set is defined by a symmetric adjacency relation on the solutions which
is normally chosen to represent a smallest possible change in the solution.
To date, the study of reconfiguration graphs has focussed on the computa-
tional complexity of the problems of deciding whether the reconfiguration
graph is connected, and deciding whether it contains a path between two
given solutions. Problems studied include boolean satisfiability [10], graph
colouring [3, 5, 6], shortest path [2, 14], and independent set, clique and
others [13].

Reconfiguration problems have diverse motivations. First, they repre-
sent an application in which it is necessary to move between solutions pass-
ing step-by-step through only feasible solutions (such as when the solution
represents an allocation by a supplier to customers as in the Power Sup-
ply problem [13]). Second, they can represent the evolution of a genotype
where only single mutations can occur and all genotypes must be above a
certain fitness threshold. Finally, an understanding of the geometry of the
solution space can provide insight into the performance of algorithms and
heuristics [1].

A fundamental problem is to characterise the relationship between the
complexity of reconfiguration problems and search problems. Considering
the problem of finding paths between solutions, previous results often follow
a certain pattern: problems in P beget reconfiguration problems that are
also in P; NP-complete problems have PSPACE-complete reconfiguration
problems. There are exceptions such as the shortest path reconfiguration
problem being PSPACE-hard [2].

Also of interest is finding shortest paths between solutions. The diam-
eter of the reconfiguration graph provides an upper bound. This is also
related to the complexity of finding paths in the reconfiguration graph be-
tween given solutions since paths of polynomial length in the reconfiguration
graph are certificates for the problem being in NP. For any graph, the di-
ameter of the reconfiguration graph of its 3-colourings has been shown to
be at most quadratic (in the number of vertices of the input graph) if the
reconfiguration graph is connected [6]. Although there are cases where the
reconfiguration graph is not connected but contains components of super-
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polynomial diameter [3], there is no known example of a family of graphs
for which the reconfiguration graph of k-colourings is connected but does
not have (at most) quadratic diameter.

A good place to start when thinking about the above question is to
consider graphs of bounded degeneracy. It is well known that graphs of
degeneracy k are (k + 1)-colourable. Bonsma and Cereceda [3] showed that
if G is a graph of degeneracy k, then Rk+2

G , the reconfiguration graph of
(k+ 2)-colourings of G, is connected. In light of the previous paragraph, we
are naturally led to ask whether Rk+2

G has quadratic diameter; indeed it is

conjectured [3] that Rk+2
G has cubic diameter, although this is modified to

quadratic [4]. Our work includes an important class of k-degenerate graphs,
namely (k+ 1)-colourable chordal graphs, for which we show the conjecture
to be true.

2 Preliminaries

In this section we give some basic terminology and notation; for any un-
defined terminology in the paper we refer the reader to the textbook of
Diestel [7].

We consider undirected finite graphs that have no loops and no multiple
edges. A graph is denoted G = (V,E), where V is the set of vertices and
E is the set of edges. For a subset S ⊆ V , the graph G[S] denotes the
subgraph of G induced by S, i.e., the graph with vertex set S and edge set
{uv ∈ E | u, v ∈ S}. We write G− S = G[V \ S]. The disjoint union of two
vertex-disjoint graphs G1 = (V1, E1) and G2 = (V2, E2), which we denote by
G1 ∪G2, is the graph with vertex set V1 ∪ V2 and edge set E1 ∪ E2.

The set of neighbours of a vertex u in a graph G is denoted NG(u) =
{v | uv ∈ E}. If u has no neighbours, then we say that u is an isolated
vertex. If u and v are adjacent and have no other neighbours, then the edge
uv is called an isolated edge.

A (vertex) colouring of a graph G = (V,E) is a mapping c : V →
{1, 2, . . .} such that c(u) 6= c(v) whenever uv ∈ E. Here, c(u) is referred
to as the colour of u. We write c(U) = {c(u) | u ∈ U} for U ⊆ V . Then
a k-colouring of G is a colouring c of G with c(V ) ⊆ {1, . . . , k}. If G has
a k-colouring, then G is called k-colourable. The chromatic number of G
denoted χG is the smallest value of k for which G is k-colourable. If G is
2-colourable, then G is also called bipartite. We denote the reconfiguration
graph of the k-colourings of a graph G by Rk

G. Recall that Rk
G contains as

its vertex set the k-colourings of G, and two colourings are joined by an edge
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in Rk
G if they differ in colour on just one vertex of G.

