Some Results on the Target Set Selection Problem

Chun-Ying Chiang*, Liang-Hao Huang ${ }^{\dagger}$ Bo-Jr Li, Jiaojiao Wu, Hong-Gwa Yeh ${ }^{\ddagger \S}$
Department of Mathematics, National Central University, Taiwan
Department of Applied Mathematics, National Sun Yat-sen University, Taiwan

Abstract

In this paper we consider a fundamental problem in the area of viral marketing, called Target Set Selection problem. We study the problem when the underlying graph is a block-cactus graph, a chordal graph or a Hamming graph. We show that if G is a block-cactus graph, then the Target Set Selection problem can be solved in linear time, which generalizes Chen's result [2] for trees, and the time complexity is much better than the algorithm in [1] (for bounded treewidth graphs) when restricted to block-cactus graphs. We show that if the underlying graph G is a chordal graph with thresholds $\theta(v) \leq 2$ for each vertex v in G, then the problem can be solved in linear time. For a Hamming graph G having thresholds $\theta(v)=2$ for each vertex v of G, we precisely determine an optimal target set S for (G, θ). These results partially answer an open problem raised by Dreyer and Roberts [3].

Key words: target set selection, viral marketing, tree, block graph, blockcactus graph, chordal graph, Hamming graph, social networks, diffusion of innovations.

1 Introduction and preliminaries

A graph G consists of a set $V(G)$ of vertices together with a set $E(G)$ of unordered pairs of vertices called edges. We use $u v$ for an edge $\{u, v\}$. Two vertices u and v are adjacent to each other if $u v \in E(G)$. In this paper, all graphs are finite and have no loops or multiple edges. For $S \subseteq V(G)$, the subgraph of G induced by S is the graph $G[S]$ with vertex set S and edge set $\{u v \in E(G): u, v \in S\}$. Denote by $G-S$ the subgraph of G induced by $V(G) \backslash S$ and, for convenience, we write $G-v$ for $G-\{v\}$ when $v \in V(G)$. The neighborhood of a vertex v in G is the set $N_{G}(v)=\{u \in V(G)$:

[^0]$u v \in E\}$. The degree $d_{G}(v)$ of v is defined by $d_{G}(v)=\left|N_{G}(v)\right|$. The distance $d_{G}(x, y)$ of two vertices x and y in G is defined to be the length of the shortest path from x to y in G. A complete graph is a graph in which every two distinct vertices are adjacent. The complete graph on n vertices is denoted by K_{n}. The n-cycle is the graph C_{n} with $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(C_{n}\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\}$. The n-path is the graph P_{n} with $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}\right\}$.

The topology of a person-to-person recommendation social network is usually modeled by a graph G in which the vertices $V(G)$ represent customers, and edges $E(G)$ connect people to their friends. Consider the following scenario: A company wish to market a new product. The company has at hand a description of the social network G formed among a sample of potential customers. The company wants to target key potential customers $S \subseteq V(G)$ of the social network and persuade them into adopting the new product by handing out free samples. We assume that individuals in S will be convinced to adopt the new product after they receive a free sample, and the friends of customers in S would be persuaded into buying the new product, which in turn will recommend the product to other friends. The company hopes that by word-of-mouth effects, convinced vertices in S can trigger a cascade of further adoptions, and many customers will ultimately be persuaded. This advertising technique of spreading commercial message via social networks G is called viral marketing by analogy with computer viruses. But now how to find a good set of potential customers S to target?

In general, each vertex v is assigned a threshold value $\theta(v)$. The thresholds represent the different latent tendencies of vertices (customers) to buy the new product when their neighbors (friends) do. To be precise, let G be a connected undirected graph equipped with thresholds $\theta: V(G) \rightarrow \mathbb{Z}$. Denote by (G, θ) the social network G equipped with thresholds θ. When θ is a constant function such that $\theta(v)=k$ for all vertices $v,(G, \theta)$ will be written as (G, k) for short. Vertices v of G are in one of two states, active or inactive, which indicate whether v is persuaded into buying the new product. We call a vertex v active if it has been convinced to adopt the new product and assume that vertex v becomes active if $\theta(v)$ of its neighbors have adopted the new product.

In this paper we consider the following repetitive process, called activation process in (G, θ) starting at target set $S \subseteq V(G)$, which unfolds in discrete steps. Initially (at time 0), set all vertices in S to be active (with all other vertices inactive). After that, at each time step, the states of vertices are updated according to following rule:

Parallel updating rule: All inactive vertices v that have at least $\theta(v)$ already-
active neighbors become active.

The activation process terminates when no more vertices can get activated. Let $[S]_{\theta}^{G}$ denote the set of vertices that are active at the end of the process. If $F \subseteq[S]_{\theta}^{G}$, then we say that the target set S influences F in (G, θ). Notice that if v has threshold $\theta(v)>d_{G}(v)$ and $v \in[S]_{\theta}^{G}$ for some target set S, then it must be $v \in S$. We also note that, according to our rule, if an inactive vertex v has threshold $\theta(v) \leq 0$ at time step t, then it becomes active automatically at the next time step. We are interested in the following optimization problem:

Target Set Selection: Finding a target set S of smallest possible size that influences all vertices in the social network (G, θ), that is $[S]_{\theta}^{G}=V(G)$.

We define min-seed (G, θ) to be the minimum size of a target set that guarantees that all vertices in (G, θ) are eventually active at the end of the activation process, that is, min-seed $(G, \theta)=\min \left\{|S|: S \subseteq V(G)\right.$ and $\left.[S]_{\theta}^{G}=V(G)\right\}$. For $S \subseteq V(G)$, if $[S]_{\theta}^{G}=V(G)$ and $|S|=\min -\operatorname{seed}(G, \theta)$, then we call S an optimal target set for (G, θ).

Domingos and Richardson [5] considered Target Set Selection problem in a probabilistic setting and presented heuristic solutions. Kempe, Kleinberg, and Tardos [9] considered probabilistic thresholds, called linear threshold model, and focused on the maximization version of the Target Set Selection problem - for any given k, find a target set S of size k to maximize the expected number of active vertices at the end of the activation process. They showed that this problem is NP-hard and proved that a hill-climbing algorithm can efficiently obtain an approximation solution that is 63% of optimal.

In this paper we only consider the Target Set Selection problem with deterministic, explicitly given, thresholds. In 2002, Peleg [11] showed that this problem is NP-hard for majority thresholds, that is $\theta(v)=\left\lceil d_{G}(v) / 2\right\rceil$ for each vertex v in G. In 2009, Dreyer and Roberts [3] showed that the problem is NP-hard for constant thresholds - given a fixed $k \geq 3, \theta(v)=k$ for each vertex v in G, and Chen [2] proved that it is NP-hard for bounded bipartite graphs G with thresholds at most 2.

In general, the Target Set Selection problem is not just NP-hard but also extremely hard to approximate. Kempe, Kleinberg, and Tardos [9] showed that a maximization version of Target Set Selection with constant thresholds cannot be approximated within any non-trivial factor, unless $P=N P$. In 2009, Chen [2] proved that given any n-vertices regular graph with thresholds $\theta(v) \leq 2$ for any vertex v, the Target Set Selection problem can not be approximated within the ratio of $O\left(2^{\log ^{1-\epsilon} n}\right)$, for any fixed constant $\epsilon>0$, unless NP $\subseteq \operatorname{DTIME}\left(n^{\text {poly } \log (n)}\right)$.

Very little is known about min-seed (G, θ) for specific classes of graphs G. Dreyer and Roberts [3] showed that when G is a tree, the Target Set Selection problem can be solved in linear time for constant thresholds. Chen [2] showed that when the underlying graph is a tree, the problem can be solved in polynomial-time under a general threshold model. In 2010, Ben-Zwi, Hermelin, Lokshtanov and Newman [1] showed that for n-vertices graph G with treewidth bounded by ω, the Target Set Selection problem can be solved in $n^{O(\omega)}$ time. In [3, 6], min-seed (G, θ) is computed for paths, cycles and for different kinds of grids G under constant threshold model.

