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1 Induction

For notation and graph-theoretical terminology not defined here we follow [21]. Specif-
ically, let G = (V, E) be an undirected graph without loops and multi-edges, where
V = V/(G) is the vertex-set and E = E(G) is the edge-set, where E # ().

For x € V', the open neighborhood, the closed neighborhood and the degree of x are
denoted by Ng(z) ={y € V :zy € E}, Ng[z] = Ng(x) U {z} and degs(x) = |[Ng(z)|,
respectively. §(G) = min{degg(z) : v € V} and A(G) = max{degs(z) : x € V} are
the minimum degree and the maximum degree of G, respectively. For any X C V| let
Ng[X] = UmexNg[SL’].

For a subset D C V, let D = V \ D. The notation G¢ denotes the comple-
ment of G, that is , G is the graph with vertex-set V(G) and edge-set {xy : zy ¢
E(G) for any z,y € V(G)}. For B C E(G), we use G + B to denote the graph with
vertex-set V' and edge-set £ U B. For convenience, we denote G + {xy} by G + zy for
an zy € E(G°).

A nonempty subset D C V is called a dominating set of G if |[Ng(x) N D| > 1
for each x € D. The domination number v(G) of G is the minimum cardinality of all
dominating sets in G. The domination is a classical concept in graph theory. The early
literature on the domination with related topics is, in detail, surveyed in the two books
by Haynes, Hedetniemi, and Slater [14] [15].

In 1985, Fink and Jacobson [12] introduced the concept of a generalization domi-
nation in a graph. Let p be a positive integer. A subset D C V is a p-dominating set of
G if [INg(z)N D| > p for each x € D. The p-domination number ,(G) is the minimum
cardinality of all p-dominating sets in G. A p-dominating set with cardinality v,(G) is
called a y,-set of G. For S,T C V, the set S can p-dominate T"in G if |[Ng(z)NS| > p
for every x € T'\ S. Clearly, the 1-dominating set is the classical dominating set, and
so 71(G) = v(G). The p-domination is investigated by many authors (see, for example,
[T, 2, 4, [5, 11]). Very recently, Chellali et al.[4] have given an excellent survey on this
topics. The following are two simple observations.

Observation 1.1 If G is a graph with |V (G)| > p, then v,(G) > p.

Observation 1.2 FEvery p-dominating set of a graph contains all vertices of degree at
most p — 1.

Clearly, addition of some extra edges to a graph could result in decrease of its
domination number. In 1990, Kok and Mynhardt [19] first investigated this problem
and proposed the concept of the reinforcement number. The reinforcement number
r(G) of a graph G is defined as the smallest number of edges whose addition to G
results in a graph G’ with v(G’) < v(G). By convention r(G) = 0 if y(G) = 1.

The reinforcement number has received much research attention (see, for example,
[3, [7, [18]), and its many variations have also been well described and studied in graph
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theory, including total reinforcement [16, 20], independence reinforcement [22], frac-
tional reinforcement [0, 8] and so on. In particular, Blair et al. [3], Hu and Xu [17],
independently, showed that the problem determining r(G) for a general graph G is
NP-hard.

Motivated by the work of Kok and Mynhardt [19], in this paper, we introduce the
p-reinforcement number, which is a natural extension of the reinforcement number.
The p-reinforcement number r,(G) of a graph G is the smallest number of edges of G¢
that have to be added to G in order to reduce v,(G), that is

r,(G) = min{|B| : B C E(G°) with 7,(G + B) < v,(G)}.

It is clear that r1(G) = r(G). By Observation [Tl we can also make a convention,
rp,(G) = 0 if 7,(G) < p. Thus r,(G) is well-defined for any graph G and integer p > 1.
In this paper, we always assume 7,(G) > p when we consider the p-reinforcement
number for a graph G.