The n-vertex path is the graph with vertices v1, . . . , vn and edges vivi+1

for i = 1, . . . , n − 1. If vnv1 is also an edge, then we obtain the n-vertex
cycle. The length of a path or a cycle is the number of its edges. A graph is
called connected if, for every pair of distinct vertices v and w, there exists
a path connecting v and w. A maximal connected subgraph D of a graph
is called a connected component (or just component) of G; we shall often
abuse notation by denoting both the connected component and its vertex
set by D. A separator of a graph G = (V,E) is a set S ⊂ V such that
G− S has more connected components than G; if two vertices u and v that
belong to the same connected component in G are in two different connected
components of G − S, then we say that S separates u and v. We say that
we identify two vertices u and v if we replace them by a new vertex adjacent
to all neighbours of u and v.

A tree is a connected graph with no cycles. A clique is a graph where
every pair of vertices is joined by an edge. The size of a largest clique in G
is denoted ωG. A perfect graph is a graph in which χG′ = ωG′ for every (not
necessarily proper) induced subgraph of G.

3 Sufficient Conditions for Quadratic Diameter

In this section, we introduce the class of k-colour-dense graphs, and we
show by induction in Theorem 2 that, for every k-colour-dense graph G,
the diameter of R`

G is quadratic in the size of G for all ` ≥ k + 1. Indeed,
the definition of k-colour-dense graphs is recursive and has been formulated
in order to facilitate our inductive method. For this reason, it is difficult
to establish precisely which graphs are k-colour-dense; however, in the next
section, we shall show that, for example, k-colourable chordal graphs are
k-colour-dense.

For a fixed positive integer k, we say that a k-colourable graph G on n
vertices is k-colour-dense if either

(i) G is the disjoint union of cliques, each of which has at most k vertices,
or

(ii) G has a separator S, and G−S has components D and D′ with vertices
u ∈ D and v ∈ D′ such that

(a) |D| = 1 or |D ∪ S| ≤ k,

(b) S ⊆ N(v), and
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(c) identifying u and v in G results in a k-colour-dense graph G′.

We make the following easy observation for use in Section 4.1

Proposition 1. If G1 and G2 are k-colour-dense graphs, then G1 ∪G2, the
disjoint union of G1 and G2, is k-colour-dense.

Proof. The proof is by induction on the total number of vertices in G1 and
G2. If G1 and G2 are both the disjoint union of cliques, then the claim holds
trivially, so assume that G1 is not the disjoint union of cliques. Thus G1 has
a separator S, components D1 and D2, and vertices u and v as in part (ii) of
the definition of k-colour-dense graphs; in particular, G′1, the graph obtained
from G1 by identifying u and v, is k-colour dense. Thus, by induction, the
disjoint union of G′1 ∪ G2 is k-colour dense. Thus S,D,D′, u, v also fulfills
part (ii)(c) of the definition of k-colour-dense graphs when applied to G1∪G2

(and they obviously still satisfy (ii)(a) and (ii)(b)).

We define the `-colour diameter of a graph G to be the diameter of R`
G.

Theorem 2. For an integer k ≥ 1, let G be a k-colour-dense graph on n
vertices. Then, for all ` ≥ k+ 1, the `-colour diameter of G is at most 2n2.

Note that ` ≥ k + 1 is necessary in the above theorem because, for ex-
ample, the reconfiguration graph of the k-colourings of a clique on k vertices
consists of k! isolated vertices.

Proof. Let k ≥ 1 be an integer and let G be a k-colour-dense graph on n
vertices. We assume ` = k + 1; the proof for ` > k + 1 is similar. We prove
the following claim which immediately implies the theorem.

Claim 1. Let α and β be two (k+1)-colourings of G. Then we can transform
α to β by recolouring every vertex of G at most 2n times.

There are two cases to consider corresponding to the two conditions in the
definition of k-colour dense graphs.