The objective of this paper is to study the Target Set Selection problem when the underlying graph is a block-cactus graph, a chordal graph or a Hamming graph. In Section 2, we show that if G is a block-cactus graph, then the problem can be solved in linear time, which generalizes Chen's result [2] for trees, and the time complexity is much better than the algorithm in [1] (for bounded treewidth graphs) when restricted to block-cactus graphs. In Section 3, we show that if the underlying graph G is a chordal graph with thresholds $\theta(v) \leq 2$ for each vertex v in G, then the Target Set Selection problem can be solved in linear time. Our results partially answer an open problem raised by Dreyer and Roberts at the end of their paper [3]. In Section 4, for a Hamming graph G having thresholds $\theta(v)=2$ for each vertex v of G, we precisely determine an optimal target set S for (G, θ).

In order to study min-seed (G, θ) we introduce a sequential version of the above activation process, called sequential activation process, which employs the following rule instead of the parallel updating rule:

Sequential updating rule: At each time step t, exactly one of inactive vertices that have at least $\theta(v)$ already-active neighbors becomes active.

The proof of the following lemma is straightforward and so is omitted. In the sequel, Lemma 1 will be used without explicit reference to it.

Lemma 1 For a social network (G, θ), an optimal target set under sequential updating rule is also an optimal target set under parallel updating rule, and vice versa.

Let \mathcal{P} be a sequential activation process on (G, θ) starting out from a target set S. In this process, if $v_{1}, v_{2}, \ldots, v_{r}$ is the order that vertices in $[S]_{\theta}^{G} \backslash S$ are convinced, then $\left(v_{1}, v_{2}, \ldots, v_{r}\right)$ is called the convinced sequence of \mathcal{P}, and we say that target set S has a convinced sequence $\left(v_{1}, v_{2}, \ldots, v_{r}\right)$ on (G, θ).

2 Block-cactus graphs

A vertex v of a graph is called a cut-vertex if removal of v and all edges incident to it increases the number of connected components. A block of a graph G is a maximal connected induced subgraph of G that has no cut-vertices. A graph G is a block graph if every block of G is a complete graph. A block B of a graph G is called a pendent block of G if B has at most one cut-vertex of G. A graph G is a block-cactus graph if every block of G is either a complete graph or a cycle. Let v be a cut-vertex of G. If $G-v$ consists of two disjoint graphs W_{1} and W_{2} and let $G_{i}(i=1,2)$ be the subgraph of G induced by $\{v\} \bigcup V\left(W_{i}\right)$, then G is called the vertex-sum at v of the two graphs G_{1} and G_{2}, and denoted by $G=G_{1} \oplus_{v} G_{2}$.

In the following Theorem 2, let $G_{1} \oplus_{v} G_{2}$ be a social network equipped with threshold function θ. Let θ_{1} be a threshold function of $G_{1}-v$ which is the same as the function θ, except that $\theta_{1}(x)=\theta(x)-1$ for every $x \in N_{G_{1}}(v)$. Let S_{1} be an optimal target set for $\left(G_{1}-v, \theta_{1}\right)$ that maximizes the cardinality of the set $N_{G_{1}}(v) \cap\left[S_{1}\right]_{\theta}^{G_{1}}$, where, by slight abuse of notation, θ also means the threshold function of G_{1} by restricting the threshold θ of $G_{1} \oplus_{v} G_{2}$ to the set $V\left(G_{1}\right)$. Let θ_{2} be a threshold function of G_{2} which is the same as the function θ, except that $\theta_{2}(v)=\theta(v)-\left|N_{G_{1}}(v) \cap\left[S_{1}\right]_{\theta}^{G_{1}}\right|$. Let S_{2} be an optimal target set for $\left(G_{2}, \theta_{2}\right)$. Now, with the definitions and notation introduced in this paragraph, we prove the following theorem.

Theorem $2 S_{1} \cup S_{2}$ is an optimal target set for $\left(G_{1} \oplus_{v} G_{2}, \theta\right)$.

Proof. Consider a sequential activation process in $\left(G_{1} \oplus_{v} G_{2}, \theta\right)$ starting at target set $S_{1} \cup S_{2}$. Clearly $N_{G_{1}}(v) \cap\left[S_{1}\right]_{\theta}^{G_{1}} \subseteq\left[S_{1}\right]_{\theta}^{G_{1} \oplus v G_{2}}$, and hence $V\left(G_{2}\right) \subseteq\left[S_{1} \cup S_{2}\right]_{\theta}^{G_{1} \oplus v G_{2}}$, which implies $V\left(G_{1}\right) \subseteq\left[S_{1} \cup S_{2}\right]_{\theta}^{G_{1} \oplus v G_{2}}$. That is the target set $S_{1} \cup S_{2}$ influences all vertices in $\left(G_{1} \oplus_{v} G_{2}, \theta\right)$. To prove the theorem it remains to show that $\left|S_{1}\right|+\left|S_{2}\right|=$ $\min -\operatorname{seed}\left(G_{1} \oplus_{v} G_{2}, \theta\right)$.

Let S be an optimal target set for $\left(G_{1} \oplus_{v} G_{2}, \theta\right)$ that minimizes the size of the set $S \cap V\left(G_{1}-v\right)$. Since $\left(S \cap V\left(G_{1}-v\right)\right) \cup\{v\}$ influences all vertices in $\left(G_{1}, \theta\right)$, we have that $S \cap V\left(G_{1}-v\right)$ influences all vertices in $\left(G_{1}-v, \theta_{1}\right)$. It now follows that $\left|S \cap V\left(G_{1}-v\right)\right|=\left|S_{1}\right|$ since if not, then we have $\left|S \cap V\left(G_{1}-v\right)\right| \geq\left|S_{1}\right|+1$, and hence $\left(S_{1}+v\right) \cup\left(S \cap V\left(G_{2}\right)\right)$ is an optimal target set for $\left(G_{1} \oplus_{v} G_{2}, \theta\right)$, a contradiction to the choice of S. Therefore $S \cap V\left(G_{1}-v\right)$ is an optimal target set for $\left(G_{1}-v, \theta_{1}\right)$. By the choice of S_{1}, we see that $\left|N_{G_{1}}(v) \cap\left[S \cap V\left(G_{1}-v\right)\right]_{\theta}^{G_{1}}\right| \leq\left|N_{G_{1}}(v) \cap\left[S_{1}\right]_{\theta}^{G_{1}}\right|$. This implies that $S_{1} \cup\left[S \cap V\left(G_{2}\right)\right]$ is an optimal target set for $\left(G_{1} \oplus_{v} G_{2}, \theta\right)$, and hence $S \cap V\left(G_{2}\right)$ influences all vertices in $\left(G_{2}, \theta_{2}\right)$, which implies $\left|S \cap V\left(G_{2}\right)\right| \geq\left|S_{2}\right|$. We conclude that $\left|S_{1}\right|+\left|S_{2}\right|=\left|S \cap V\left(G_{1}-v\right)\right|+\left|S_{2}\right| \leq\left|S \cap V\left(G_{1}-v\right)\right|+\left|S \cap V\left(G_{2}\right)\right|=|S|$. Therefore $S_{1} \cup S_{2}$ is an optimal target set for $\left(G_{1} \oplus_{v} G_{2}, \theta\right)$.

Corollary 3 min-seed $\left(G_{1} \oplus_{v} G_{2}, \theta\right)=\min -\operatorname{seed}\left(G_{1}-v, \theta_{1}\right)+\min -\operatorname{seed}\left(G_{2}, \theta_{2}\right)$.
Lemma 4 Let v be a vertex in the social network (G, θ). If $G \in\left\{K_{n}, C_{n}\right\}$, then an optimal target set S for $\left(G-v, \theta_{1}\right)$ that maximizes the size of the set $N_{G}(v) \cap[S]_{\theta}^{G}$ can be found in linear time, where θ_{1} is the threshold function of $G-v$ which is the same as the function θ, except that $\theta_{1}(x)=\theta(x)-1$ for every $x \in N_{G}(v)$. Moreover the size of the set $N_{G}(v) \cap[S]_{\theta}^{G}$ can also be determined in linear time.