The rest of this paper is organized as follows. In Section 2 we present an equivalent
parameter for calculating the p-reinforcement number of a graph. As its applications,
we determine the values of the p-reinforcement numbers for special classes of graphs
such as paths, cycles and complete t-partite graphs in Sections 3, and show that the
decision problem on p-reinforcement is NP-hard for a general graph and a fixed integer
p > 2 in Section 4. Finally, we establish some upper bounds for the p-reinforcement
number of a graph G by terms of other parameters of G in Section 5.

2 Preliminary

Let G be a graph with 7(G) > 1 and B C E(G°) with |B| = r(G) such that v(G+B) <
v(G). Let X be a y-set of G + B. Then |B| > |V(G) \ Ng[X]|. On the other
hand, given any set X C V(G), we can always choose a subset B C FE(G°) with
|B| = |V(G) \ Ng[X]| such that X dominates G 4+ B. It is a simple observation that,
to calculate r(G), Kok and Mynhardt [19] proposed the following parameter

N(G) = min{[V(G) \ Ne[X]| : X € V(G), |X] <~(G)}, (2.1)

and showed 7(G) = n(G). We can refine this technique to deal with the p-reinforcement
number 7,(G).

Let G be a graph with ~,(G) > p. For any X C V(G), let
X*={r € X :|Ng(x)NX| < pl. (2.2)

Let B C E(G°) with |B| = r,(G) such that v,(G + B) < 7,(G), and let X be a v,-set
of G+ B. Then
1Bl = Y (p— [Ne(z) n X]).

reX*



On the other hand, given any set X C V(G) with |X| > p, we can always choose a
subset B C E(G°) with
1Bl =) (p— [Na(z) N X|)
reX*

such that X can p-dominate GG + B. Motivated by this observation, we introduce the
following notations. For a subset X C V(G),

B p—|Ng(z)NX| ifzeX*
np(z, X, G) = { 0 otherwise for z € V(G), (2.3)
(S, X, G) = > n(z,X,G) for S CV(G), and (2.4)
zes
mp(G) = min{n,(V(G), X, G) : [ X] < 7,(G)} (2.5)

A subset X C V(G) is called an n,-set of G if n,(G) = n,(V(G), X, G). Clearly, for
any two subsets S, S C V(G) and two subsets X', X C V(G),

(S, X, G) < n,(S,X,G) it §'C 8,
(S, X, G) < 1,(S, X', G) if |X'] < |X].

Thus, we have the following simple observation.
Observation 2.1 If X is an n,-set of a graph G, then |X| = 7,(G) — 1.

The following result shows that computing 7,(G) can be referred to computing
n,(G) for a graph G with 7,(G) > p + 1.

Theorem 2.2 For any graph G and positive integer p, 7,(G) = n,(G) if v,(G) > p.

Proof. Let X be an 7,-set of G. Then |X| = ~,(G) — 1 by Observation 2l Let
Y = {y € V(G) : n,(y,X,G) > 0}. Then Y = X* is contained in X, where X* is
defined in ([2.2)). Thus, 7,(G) = n,(X*, X,G). We construct a new graph G’ from
G, for each y € X*, by adding n,(y, X, G) edges of G® to G joining y to n,(y, X, G)
vertices in X. Clearly, X is a p-dominating set of G’, that is, 7,(G’) < |X]|. Let
B = E(G") — E(G). Then

Ww(G) = [X]+1> |X] 2 7,(¢) = (G + B),

which implies r,(G) < |B|. It follows that

rp(G) < |B| = Z (Y, X, G) = n, (X", X, G) = 0,(G). (2.6)

yeX*

On the other hand, let B be a subset of E(G°) such that |B| = r,(G) and 7,(G +
B) = v,(G) — 1. Let G' = G + B and X' be a 7,-set of G'. For every 2y € B, X'
cannot p-dominate the graph G’ — xy by the minimality of B. This fact means that
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only one of z and y is in X’. Without loss of generality, assume y € X’. Since X’
cannot p-dominate y in G’ —zy and so in G, |Ng(y)NX'| < p. Let Z be all end-vertices
of edges in B and Y = X' N Z. Since X' is a y,-set of G', |[Ng/(u) N X'| > p for any
u € X'. In other words, any v € X’ with |Ng(u) N X’| < p must be in Y. It follows