We first suppose that G is a disjoint union of cliques and describe how to
recolour from α to β. We recolour the disjoint cliques one at a time. Given
a clique of G with vertices v1, . . . , vr, (r < k + 1), we consider the vertices
in order; once we have v1, . . . , vi−1 coloured with colours β(v1), . . . , β(vi−1)
respectively, we try to recolour vi with β(vi). We are only prevented from
doing this directly if there is a vertex vj with j > i that is presently coloured
β(vi). In this case we first recolour vj with an unused colour (such a colour
exists since r < k+1) and then colour vi with β(vi). When the whole clique
is coloured with β each vj has been recoloured at most j ≤ r ≤ 2n times.
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We now consider the case where G is not a disjoint union of cliques but
satisfies condition (ii) of the definition of k-colour dense. We use induction
on the number of vertices. Let S, D, D′, u ∈ D and v ∈ D′ be as in
condition (ii). We first show how to transform α into some (k+1)-colouring
α′ satisfying α′(u) = α′(v), by recolouring each vertex of G at most once.
Suppose that α(u) 6= α(v). If we can immediately recolour u with α(v),
then we do this to obtain the desired colouring α′. If not, then

W := {w ∈ NG(u) | α(w) = α(v)} ⊆ NG(u)

must be non-empty. Since u ∈ D, and D is a component of G − S, we
have W ⊆ NG(u) ⊆ D ∪ S. However, every vertex of W is coloured α(v)
and no vertex of S is coloured α(v) (since every vertex of S is adjacent to
v by condition (ii)(b)), so W ⊆ D. Now, for each w ∈ W ⊆ D, we have
NG(w) ⊆ D ∪S; thus |NG(w)| ≤ |D ∪S| ≤ k by condition (ii)(a) (note that
|D| 6= 1 since D contains u and the non-empty set W ⊆ N(u)). Hence, each
vertex of W can be successively recoloured with some colour not used in its
neighbourhood. After this we recolour u with α(v) and we do not recolour
any other vertices of G. Thus we have recoloured each vertex of G at most
once and transformed α to a new (k + 1)-colouring α′ where α′(u) = α′(v).
By the same argument, we can transform β to a (k + 1)-colouring β′ with
β′(u) = β′(v). Changing α to α′ and β to β′ together require that each
vertex of G is recoloured at most twice.

We now identify u and v. This leads to a new vertex u′ and a graph
G′ that is k-colour-dense by condition (ii)(c). We can consider α′ and β′

to be colourings of G′ by defining α′(u′) = α′(u) = α′(v) and β′(u′) =
β′(u) = β′(v), respectively. We can transform α′ into β′ on G′ using at most
2(n− 1) recolourings for each vertex (by application of either the induction
hypothesis or the previous case depending on whether G′ satisfies the first or
second condition of the definition of k-colour dense). Thus we can transform
α′ into β′ on G by simulating each recolouring of u′ by a recolouring of u and
v in G, i.e., every time we recolour u′ in G′ we apply the same recolouring to
u and then immediately to v in G. Thus transforming α′ to β′ in G requires
that each vertex ofG is recoloured at most 2(n−1) times, and transforming α
to α′ and β′ to β requires at most two additional recolourings of each vertex,
resulting in a total of at most 2(n− 1) + 2 = 2n recolourings of each vertex,
as required. This completes the proof of the claim and of Theorem 2.
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4 Graph Classes

We show that k-colourable chordal graphs are k-colour-dense for every fixed
integer k ≥ 1 and that chordal bipartite graphs are 2-colour-dense. Hence,
these graphs satisfy the necessary condition in Theorem 2 and consequently
have a quadratic `-colour diameter for ` ≥ k + 1 and ` = 3, respectively.

4.1 Chordal graphs

A chordal graph is a graph with no induced cycle of length more than 3.
Let G = (V,E) be a graph, let K be the set of maximal cliques of G, and
for v ∈ V , let Kv be the set of maximal cliques of G containing v. A clique
tree T of a (connected) graph G is a tree whose vertex set is K and whose
edges are such that T [Kv] is connected (i.e. forms a subtree) for all v ∈ V .
In this context, the maximal cliques of G are also called bags of T .

The next lemma is well known.