Proof. Let \mathcal{F} be the set of optimal target sets S for $\left(G-v, \theta_{1}\right)$ such that S maximizes the size of the set $N_{G}(v) \cap[S]_{\theta}^{G}$.

We first consider the case that $G=K_{n}$. Let $V(G-v)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ such that $\theta_{1}\left(v_{1}\right) \leq \theta_{1}\left(v_{2}\right) \leq \cdots \leq \theta_{1}\left(v_{n-1}\right)$. Let S be an optimal target set for $\left(G-v, \theta_{1}\right)$. Since any two vertices v_{i}, v_{i+1} in $G-v$ have $N_{G-v}\left(v_{i}\right)=N_{G-v}\left(v_{i+1}\right)$ and $\theta_{1}\left(v_{1}\right) \leq \cdots \leq \theta_{1}\left(v_{n-1}\right)$, we give the following simple observation without proof.

Observation If $v_{i} \in S$ and $v_{i+1} \notin S$, then $\left(S \backslash\left\{v_{i}\right\}\right) \cup\left\{v_{i+1}\right\}$ is an optimal target set for $\left(G-v, \theta_{1}\right)$ and $\left|\left[\left(S \backslash\left\{v_{i}\right\}\right) \cup\left\{v_{i+1}\right\}\right]_{\theta}^{G}\right| \geq\left|[S]_{\theta}^{G}\right|$.

Since G is a complete graph, the above observation says that if min-seed $(G-$ $\left.v, \theta_{1}\right)=s$, then the target set $\left\{v_{n-1}, v_{n-2}, \ldots, v_{n-s}\right\} \in \mathcal{F}$. Moreover, such a target set has a convinced sequence $\left(v_{1}, v_{2}, \ldots, v_{n-s-1}\right)$ on $\left(G-v, \theta_{1}\right)$. Now we are in a position to show that Algorithm K outputs an optimal target set S for $\left(G-v, \theta_{1}\right)$ such that $S \in \mathcal{F}$.

In steps 2-3 of the algorithm we see that min-seed $\left(G-v, \theta_{1}\right) \geq \mid\left\{v_{i}: \theta_{1}\left(v_{i}\right)>\right.$ $n-2$ and $1 \leq i \leq n-1\} \mid=\ell$. In steps 4-8, we want to find the value s such that $\left\{v_{n-1}, v_{n-2}, \ldots, v_{n-\ell}\right\} \cup\left\{v_{n-\ell-1}, v_{n-\ell-2}, \ldots, v_{n-s}\right\} \in \mathcal{F}$. During the i th iteration of the for loop in step 4 , we have $\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\} \subseteq\left[\left\{v_{n-1}, v_{n-2}, \ldots, v_{n-s}\right\}\right]_{\theta_{1}}^{G-v}$. In step 6 , when $\theta_{1}\left(v_{i}\right)>s+i-1$, in order to influence vertex v_{i} in $\left(G-v, \theta_{1}\right)$ we need to add another $\theta_{1}\left(v_{i}\right)-(s+i-1)$ vertices to the set $\left\{v_{n-1}, v_{n-2}, \ldots, v_{n-s}\right\}$. Note that in step 5 we have $\theta_{1}\left(v_{i}\right) \leq n-2$. If follows that after step 5 and before step 6 we have $n-\left(s+\left[\theta_{1}\left(v_{i}\right)-(s+i-1)\right]\right)>i$. Therefore in step 7 if $n-s=i+1$, then it must be min-seed $\left(G-v, \theta_{1}\right)=s$, and hence $\left\{v_{n-1}, v_{n-2}, \ldots, v_{n-s}\right\} \in \mathcal{F}$. Clearly, the time complexity of Algorithm K takes linear time, where the bucket sort algorithm is used to sort vertices by their thresholds.

Let S be the output of the Algorithm K and $|S|=s$. Let $V(G) \backslash S=$ $\left\{u_{1}, u_{2}, \ldots, u_{n-s}\right\}$ such that $\theta\left(u_{1}\right) \leq \theta\left(u_{2}\right) \leq \ldots \leq \theta\left(u_{n-s}\right)$. Let $U=\left\{i: \theta\left(u_{i}\right)>\right.$ $s+i-1$ and $1 \leq i \leq n-s\}$. We define the value r by

$$
r= \begin{cases}\min U-1, & \text { if } U \neq \emptyset \\ n-s, & \text { if } U=\emptyset\end{cases}
$$

Since G is a complete graph, it can be seen that $[S]_{\theta}^{G}=S \cup\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$. Therefore the size of the set $N_{G}(v) \cap[S]_{\theta}^{G}$ can also be determined in linear time.

Algorithm K

Begin

```
\(s \leftarrow 0 ;\)
for \(i=1\) to \(n-1\) do if \(\theta_{1}\left(v_{i}\right)>n-2\) then \(s \leftarrow s+1\);
\(\ell \leftarrow s ;\)
for \(i=1\) to \(n-\ell-1\) do
    begin
        if \(\theta_{1}\left(v_{i}\right)>s+i-1\) then \(s \leftarrow s+\left[\theta_{1}\left(v_{i}\right)-(s+i-1)\right]\);
        if \(n-s=i+1\) then STOP and output \(S=\left\{v_{n-1}, v_{n-2}, \ldots, v_{n-s}\right\}\);
    end
```

End.

Finally, consider the remaining case that $G=C_{n}$. Let $E(G)=\left\{v v_{1}, v v_{n-1}\right\} \cup$ $\left\{v_{i} v_{i+1}: 1 \leq i \leq n-2\right\}$. Thus $V(G-v)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. Let \mathcal{H} be the set of optimal target sets S for $\left(G-v, \theta_{1}\right)$. First we consider the following Algorithm C which computes S_{1} and S_{2}. Clearly, $S_{1} \subseteq S$ for each $S \in \mathcal{H}$ and $S_{2} \subseteq\left[S_{1}\right]_{\theta_{1}}^{G-v}$.

Algorithm C

Begin

1 Find the set $S_{1}=\left\{v_{i}: \theta_{1}\left(v_{i}\right)>d_{G-v}\left(v_{i}\right)\right.$ and $\left.1 \leq i \leq n-1\right\}$.
2 for $i=1$ to $n-1$ do if $v_{i} \notin S_{1}$ then $\theta_{1}\left(v_{i}\right) \leftarrow \theta_{1}\left(v_{i}\right)-\left|N_{G-v}\left(v_{i}\right) \cap S_{1}\right|$;
3 for $i=1$ to $n-2$ do if $v_{i} \notin S_{1}$ and $\theta_{1}\left(v_{i}\right) \leq 0$ then $\theta_{1}\left(v_{i+1}\right) \leftarrow \theta_{1}\left(v_{i+1}\right)-1$;
4 for $i=n-1$ downto 2 do if $v_{i} \notin S_{1}$ and $\theta_{1}\left(v_{i}\right) \leq 0$ then $\theta_{1}\left(v_{i-1}\right) \leftarrow \theta_{1}\left(v_{i-1}\right)-1$;
5 Find the set $S_{2}=\left\{v_{i} \notin S_{1}: \theta_{1}\left(v_{i}\right) \leq 0\right.$ and $\left.1 \leq i \leq n-1\right\}$.
6 output S_{1} and S_{2};
7 output θ_{1};

End.