Lemma 3 ([12]). A connected graph is chordal if and only if it has a (not
necessarily unique) clique tree.

The next lemma is also well known (see e.g. [9]).

Lemma 4. If G is a chordal graph then ωG = χG.

Next we prove some properties of chordal graphs and clique trees that
we shall require. The first property is well known [8], and the second one
has probably been used before, but we give proofs for completeness.

Lemma 5. Let G be a connected chordal graph that has a clique tree T ,
where T has at least two vertices. Let K be a leaf of T and let K ′ be the
unique neighbour of K in T . We have the following properties.

(i) We have that S := K ∩ K ′ is a separator of G, and D := K\S is
non-empty and a connected component of G− S.

(ii) There exists u ∈ K\K ′ = K\S = D and v ∈ K ′\K such that, if
G′ is obtained from G by identifying u and v, then G′ is chordal and
ωG′ ≤ ωG (so χG′ ≤ χG by Lemma 4).

We remark that the above lemma holds more generally even if K is not
a leaf of T , but the proof in our case is slightly simpler.
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Proof. (i) Fix any u ∈ D := K\S = K\K ′; such a vertex exists since
otherwise K ⊆ K ′, contradicting the maximality of K. Fix any z ∈ G−K.
Let P be a path of G from u to z with vertices u = a0, a1, . . . , ar, ar+1 = z
in order. Let aiai+1 be the first edge of P not in K. Then aiai+1 is an edge
of some maximal clique K∗ 6= K. Furthermore ai ∈ K since either ai = u
or ai−1ai is an edge of K. We deduce that K,K∗ ∈ Kai . Since T [Kai ] is
connected and the only neighbour of K is K ′, we have K ′ ∈ Kai . Thus
ai ∈ K ∩K ′ = S and so P passes through S. So every path from u ∈ K\S
to any vertex z 6∈ K passes through S. Hence S is a separator of G, and
K\S =: D (which is a clique) is a connected component of G− S.

(ii) Fix any u ∈ K\S = K\K ′ and v ∈ K ′\K; such vertices exist by the
maximality of K and K ′. Let G′ be the graph obtained by identifying u and
v, and let u′ be the new vertex of G′ that results. Suppose for a contradiction
that G′ is not chordal. Then G′ has an induced k-cycle for some k ≥ 4; this
cycle necessarily contains u′ since otherwise G would contain an induced
k-cycle. Therefore in G′ there is a path with vertices u, b1, . . . , bk−1, v (in
order) such that identifying u and v gives an induced cycle. Thus the path
can have no chords except possibly ubk−1 or b1v. However both of those
chords would give an induced k-cycle in G, so we can assume that P is an
induced path (of length k ≥ 4). But, since S separates u and v (by part (i)
of the lemma), P must pass through S, and since every vertex of S = K∩K ′
is adjacent to both u and v, P cannot be an induced path.

Finally, suppose for a contradiction that G′ has a (k + 1)-clique. The
clique necessarily contains u′; otherwise it would also be a (k + 1)-clique
of G. Thus in G, there is a k-clique L such that L ⊆ N(u) ∪ N(v). Fix
vertices a ∈ L\N(u) and b ∈ L\N(v) (a, b exist because otherwise we have
a (k + 1)-clique of G). We know that S ⊆ N(u) ∪ N(v), so that a, b 6∈ S.
We also know S separates u and v, and yet u, a, b, v is a path from u to v in
G− S, a contradiction.

We use Lemma 5 in the proof of the following result.

Theorem 6. For each fixed integer k ≥ 1, every k-colourable chordal graph
is k-colour-dense.

Proof. Let G = (V,E) be a k-colourable chordal graph on n vertices. We
show by induction on n that G is k-colour-dense. We may assume that
G is connected since otherwise, each component of G is k-colour-dense (by
induction), and so G is k-colour dense by Proposition 1. We may also assume
that G is not a clique, since then it is trivially k-colour-dense.
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By Lemma 3, G has a clique tree T . Since G is not a clique, G has at
least two maximal cliques, so T has at least two vertices. Let K be a leaf of
T , and let K ′ be the unique neighbour of K. By Lemma 5, S := K ∩K ′ is
a separator of G, D := K\S is a connected component of G− S, and there
exist two vertices u ∈ D and v ∈ K ′\K ⊆ V \(D ∪ S) such that identifying
u and v gives a graph G′ that is chordal and χG′ ≤ χG ≤ k. Set D′ to be
the connected component of G− S containing v.

Now, for G, it is easy to check that S,D,D′, u, v satisfy conditions (ii) in
the definition of k-colour-dense graphs. Condition (ii)(a) is satisfied because
D ∪ S = K and so |D ∪ S| ≤ |K| ≤ k. Condition (ii)(b) is satisfied because
v ∈ K ′ and S ⊆ K ′, so that S ⊆ N(v). Condition (ii)(c) is satisfied because
identifying u and v in G gives a k-colourable chordal graph G′, which is
k-colour-dense by the induction hypothesis.

4.2 Chordal bipartite graphs

A chordal bipartite graph is a bipartite graph with no induced cycle of length
more than 4. It is a misnomer since chordal bipartite graphs are only chordal
if they are trees. We show that chordal bipartite graphs are 3-colour-dense
by proving that a more general class of graphs is 3-colour-dense. Let us call
a graph semi-false if it can be constructed from a set of one or more isolated
vertices by a sequence of the following two operations, namely adding a
pendant vertex and adding a semi-false twin. Here, a pendant vertex in a
graph is a vertex of degree one, and a vertex u is a semi-false twin of another
vertex v if N(u) ⊆ N(v). Note that adding a pendant vertex u is a special
case of adding a semi-false twin, unless u is added as the neighbour of an
isolated vertex.

In order to show that every chordal bipartite graph is semi-false we need
the following terminology. A vertex u in a bipartite graph G is weakly
simplicial if its neighbours can be labelled v1, . . . , vt such that N(vi) ⊆
N(vi+1) for i = 1, . . . , t − 1. Uehara [16] showed the following, which also
follows from results of Hammer, Maffray, and Preismann [11]; see Pelsmajer,
Tokazy, and West [15].

Lemma 7 ([11, 16]). A bipartite graph is chordal bipartite if and only if
every induced subgraph has a weakly simplicial vertex.

We use Lemma 7 in the proof of the following theorem.

Theorem 8. The class of semi-false graphs is a proper superclass of the
class of chordal bipartite graphs.
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Proof. We first give an example of a semi-false graph G∗ that is not chordal
bipartite. Start with a vertex u1 and add three pendant vertices u2, u3, u4,
each with (unique) neighbour u1. Then add two semi-false twins u5 and u6
of u1 with neighbours u2, u3 and u3, u4, respectively. Finally add a semi-
false twin u7 of u3 with neighbours u5 and u6. Because u1, u2, u4, u5, u6, u7
induce a 6-vertex cycle in G∗, we find that G∗ is not chordal bipartite.

We now show by induction on n that every chordal bipartite graph G
on n vertices is semi-false. The case n = 1 is trivial. Let n ≥ 2, let G
be a chordal bipartite graph on n vertices, and assume that every chordal
bipartite graph with n − 1 vertices is semi-false. If we can show that G
can be obtained from a semi-false graph G′ by adding a pendant vertex or
a semi-false twin the theorem will follow. Note that any graph obtained
from G by removing a vertex is chordal bipartite and so, by the induction
hypothesis, semi-false.

As a graph containing only isolated vertices is semi-false, we assume that
G has a component D containing at least 2 vertices. Lemma 7 tells us that
D has a weakly simplicial vertex u, the neighbours of which can be labelled
v1, . . . , vt, t ≥ 1, such that N(vi) ⊆ N(vi+1) for i = 1, . . . , t− 1.

First suppose that t = 1. Then let G′ = G−u. Thus G is obtained from
G′ by adding u as a pendant vertex.

Now suppose that t ≥ 2. Then let G′ = G− v1. Therefore G is obtained
from G′ by adding v1 as a semi-false twin of v2.

We note that the class of semi-false graphs does not contain the class of
chordal graphs; this can be seen by taking any clique on 3 or more vertices.

We now show that semi-false graphs are bipartite.

Proposition 9. Every semi-false graph G is 2-colourable.