In the sequel, let S_{1}, S_{2}, θ_{1} be the outputs of the Algorithm C. Now let $G-v-$ $S_{1}-S_{2}$ have exactly r connected components $P_{1}, P_{2}, \ldots, P_{r}$. Denote by ℓ_{i} the value $\min \left\{k: v_{k} \in V\left(P_{i}\right), 1 \leq k \leq n-1\right\}$. We assume that $\ell_{1}<\ell_{2}<\cdots<\ell_{r}$. For each $1 \leq i \leq r$, we note that P_{i} is a path and all vertices w in P_{i} have $\theta_{1}(w) \in\{1,2\}$, moreover the two end-vertices w_{1}, w_{2} of P_{i} have $\theta_{1}\left(w_{1}\right)=\theta_{1}\left(w_{2}\right)=1$. Let $V\left(P_{1}\right)=$ $\left\{v_{a}, v_{a+1}, \ldots, v_{a+b}\right\}$ and $V\left(P_{r}\right)=\left\{v_{c}, v_{c+1}, \ldots, v_{c+d}\right\}$ for some integers a, b, c, d.

Case 1. $r=1$. Let $\left\{u \in V\left(P_{1}\right): \theta_{1}(u)=2\right\}=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{q}}\right\}$ such that $i_{1}<i_{2}<\cdots<i_{q}$. If $q=0$, then $S_{1} \cup\left\{v_{a}\right\}, S_{1} \cup\left\{v_{a+b}\right\} \in \mathcal{H}$. Clearly either
$S_{1} \cup\left\{v_{a}\right\} \in \mathcal{F}$ or $S_{1} \cup\left\{v_{a+b}\right\} \in \mathcal{F}$. It follows that we can compute $\left[S_{1} \cup\left\{v_{a}\right\}\right]_{\theta}^{G}$ and $\left[S_{1} \cup\left\{v_{a+b}\right\}\right]_{\theta}^{G}$ to find a desired set S in \mathcal{F}. When $q=2 t$ for some $t \in \mathbb{Z}^{+}$, let $U_{1}=\left\{v_{a}\right\} \cup\left\{v_{i_{2}}, v_{i_{4}}, \ldots, v_{i_{2 t}}\right\}$ and $U_{2}=\left\{v_{i_{1}}, v_{i_{3}}, \ldots, v_{i_{2 t-1}}\right\} \cup\left\{v_{a+b}\right\}$. It can be seen that either $S_{1} \cup U_{1} \in \mathcal{F}$ or $S_{1} \cup U_{2} \in \mathcal{F}$. One can compute $\left[S_{1} \cup U_{1}\right]_{\theta}^{G}$ and $\left[S_{1} \cup U_{2}\right]_{\theta}^{G}$ to find a desired set S in \mathcal{F}. When $q=2 t-1$ for some $t \in \mathbb{Z}^{+}$, let $U=\left\{v_{i_{1}}, v_{i_{3}}, \ldots, v_{i_{2 t-1}}\right\}$. Clearly $S_{1} \cup U \in \mathcal{F}$.

Case 2. $r \geq 2$. It suffices to assume that $r=3$, that is $G-v-S_{1}-S_{2}$ has exactly 3 connected components P_{1}, P_{2}, P_{3} and $\ell_{1}<\ell_{2}<\ell_{3}$. Let $\left\{u \in V\left(P_{1}\right)\right.$: $\left.\theta_{1}(u)=2\right\}=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{q}}\right\}$ such that $i_{1}<i_{2}<\cdots<i_{q}$. Let $\left\{u \in V\left(P_{2}\right): \theta_{1}(u)=\right.$ $2\}=\left\{v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{s}}\right\}$ such that $j_{1}<j_{2}<\cdots<j_{s}$. Let $\left\{u \in V\left(P_{3}\right): \theta_{1}(u)=2\right\}=$ $\left\{v_{k_{1}}, v_{k_{2}}, \ldots, v_{k_{\ell}}\right\}$ such that $k_{1}<k_{2}<\cdots<k_{\ell}$. It suffices to consider the case that $q=2 t, s=2 t^{\prime}-1, \ell=2 t^{\prime \prime}$ for some integers $t, t^{\prime}, t^{\prime \prime}$ (the remaining cases follow similar arguments as above). let $U_{1}=\left\{v_{a}\right\} \cup\left\{v_{i_{2}}, v_{i_{4}}, \ldots, v_{i_{2 t}}\right\}, U_{2}=\left\{v_{j_{1}}, v_{j_{3}}, \ldots, v_{j_{2 t^{\prime}-1}}\right\}$, and $U_{3}=\left\{v_{k_{1}}, v_{k_{3}}, \ldots, v_{k_{2 t^{\prime \prime}-1}}\right\} \cup\left\{v_{c+d}\right\}$. It can be seen that $S_{1} \cup U_{1} \cup U_{2} \cup U_{3} \in \mathcal{F}$.

Concerning the running time of the above algorithm, it is clear that it is linear time. Which completes the proof of the lemma.

Now Theorem 5 follows from Theorem 2 and Lemma 4 immediately.
Theorem 5 If G is a block-cactus graph, then an optimal target set for (G, θ) can be found in linear time.

3 Chordal graphs

A graph is called chordal if it does not have an induced cycle of length greater than three. A vertex v in G is called simplicial if the subgraph of G induced by the neighbors of v is complete. Let $\sigma=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ be an ordering of $V(G)$. We say that σ is a perfect elimination order if each v_{i} is a simplicial vertex of the subgraph $G\left[v_{i}, v_{i+1}, \ldots, v_{n}\right]$. In 1965, Fulkerson and Gross [7] showed that every chordal graph has a perfect elimination order. In [12, 13] it was shown that if G is a chordal graph, then there is a linear time algorithm which receives the adjacency sets of G and outputs a perfect elimination order σ of $V(G)$. For nonadjacent vertices u and v of a graph G, a subset $S \subseteq V(G)$ is called a $u-v$ separator if the removal of S from G separates u and v into distinct connected components. If no proper subset of S is a u-v-separator, then S is called a minimal $u-v$ separator.

Lemma 6 ([4]) Every chordal graph G has a simplicial vertex. Moreover, if G is not complete, then it has two nonadjacent simplicial vertices.

Lemma 7 ([7]) For nonadjacent vertices u and v of a chordal graph G, if S is a minimal u-v separator of G, then S induces a complete subgraph of G.

Lemma 8 For $t \geq 2$, let G be a t-connected chordal graph with $\theta(x) \leq t$ for all vertices x. If $S \subseteq V(G)$ induces a complete subgraph of size t in G, then the target set S influences all vertices in (G, θ).

Proof. Without loss of generality, we may assume that G is not complete. Let $|V(G)|=n$. To prove this theorem, we want to demonstrate a sequence of distinct vertices $\left[v_{1}, v_{2}, \ldots, v_{\ell}\right]$ in G such that $G-\left\{v_{1}, v_{2}, \cdots, v_{\ell}\right\}$ is a complete graph that contains all vertices of S. Moreover, for $1 \leq i \leq \ell$, vertex v_{i} is adjacent to at least t vertices in the graph $G-\left\{v_{1}, v_{2}, \cdots, v_{i}\right\}$. It is clear that if such a sequence exists, then the target set S influences all vertices in (G, θ), since $\theta(x) \leq t$ for all vertices x in G.

To construct such a sequence, by Lemma 6, we can pick a simplicial vertex v_{1} of G such that $v_{1} \notin S$. Note that $G-v_{1}$ is t-connected, since otherwise there is a set $U \subseteq V\left(G-v_{1}\right)$ with $|U| \leq t-1$ such that $G-v_{1}-U$ is disconnected. By Lemma 6 it follows that $G-U$ is disconnected, a contradiction to G is t-connected. Next, if $G-v_{1}$ is not complete, then by Lemma 6 again, we can pick a simplicial vertex v_{2} of $G-v_{1}$ such that $v_{2} \notin S$. It can also be seen that $G-v_{1}-v_{2}$ is t-connected. If we continue in this way, we eventually have a desired sequence of distinct vertices $\left[v_{1}, v_{2}, \ldots, v_{\ell}\right]$ such that the graph $G-\left\{v_{1}, v_{2}, \cdots, v_{i}\right\}$ is t-connected for each $i \in\{1,2, \ldots, \ell-1\}$ and $G-\left\{v_{1}, v_{2}, \cdots, v_{\ell}\right\}$ is a complete graph that contains all vertices of S. Which completes the proof of the lemma.