Proof. If G contains only isolated vertices the proposition is true. Otherwise
G can be obtained from a graph G′ by adding a vertex u that is either
pendant or a semi-false twin. Using induction, we can assume that G′ has a
2-colouring. We show how to extend it to G by colouring u. If u is pendant,
we colour it with the colour that is not used on its unique neighbour. If u is
a semi-false twin, then all its neighbours have a common neighbour v. We
can therefore colour u with the colour used on v.

We conclude this section by showing that every semi-false graph G is
2-colour-dense.

Theorem 10. Every semi-false graph is 2-colour-dense.
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Proof. We prove by induction on n that if G = (V,E) is a semi-false graph
on n vertices then it is 2-colour-dense. The claim is trivially true if n = 1.

If G is a semi-false graph on n vertices, then we know by Proposition 9
that G is 2-colourable. Recall that G is constructed from a set U of isolated
vertices by a sequence of pendant-vertex and semi-false-twin operations. Let
u be the last vertex added to G either as a pendant vertex or a semi-false
twin (if there is no such vertex, then we have G = (U, ∅), which is trivially
2-colour dense). If u is a pendant vertex, we may assume that u is an end
vertex of an isolated edge e = uu′ of G (since otherwise we can consider u to
be a semi-false twin of another vertex). Then G[{u, u′}] = ({u, u′}, {e}) is
2-colour-dense, G[V \{u, u′}] is 2-colour-dense by induction, so G is 2-colour
dense by Proposition 1.

Thus we may assume u is a semi-false twin of some other vertex v of
G. We take S = N(u), D = {u} and we let D′ be the component of
G − S containing v. Then S is a separator of G (separating u from v)
and |D| = 1; hence, condition (ii)(a) in the definition of 2-colour-dense is
satisfied. Because S = N(u) ⊆ N(v), condition (ii)(b) is satisfied. Finally,
identifying u and v in G to form G′ is equivalent to deleting u from G.
Thus G′ is a semi-false graph (obtained from U by performing the same
operations as used for G, except the last). Since G′ is 2-colour-dense (by
induction) we see that condition (ii)(c) is satisfied. This completes the proof
of Theorem 10.

5 Lower Bounds

We prove that the bound in Theorem 2 is asymptotically tight up to a
constant factor for every k. To be more precise, for k = 2, we show that
the 3-colour diameter of a path on n vertices is Θ(n2). (Note that a path is
chordal bipartite, and as such it is 2-colour-dense due to Theorems 8 and 10.)
Apart from one subtlety, our result employs very similar techniques to [6],
where it is shown that a path on n vertices with an appended triangle has
two 3-colourings with quadratic separation. Note however that this example
has a disconnected reconfiguration graph and hence infinite diameter.

For each fixed k ≥ 3 and every n ≥ k, we give an example of an n-
vertex, k-colour-dense graph Gk(n) with (k+ 1)-colour diameter Θ(n2). We
believe that these are the first examples of graphs with quadratic k+1-colour
diameter. These examples are easily derived from the path.

Theorem 11. The 3-colour diameter of a path on n vertices is Θ(n2).
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Proof. We have already seen that the 3-colour diameter of a path on n
vertices is at most 2n2 by Theorem 2 and recalled that a path is 2-colour-
dense. It remains only to show a quadratic lower bound.

Let P be a path on n vertices v1, . . . , vn for some integer n ≥ 2. Let
the n− 1 edges of P be e1, . . . , en−1, where ei = vivi+1 for i = 1, . . . , n− 1.
We define edge weights w(ei) = min(i, n − i) for i = 1, . . . , n − 1. Given a
3-colouring c of P and an edge ei = vivi+1, we define

zc(ei) =

{
1 if (c(vi), c(vi+1)) = (1, 2), (2, 3), or (3, 1);

−1 otherwise.

We define the value of a 3-colouring c as

φ(c) =

n−1∑
i=1

w(ei)zc(ei).

We claim that |φ(c1) − φ(c2)| ≤ 2 for any two 3-colourings c1 and c2 of P
that are adjacent in the graph R3

P , i.e., that differ on one vertex of P . This
is easy to check, but we give the details for completeness.