Theorem 9 Suppose that G is a t-connected chordal graph with $t \geq 2$. (a) min$\operatorname{seed}(G, t)=t$. (b) If $\theta(x) \leq t$ for each vertex x of G and $\theta(v)<t$ for some vertex v. then min-seed $(G, \theta)<t$.

Proof. (a) By Lemma 6, the fact that G is a t-connected chordal graph implies that G contains a complete subgraph H of t vertices. By Lemma 8, we see that the target set $V(H)$ influences all vertices in the social network (G, t), and hence min$\operatorname{seed}(G, t) \leq t$. Note that an inactive vertex v in (G, t) become active only if v has at least t already-active neighbors. It follows that min-seed $(G, t) \geq t$, which completes the proof of part (a).
(b) If v is adjacent to all other vertices of G, then, by Lemma 6, $G-v$ contains a complete subgraph H of size $t-1$, since $G-v$ has a simplicial vertex and G is t connected. It follows that, by Lemma 团, the target set $V(H)$ influences all vertices in (G, θ), and hence min-seed $(G, \theta)<t$. Now consider the case that v is not adjacent to
some vertex u in G. Clearly there is a minimal $v-u$ separator S such that v adjacent to all vertices of S. Note that $|S| \geq t$, since G is t-connected. Let $S^{\prime} \subseteq S$ with $\left|S^{\prime}\right|=t-1$. By Lemma $7, S^{\prime} \cup\{v\}$ induces a complete subgraph of size t in G. It follows that, by Lemma 8 and the fact that $\theta(v) \leq t-1$, the target set S^{\prime} influences all vertices of (G, θ). We conclude that min-seed $(G, \theta)<t$.

Corollary 10 Let G be a 2-connected chordal graph with thresholds $\theta(v) \leq 2$ for every vertex v of G. Then min-seed $(G, \theta)=2$ if and only if $\theta(v)=2$ for each vertex v of G.

In the sequel, for convenience, we write $\mathcal{S} \propto(G, \theta)$ to mean that the target set \mathcal{S} influences all vertices in (G, θ). The following simple fact, which we state without proof, will be used implicitly and frequently in Lemma 12.

Claim 11 Let v be a vertex in the social network (G, θ) and let θ_{1} be the threshold function of $G-v$ which is the same as the function θ, except that $\theta_{1}(x)=\theta(x)-1$ for every $x \in N_{G}(v)$. Then for $S \subseteq V(G-v)$, we have $S \propto\left(G-v, \theta_{1}\right)$ if and only if $S \cup\{v\} \propto(G, \theta)$.

We state Lemma 12 using the same notation and conventions as in Claim 11.
Lemma 12 Let G be a 2-connected chordal graph with thresholds $\theta(u) \leq 2$ for every $u \in V(G)$. For a vertex v in G, let \mathcal{F} be the set of optimal target sets S for $\left(G-v, \theta_{1}\right)$ such that S maximizes the size of the set $N_{G}(v) \cap[S]_{\theta}^{G}$. Let $I=\{u \in V(G-v)$: $\left.\theta_{1}(u) \leq 0\right\}, J=\{u \in V(G): \theta(u)<2\}$ and $J_{0}=\{u \in V(G): \theta(u) \leq 0\}$. Let \mathcal{P}_{1} (resp. \mathcal{Q}_{1}) be the property that there are two distinct vertices $x, y \in I$ (resp. $x, y \in J_{0}$) such that $d_{G}(x, y) \leq 2$. Let \mathcal{P}_{2} (resp. \mathcal{Q}_{2}) be the property that there is an edge xy in $G-v($ resp. $G)$ with $x \in I$ (resp. $x \in J_{0}$) and $\theta_{1}(y)=1$ (resp. $\theta(y)=1$). Then we have:
(a) If $I \cap N_{G}(v) \neq \emptyset$, then $\emptyset \in \mathcal{F}$.
(b) If $I \cap N_{G}(v)=\emptyset$ and \mathcal{P}_{1} holds, then $\emptyset \in \mathcal{F}$.
(c) If $I \cap N_{G}(v)=\emptyset$ and \mathcal{P}_{2} holds, then $\emptyset \in \mathcal{F}$.
(d) If $J=\emptyset$, then $\{x\} \in \mathcal{F}$ and $[\{x\}]_{\theta}^{G}=\{x\}$ for every $x \in N_{G}(v)$.
(e) If $J \neq \emptyset, I \cap N_{G}(v)=\emptyset$ and neither \mathcal{P}_{1} nor \mathcal{P}_{2} holds, then $\{x\} \in \mathcal{F}$ and $[\{x\}]_{\theta}^{G}=V(G)$ for every vertex x adjacent to some vertex $w \in J$.
(f) If \mathcal{Q}_{1} or \mathcal{Q}_{2} holds, then $[\emptyset]_{\theta}^{G}=V(G)$.
(g) If neither \mathcal{Q}_{1} nor \mathcal{Q}_{2} holds, then $[\emptyset]_{\theta}^{G}=J_{0}$.

Proof. (a) Let $w \in I \cap N_{G}(v)$. By the facts $v w \in E(G), \theta(w) \leq 1$ and by Lemma 8 , we see that $\{v\} \propto(G, \theta)$, and hence $\emptyset \propto\left(G-v, \theta_{1}\right)$.
(b) Clearly $\theta(x) \leq 0$ and $\theta(y) \leq 0$. Since $d_{G}(x, y) \leq 2$, either $x y \in E(G)$ or $x, y \in N_{G}(z)$ for some vertex z. In both cases, by Lemma 8 , we see that $[\emptyset]_{\theta}^{G}=V(G)$. Thus by Claim 11, $\emptyset \propto\left(G-v, \theta_{1}\right)$.
(c) Since $x \notin N_{G}(v)$, it can be seen that $[\{v\}]_{\theta}^{G} \supseteq\{x, y, v\}$. By Lemma 8 , it follows that $\{v\} \propto(G, \theta)$, and hence $\emptyset \propto\left(G-v, \theta_{1}\right)$.
(d) For each $x \in N_{G}(v)$, by Lemma 图, $\{x, v\} \propto(G, \theta)$, and hence $\{x\} \propto$ $\left(G-v, \theta_{1}\right)$. Clearly min-seed $(G-v, \theta) \geq 1$. It follows that $\{x\}$ is an optimal target set for $\left(G-v, \theta_{1}\right)$. Since $\theta(u)=2$ for each $u \in V(G)$, we have $\left|[S]_{\theta}^{G}\right|=1$ for any optimal target set S for $\left(G-v, \theta_{1}\right)$. Therefore $\{x\} \in \mathcal{F}$ and $[\{x\}]_{\theta}^{G}=\{x\}$.
(e) Note that $I \cap N_{G}(v)=\emptyset$ implies that $\theta(y)=2$ for each $y \in N_{G}(v)$. We claim that $\{v\}$ can not influence all vertices in (G, θ). If not, then it must be that either \mathcal{P}_{1} or \mathcal{P}_{2} holds, a contradiction. Thus min-seed $\left(G-v, \theta_{1}\right) \geq 1$. Now let $w \in J$ and $x \in N_{G}(w)$. Note that $x \neq v$. Clearly $[\{x\}]_{\theta}^{G} \supseteq\{x, w\}$ and hence, by Lemma 8 , $\{v, x\} \propto(G, \theta)$. It follows that, by Claim 11, $\{x\} \propto\left(G-v, \theta_{1}\right)$. Moreover, we have $[\{x\}]_{\theta}^{G}=V(G)$, and hence $\{x\} \in \mathcal{F}$. This completes the proof of (e).

Finally, by similar arguments as in the proofs of (c), (d) and (e), it is easy to prove (f) and (g), so we omit the proofs of (f) and (g).

Using the same notation and conventions as in Claim 11 and Lemma 12, we state and prove the following theorem.

Theorem 13 If G is a chordal graph with thresholds $\theta(x) \leq 2$ for each vertex x in G, then an optimal target set for (G, θ) can be found in linear time.