Note first that z(e) changes sign if we change the colour of exactly one
end vertex of e or if we exchange the colours of e. Let vk be the (unique)
vertex on which c1 and c2 differ, and suppose c1(vk) = x and c2(vk) = y 6= x.
If z is the unique colour that is not x or y, then the vertices vk−1, vk, vk+1

(when they exist) are coloured z, x, z by c1 and z, y, z by c2. From this we
deduce that

zc1(ek−1) = −zc2(ek−1) = −zc1(ek) = zc2(ek), (1)

ignoring any terms that are not defined. If k 6= 1, n then

φ(c1)− φ(c2) =
k∑

i=k−1
w(ei)(zc1(ei)− zc2(ei))

= 2zc1(ek−1)
(
w(ek−1)− w(ek)

)
,

where the last line follows from (1). Taking the absolute value of both sides
(and noting that |w(ek−1)− w(ek)| ≤ 1) proves the claim. If k = 1, n, then
excluding the appropriate terms from the above calculation (and noting that
w(e1) = w(en−1) = 1) also yields |φ(c1)− φ(c2)| ≤ 2.

We now let c1 be the 3-colouring that colours v1, v2, v3, v4, . . . by colours
1, 2, 3, 1, . . ., respectively, and we let c2 be the 3-colouring that colours
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v1, v2, v3, v4, . . . by colours 3, 2, 1, 3, . . ., respectively. Then

φ(c1) = −φ(c2) =
n−1∑
i=1

w(ei) =

⌊
n

2

⌋⌈
n

2

⌉
≥ 1

4
(n2 − 1).

In order to get from c1 to c2, the value of the colouring must necessarily
change by |φ(c1) − φ(c2)| ≥ 1

2(n2 − 1). Hence, the number of recolourings
required is at least 1

4(n2 − 1) = Θ(n2) because each recolouring changes the
value by at most 2. This completes the proof of Theorem 11.

We now generalise Theorem 11. Recall that every k-colourable chordal
graph is k-colour dense by Theorem 6.

Theorem 12. For each fixed k ≥ 2 and each n ≥ k, there is a k-colourable
chordal (hence k-colour-dense) graph Gk(n) on n vertices that has (k + 1)-
colour diameter Θ(n2).

Proof. The case k = 2 follows from Theorem 11. Assume that k ≥ 3 and
set n′ = n− k + 2 ≥ 2. Let Gk(n) be the graph obtained from a path P on
n′ vertices v1, . . . , vn′ by adding a clique on k− 2 new vertices w1, . . . , wk−2
and inserting an edge between each vi and each wj . Because we can obtain
Gk(n) by repeatedly adding vertices adjacent to all existing vertices, Gk(n)
is chordal. Clearly Gk(n) is k-colourable. We now show that the k-colour
diameter of Gk(n) is Θ(n′2) = Θ(n2).

Let c1 be a colouring of Gk(n) in which the colours 1, 2 and 3 cycle on the
vertices of P . Let c2 be the colouring closest to c1 in Rk

Gk(n)
in which only

2 colours are used on P . To recolour from c1 to c2 only involves recolouring
vertices on P since as long as there are 3 colours used on the path, we cannot
recolour any vertex not in the path. Moreover only the colours 1, 2 and 3
are available to use on the path. So we can forget about the clique and think
only about the distance between the restriction to P of c1 and c2 in R3

P .
Using the ideas of the proof of Theorem 11, we note again that the value
of c1 is Θ(n′2) = Θ(n2) and see that if P has an even number of edges the
value of c2 is 0 (else consider instead P − v1v2). As again each recolouring
changes the value by at most 2, we are done.

6 Future Work

We finish our paper by posing the following two open questions.

1. Do graphs of treewidth at most k − 1 have a quadratic (k + 1)-colour
diameter?

13



2. Do k-colourable perfect graphs have a quadratic (k + 1)-colour diam-
eter?

We note that k-colourable chordal graphs have treewidth at most k − 1.
Also recall that chordal graphs are perfect. Hence, affirmative answers to
questions 1 and 2 would form two natural generalizations of our result for
the class of chordal graphs. We could pose the same two questions even
after relaxing the definition of a quadratic (k + 1)-diameter by asking for a
(k + 1)-diameter that instead of O(n2) is at most f(k)O(n2) where f is a
function that only depends on k.
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