Proof. Let G_{1} be a block of G which contains exactly one cut vertex v of G. If G is not 2-connected, then G can be written as the following form: $G=G_{1} \oplus_{v} G_{2}$, where G_{2} is an induced subgraph of G and is also chordal. To prove the theorem, we omit the easy case $G_{1}=K_{2}$, which follows from Lemma 4. We only consider the case that G_{1} is a 2 -connected chordal graph. By using Lemma 12, we can in linear time in terms of the size of G_{1} find an optimal target sets S_{1} for $\left(G_{1}-v, \theta_{1}\right)$ such that S_{1} maximizes the size of the set $N_{G_{1}}(v) \cap\left[S_{1}\right]_{\theta}^{G_{1}}$ and compute $\left|N_{G_{1}}(v) \cap\left[S_{1}\right]_{\theta}^{G_{1}}\right|$.

Next, we want to find an optimal target set S_{2} for $\left(G_{2}, \theta_{2}\right)$, where θ_{2} is a threshold function of G_{2} which is the same as the function θ, except that $\theta_{2}(v)=$ $\theta(v)-\left|N_{G_{1}}(v) \cap\left[S_{1}\right]_{\theta}^{G_{1}}\right|$. If G_{2} is a 2-connected chordal graph, then S_{2} can be found in linear time in terms of the size of G_{2} by using Lemma 8 and Corollary 10, and hence an optimal target set $S_{1} \cup S_{2}$ for (G, θ) can be found in linear time by using Theorem 2.

If G_{2} has a cut vertex v^{\prime} and a pendent block G_{21} such that $G_{2}=G_{21} \oplus_{v^{\prime}} G_{22}$, then we can repeat the arguments in the previous paragraphs and use Theorem 2 to
find the desired S_{2} in linear time in terms of the size of G_{2}, and hence an optimal target set for (G, θ) can be found in linear time.

4 Hamming graphs

Given two graphs G and H, their Cartesian product is the graph $G \square H$ with vertex set $V(G) \times V(H)$ and edge set $\left\{(g, h)\left(g^{\prime}, h^{\prime}\right): g g^{\prime} \in E(G)\right.$ with $h=h^{\prime}$, or $g=g^{\prime}$ with $h h^{\prime} \in$ $E(H)\}$. The Cartesian product is commutative and associative (see page 29 of [8]). A Hamming graph is a Cartesian product of nontrivial complete graphs, i.e., of the form $K_{n_{1}} \square K_{n_{2}} \square \cdots \square K_{n_{t}}$ for some integers $n_{1}, \ldots, n_{t} \geq 2, t \geq 1$, which is also denoted as $\prod_{i=1}^{t} K_{n_{i}}$. Note that $\prod_{i=1}^{t} K_{n_{i}}$ has vertex set $V\left(K_{n_{1}}\right) \times V\left(K_{n_{2}}\right) \times \cdots \times V\left(K_{n_{t}}\right)$.

Let $u=\left(u_{1}, \ldots, u_{t}\right)$ and $v=\left(v_{1}, \ldots, v_{t}\right)$ be two vertices of $\prod_{i=1}^{t} K_{n_{i}}$. The Hamming distance $H(u, v)$ between u and v is the number of coordinate positions in which u and v differ. Note that there is an edge between u and v if and only if $H(u, v)=1$. For $S_{1}, S_{2} \subseteq V\left(\prod_{i=1}^{t} K_{n_{i}}\right)$, denote by $d\left(S_{1}, S_{2}\right)$ the value $\min \{H(u, v)$: $\left.u \in S_{1}, v \in S_{2}\right\}$. Let $[i, j]$ denote the set of integers k such that $i \leq k \leq j$. For $A \subseteq[1, t]$, if $u_{i}=v_{i}$ for all $i \in A$, then we write $u_{\mid A}=v_{\mid A}$. Let u_{A} denote the set of vertices x in $\prod_{i=1}^{t} K_{n_{i}}$ such that $x_{\mid A}=u_{\mid A}$. The proof of the following claim is straightforward and hence omitted.

Claim 14 Let u, v, w be three distinct vertices of $\prod_{i=1}^{t} K_{n_{i}}$ and $u_{\mid A}=v_{\mid A}$ for some set $A \subseteq[1, t]$. If w is adjacent to both u and v, then $w_{\mid A}=u_{\mid A}=v_{\mid A}$.

Lemma 15 Suppose $G=(V, E)$ is the Hamming graph $\prod_{i=1}^{t} K_{n_{i}}$. Let $x, y \in V$, $i, j \in[1, t]$ and $A, B \subseteq[1, t]$. The following properties hold.
(a) If $x y \in E$ and $x_{i} \neq y_{i}$, then $\left[x_{A} \cup\{y\}\right]_{2}^{G}=x_{A \backslash\{i\}}$.
(b) $\left[x_{A} \cup x_{B}\right]_{2}^{G}=x_{A \cap B}$.
(c) If $x y \in E$ and $x_{i} \neq y_{i}$, then $\left[x_{A} \cup y_{B}\right]_{2}^{G}=x_{(A \cap B) \backslash\{i\}}$.
(d) If $H(x, y)=2, x_{i} \neq y_{i}, x_{j} \neq y_{j}$ and $i \neq j$, then $\left[x_{A} \cup y_{B}\right]_{2}^{G}=x_{(A \cap B) \backslash\{i, j\}}$.
(e) If $d\left(x_{A}, y_{B}\right) \geq 3$, then $\left[x_{A} \cup y_{B}\right]_{2}^{G}=x_{A} \cup y_{B}$.

Proof. (a) First let us consider the case of $i \notin A$. From Claim 14 and the fact $x_{\mid A}=y_{\mid A}$, we see that $\left[x_{A} \cup\{y\}\right]_{2}^{G}=x_{A}$. Now we consider the remaining case $i \in A$. To prove this case it suffices to consider the case that $i=1$ and $A=[1, j]$. We want to prove, by induction on j, that $\left[x_{[1, j]} \cup\{y\}\right]_{2}^{G}=x_{[2, j]}$ for $j=t, t-1, \ldots, 1$. For $j=t$, we see that $\left[x_{[1, j]} \cup\{y\}\right]_{2}^{G}=[\{x, y\}]_{2}^{G}$. Since $x_{[2, t]}=y_{[2, t]}$, it follows from Claim 14 that if $w \in[\{x, y\}]_{2}^{G}$ then $w_{[2, t]}=x_{[[2, t]}=y_{\mid[2, t]}$, and hence $w \in x_{[2, t]}$. That is $[\{x, y\}]_{2}^{G} \subseteq x_{[2, t]}$. Since any vertex in $x_{[2, t]} \backslash\{x, y\}$ is adjacent to both x and y, it follows that $[\{x, y\}]_{2}^{G} \supseteq x_{[2, t]}$. Therefore $[\{x, y\}]_{2}^{G}=x_{[2, t]}$.

Next, we assume that $\left[x_{[1, j]} \cup\{y\}\right]_{2}^{G}=x_{[2, j]}$ holds for some $j \in[2, t]$. From this induction hypothesis it follows that $x_{[2, j]} \subseteq\left[x_{[1, j-1]} \cup\{y\}\right]_{2}^{G}$. For any vertex w in $x_{[2, j-1]}$, either $w \in x_{[2, j]} \cup x_{[1, j-1]}$ or w is adjacent to at least one vertex in $x_{[2, j]}$ and at least one vertex in $x_{[1, j-1]}$. Thus $x_{[2, j-1]} \subseteq\left[x_{[1, j-1]} \cup\{y\}\right]_{2}^{G}$. On the other hand, by the fact $x_{[2, j-1]}=y_{[2, j-1]}$ and Claim [14, we also see that $x_{[2, j-1]} \supseteq\left[x_{[1, j-1]} \cup\{y\}\right]_{2}^{G}$. Therefore $\left[x_{[1, j-1]} \cup\{y\}\right]_{2}^{G}=x_{[2, j-1]}$, this completes the proof of Lemma [15)(a).
(b) Since for any $i \in A \backslash B$, there exists a vertex $y \in x_{B}$ such that $x y \in E$ and $x_{i} \neq y_{i}$, by Lemma 15(a), it follows that $\left[x_{A} \cup x_{B}\right]_{2}^{G} \supseteq x_{A \backslash(A \backslash B)}=x_{A \cap B}$. We note that if a vertex w is adjacent to at least two vertices in $x_{A} \cup x_{B}$, then, by Claim 14, it must be the case that $w_{\mid A \cap B}=x_{\mid A \cap B}$. Therefore $\left[x_{A} \cup x_{B}\right]_{2}^{G} \subseteq x_{A \cap B}$. We conclude that $\left[x_{A} \cup x_{B}\right]_{2}^{G}=x_{A \cap B}$.
(c) Lemma 1 15(a) shows that $\left[x_{A} \cup y_{B}\right]_{2}^{G} \supseteq\left[x_{A} \cup\{y\}\right]_{2}^{G}=x_{A \backslash\{i\}}$, and hence $\left[x_{A} \cup y_{B}\right]_{2}^{G}=\left[x_{A \backslash\{i\}} \cup y_{B}\right]_{2}^{G}$, since $x_{A} \subseteq x_{A \backslash\{i\}}$. It follows that $\left[x_{A} \cup y_{B}\right]_{2}^{G}=\left[y_{A \backslash\{i\}} \cup\right.$ $\left.y_{B}\right]_{2}^{G}=y_{(A \backslash\{i\}) \cap B}=x_{(A \cap B) \backslash\{i\}}$, by Lemma 15)(b) and the fact that $x_{A \backslash\{i\}}=y_{A \backslash\{i\}}$.
(d) Without loss of generality, consider only the case $\{i, j\}=\{1,2\}$. Clearly there exist two vertices w, z in G such that $\left(w_{1}, w_{2}\right)=\left(y_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)=\left(x_{1}, y_{2}\right)$ and $w_{[3, t]}=z_{[3, t]}=x_{[33, t]}=y_{\mid[3, t]}$. Since w and z are each adjacent to both x and y, we see that $x_{A} \cup y_{B}$ influences $\{w, z\}$ in the social network $(G, 2)$. It follows that $\left[x_{A} \cup y_{B}\right]_{2}^{G} \supseteq\left[x_{A} \cup\{w\} \cup\{z\}\right]_{2}^{G}$ and $\left[x_{A} \cup y_{B}\right]_{2}^{G} \supseteq\left[y_{B} \cup\{w\} \cup\{z\}\right]_{2}^{G}$. By using Lemma [15(a) twice, we see that $\left[x_{A} \cup\{w\} \cup\{z\}\right]_{2}^{G} \supseteq x_{A \backslash\{1,2\}}$, and hence $\left[y_{B} \cup\{w\} \cup\{z\}\right]_{2}^{G} \supseteq y_{B \backslash\{1,2\}}$. By the fact $y_{B \backslash\{1,2\}}=x_{B \backslash\{1,2\}}$ and using Lemma 15 (b), we get that $\left[x_{A} \cup y_{B}\right]_{2}^{G} \supseteq\left[x_{A \backslash\{1,2\}} \cup x_{B \backslash\{1,2\}}\right]_{2}^{G}=x_{(A \cap B) \backslash\{1,2\}}$. Since $\left(x_{A} \cup y_{B}\right) \subseteq x_{(A \cap B) \backslash\{1,2\}}$, we conclude that $\left[x_{A} \cup y_{B}\right]_{2}^{G}=x_{(A \cap B) \backslash\{1,2\}}$.
(e) For a vertex w in $V \backslash\left(x_{A} \cup y_{B}\right)$, by Claim 14, we see that w cannot be adjacent to two distinct vertices in x_{A} (resp. y_{B}). Note that since $d\left(x_{A}, y_{B}\right) \geq 3$ there is no vertex w in $V \backslash\left(x_{A} \cup y_{B}\right)$ that is adjacent to one vertex in x_{A} and is also adjacent to one vertex in y_{B}. This completes the proof of (e).

For $\mathcal{U} \subseteq[1, t]$, let $\overline{\mathcal{U}}$ denote the set $[1, t] \backslash \mathcal{U}$. Using the notation and results in Lemma 15, we immediately obtain the following:

Claim 16 (a) If $x_{A} \cap y_{B} \neq \emptyset$, then $\left[x_{A} \cup y_{B}\right]_{2}^{G}=x_{A \cap B}$.
(b) If $d\left(x_{A}, y_{B}\right)=1$, then $\left[x_{A} \cup y_{B}\right]_{2}^{G}=x_{A \cap B \cap\{\overline{i\}}}$ for some $i \in[1, t]$.
(c) If $d\left(x_{A}, y_{B}\right)=2$, then $\left[x_{A} \cup y_{B}\right]_{2}^{G}=x_{A \cap B \cap \overline{\{i, j\}}}$ for some $i, j \in[1, t]$.

Theorem 17 Suppose $G=(V, E)$ is the Hamming graph $\prod_{i=1}^{t} K_{n_{i}}$ and S is a nonempty set of vertices.
(a) There exist vertices $x^{1}, x^{2}, \ldots, x^{k} \in V$ and sets $A_{1}, A_{2}, \ldots, A_{k} \subseteq[1, t]$ such that $[S]_{2}^{G}=\cup_{i=1}^{k} x_{A_{i}}^{i}$ with $d\left(x_{A_{i}}^{i}, x_{A_{j}}^{j}\right) \geq 3$ for any $1 \leq i<j \leq k$.
(b) If $[S]_{2}^{G}=\cup_{i=1}^{k} x_{A_{i}}^{i}$ for some vertices x^{1}, \ldots, x^{k} in V and some sets $A_{1}, \ldots, A_{k} \subseteq$ $[1, t]$ with $d\left(x_{A_{i}}^{i}, x_{A_{j}}^{j}\right) \geq 3$ for any $1 \leq i<j \leq k$, then the following inequality holds:

$$
\sum_{i=1}^{k}\left|A_{i}\right| \geq(2+t) k-2|S|
$$

Proof. (a) Note that $S=\cup_{x \in S} x_{[1, t]}$ and $\left[S^{\prime} \cup S^{*}\right]_{2}^{G}=\left[\left[S^{\prime}\right]_{2}^{G} \cup S^{*}\right]_{2}^{G}$ for any $S^{\prime}, S^{*} \subseteq V$. By using several times Claim 16 and Lemma 15(e), we can get vertices $x^{1}, x^{2}, \ldots, x^{k} \in$ V and sets $A_{1}, A_{2}, \ldots, A_{k} \subseteq[1, t]$ such that $[S]_{2}^{G}=\cup_{i=1}^{k} x_{A_{i}}^{i}$ with $d\left(x_{A_{i}}^{i}, x_{A_{j}}^{j}\right) \geq 3$ for any $1 \leq i<j \leq k$.
(b) To prove this part we use induction on the size of S. When $|S|=1$ (say $S=\left\{x^{1}\right\}$), since in this scenario $[S]_{2}^{G}=x_{[1, t]}^{1}$, it can be seen that the inequality (\star) clearly holds. Now assume that the statement of Theorem 17(b) holds for any $S \subseteq V$ having $|S|<\ell$.

When $|S|=\ell \geq 2$, the proof is divided into cases according to the value of k.
Case 1. $k=1$. In this case, pick $x \in S$ and let $S^{\prime}=S \backslash\{x\}$. Note that S^{\prime} is not empty. By Theorem 17(a) we see that there are vertices $y^{1}, y^{2}, \ldots, y^{r} \in V$ and sets $B_{1}, B_{2}, \ldots, B_{r} \subseteq[1, t]$ such that $\left[S^{\prime}\right]_{2}^{G}=\cup_{i=1}^{r} y_{B_{i}}^{i}$ having $d\left(y_{B_{i}}^{i}, y_{B_{j}}^{j}\right) \geq 3$ for any $1 \leq i<j \leq r$. We have $x_{A_{1}}^{1}=[S]_{2}^{G}=\left[x_{[1, t]} \cup\left[S^{\prime}\right]_{2}^{G}\right]_{2}^{G}=\left[x_{[1, t]} \cup\left(\cup_{i=1}^{r} y_{B_{i}}^{i}\right)\right]_{2}^{G}$. Then from Claim 16 and Lemma $15(\mathrm{e})$ we see that $A_{1}=\left(\cap_{i=1}^{r} B_{i}\right) \cap \overline{\mathcal{U}}$ for some set $\mathcal{U} \subseteq[1, t]$ having $|\mathcal{U}| \leq 2 r$. Since $\left|S^{\prime}\right|<\ell$, by the induction hypothesis, we have $\sum_{i=1}^{r}\left|B_{i}\right| \geq(2+t) r-2\left|S^{\prime}\right|$. It follows that $\left|A_{1}\right|=t-\left|\left(\cup_{i=1}^{r} \overline{B_{i}}\right) \cup \mathcal{U}\right| \geq$ $t-\sum_{i=1}^{r}\left(t-\left|B_{i}\right|\right)-2 r \geq t-r t+(2+t) r-2\left|S^{\prime}\right|-2 r=(2+t)-2|S|$. Thus inequality (\star) holds in this case.
Case 2. $k>1$. In this case, let $S^{*}=S \cap x_{A_{1}}^{1}$ and $S^{\prime}=S \backslash S^{*}$. Note that S^{*} and S^{\prime} are not empty. Clearly $\left[S^{*}\right]_{2}^{G}=x_{A_{1}}^{1}$ and $\left[S^{\prime}\right]_{2}^{G}=\cup_{i=2}^{k} x_{A_{i}}^{i}$. By the induction hypothesis we see that $\left|A_{1}\right| \geq(2+t)-2\left|S^{*}\right|$ and $\sum_{i=2}^{k}\left|A_{i}\right| \geq(2+t)(k-1)-2\left|S^{\prime}\right|$. It follows immediately that inequality (\star) holds in this case. This completes the proof of the theorem.

Theorem 18 If $G=(V, E)$ is the Hamming graph $\prod_{i=1}^{t} K_{n_{i}}$, then min-seed $(G, 2)=$ $1+\left\lceil\frac{t}{2}\right\rceil$.

Proof. Note that $V=V\left(K_{n_{1}}\right) \times V\left(K_{n_{2}}\right) \times \cdots \times V\left(K_{n_{t}}\right)$. For each $i=1,2, \ldots, t$, pick two distinct vertices $x_{i}, y_{i} \in V\left(K_{n_{i}}\right)$. Let $x=\left(x_{1}, x_{2}, \ldots, x_{t}\right)$. For $1 \leq j \leq t$, let $p^{j}=\left(p_{1}^{j}, \ldots, p_{t}^{j}\right)$ be a vertex in V such that $p_{i}^{j}=x_{i}$ when $i \neq j$, and $p_{j}^{j}=y_{j}$. For $1 \leq j \leq t-1$, let $q^{j}=\left(q_{1}^{j}, \ldots, q_{t}^{j}\right)$ be a vertex in V such that $q_{i}^{j}=x_{i}$ when $i \notin\{j, j+1\}$, and $q_{j}^{j}=y_{j}, q_{j+1}^{j}=y_{j+1}$.

First, we want to show that $1+\left\lceil\frac{t}{2}\right\rceil$ is an upper bound for min-seed $(G, 2)$. The proof is divided into two cases according to the parity of t.
Case 1. $t=2 \ell$. Let $S=\left\{p^{1}, p^{2}\right\} \cup\left\{q^{3}, q^{5}, q^{7}, \ldots, q^{t-1}\right\}$. By Lemma 15(d) it can be seen that $\left[\left\{p^{1}, p^{2}\right\}\right]_{2}^{G}=p_{[3, t]}^{1}=x_{[3, t]},\left[\left\{p^{1}, p^{2}, q^{3}\right\}\right]_{2}^{G}=\left[x_{[3, t]} \cup q_{[1, t]}^{3}\right]_{2}^{G}=x_{[5, t]}$, and $\left[\left\{p^{1}, p^{2}, q^{3}, q^{5}\right\}\right]_{2}^{G}=\left[x_{[5, t]} \cup q_{[1, t]}^{5}\right]_{2}^{G}=x_{[7, t]}$. Continue in this way, we obtain $[S]_{2}^{G}=$ $\left[x_{[t-1, t]} \cup q_{[1, t]}^{t-1}\right]_{2}^{G}=x_{\emptyset}=V$, which means that min-seed $(G, 2) \leq|S|=\ell+1=1+\left\lceil\frac{t}{2}\right\rceil$. Case 2. $t=2 \ell+1$. Let $S=\left\{p^{1}, p^{2}, p^{3}\right\} \cup\left\{q^{4}, q^{6}, q^{8}, \ldots, q^{t-1}\right\}$. By Lemma 15(d) and the same arguments as above, we obtain $[S]_{2}^{G}=\left[x_{[t-1, t]} \cup q_{[1, t]}^{t-1}\right]_{2}^{G}=V$, and hence $\min -\operatorname{seed}(G, 2) \leq|S|=\ell+2=1+\left\lceil\frac{t}{2}\right\rceil$.

To show that $1+\left\lceil\frac{t}{2}\right\rceil$ is also a lower bound bound for min-seed $(G, 2)$, let S be an optimal target set for $(G, 2)$. Since $[S]_{2}^{G}=V=x_{\emptyset}$, by Theorem 17(b), we have $|\emptyset| \geq(2+t)-2|S|$, that is $|S| \geq 1+\frac{t}{2}$. Which completes the proof of the theorem.

References

[1] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, I. Newman, Treewidth governs the complexity of target set selection, Discrete Optimization (2010), doi:10.1016/j.disopt.2010.09.007
[2] N. Chen, On the approximability of influence in social networks, SIAM Journal on Discrete Mathematics, 23 (2009) 1400-1415.
[3] Paul A. Dreyer Jr., Fred S. Roberts, Irreversible k-threshold processes: Graphtheoretical threshold models of the spread of disease and of opinion, Discrete Appl. Math. 157 (2009) 1615-1627.
[4] G. A. Dirac, On Rigid Circuit Graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961) 71-76.
[5] P. Domingos, M. Richardson, Mining the network value of customers, In Proc. 7th ACM KDD, pages 57-66, ACM Press, 2001.
[6] P. Flocchini, E. Lodi, F. Luccio, L. Pagli, N. Santoro, Dynamic monopolies in tori, Discrete Appl. Math. 137 (2004) 197-212.
[7] D. R. Fulkerson, O. A. Gross, Incidence Matrices and Interval Graphs, Pacific Journal of Mathematics, 15 (1965) 835-855.
[8] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, John Wiley \& Sons, 2000.
[9] D. Kempe, J. Kleinberg, E. Tardos, Maximizing the spread of influence through a social network, In Proc. 9th ACM KDD, pages 137-146, ACM Press, 2003.
[10] D. Peleg, Size bounds for dynamic monopolies, Discrete Appl. Math. 86 (1998) 263-273.
[11] D. Peleg, Local majorities, coalitions and monopolies in graphs: A review, Theoretical Computer Science 282 (2002) 231-257.
[12] D. J. Rose, R. E. Tarjan, G. S. Lueker, Algorithmic Aspects of Vertex Elimination on Graphs, SIAM Journal on Computing, 5 (1976) 266-283.
[13] R. E. Tarjan, M. Yannakakis, Simple linea-time algorihtms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM Journal on Computing, 13 (1984) 566-579.

[^0]: *Partially supported by National Science Council under grant NSC97-2628-M-008-018-MY3.
 ${ }^{\dagger}$ Partially supported by National Science Council under grant NSC98-2811-M-008-072.
 ${ }^{\ddagger}$ Partially supported by National Science Council under grant NSC97-2628-M-008-018-MY3
 ${ }^{\S}$ Corresponding author (hgyeh@math.ncu.edu.tw)