that

> mp(u, X', G) =Y (p—|Na(y) N X']) = |B]. (2.7)

ueX’ yey
By (2.7), we immediately have that

p(G) < p(V(G), X', G) = Y mp(u, X', Q) = [B] = 1,(G).
ueX’
Combining this with (2.6]), we obtain r,(G) = n,(G), and so the theorem follows. 1
Note that when p = 1, X* defined in (2.2)) is V(G) \ N¢[X]. This fact means that

n(G) defined in (20)) is a special case of p = 1 in (2.H), that is, 71(G) = n(G). Thus,
the following corollary holds immediately.

Corollary 2.1 (Kok and Mynhardt [19]) r(G) = n(G) if v(G) > 1.
Using Observation and Theorem 2.2] the following corollary is obvious.

Corollary 2.2 Letp > 1 be an integer and G be a graph with v,(G) > p. If A(G) < p,
then
rp(G) =p — A(G).

3 Some Exact Values

In this section we will use Theorem 2.2] to calculate the p-reinforcement numbers for
some classes of graphs.

We first determine the p-reinforcement numbers for paths and cycles. Let P, and
C, denote, respectively, a path and a cycle with n vertices. When p = 1, Kok and
Mynhardt [19] proved that r(P,) = r(C,) = i if n = 3k+1i > 4, where i € {1,2,3}. We
will give the exact values of r,(P,) and r,(C,,) for p > 2. The following observation is
simple but useful.

Observation 3.1 For integer p > 2,

R R A A RS BT A

Theorem 3.2 Let p > 2 be an integer. If v,(P,) > p then

2 if p=2 andn is odd
rp(Pp) =4 1 if p=2 andn is even
p—2 if p>3.



Proof. Let P, = 125 - - - x,, and X be an 7,-set of P,. By Theorem[2.2land ~,(F,) > p,
rp(Pn) = np(Pn) = np,(V(Pn), X, P,) > 1. For p > 3, it is easy to see that r,(FP,) = p—2
by Corollary Assume that p = 2 below.

If n is even, then by Observation BI], vo(P,) — 72(C,) = 1, which implies that
ro(P,) < 1. Furthermore, ro(P,) = 1.

If n is odd, then v, (P,) = "TH by Observation .1l and so n > 5 since vo(P,) > 2.
Let

n—1
2
i=1
Clearly, | X'| = 251 = 4 (P,) — 1. So

772(V(Pn)’X> PN) < 772(V(PN)>X/>PN) = 772(551’X/’ Pn) + 772(IN>X/>PN) = 2.

Suppose that 9o (V(P,), X, P,) = 1. Then X can 2-dominate either V(P,) \ {x1}
or V(P,) \ {z,,}. In both cases, we have

—1 —1
1X| > yo(Pacy) = {”2 J+1="2 +1,

which contradicts with | X| = 25=. Hence ro(P,) = no(V(P,), X, P,) = 2. I

Theorem 3.3 Let p > 2 be an integer. If v,(C,) > p then

2 if p=2 andn is odd
rp(Cn) = ¢ 4 if p=2 andn is even
p—2 if p>3.

Proof. Let C, = xyx9 - - x,21. If p > 3 then the result holds obviously by Corollary
In the following, we only need to calculate the values of 7,(C,,) for p = 2. Let X
be an ne-set of C,,. Then ro(C,,) = n2(Cy) = n2(V(C,), X, C,,) by Theorem Note
that n > 5 since 1»(Cy) = [§] > 2.

If n is odd, then let

n—1

= U{Izz’—l}-

Clearly, | | = 21 = 4(C,) — 1 by Observation Bl and n(V(C,), X', C,,) =
M2(Tn-1, X )+ng(:)sn,X C,) = 2. So

r2(Cr) = m(V(Ch), X, Cp) <m(V(Cr), X', Cr) = 2.

Since X is not a 2-dominating set of C,, there must be two adjacent vertices, de-
noted by z; and z;,1, of C),, not in X. This fact means that n,(z;, X,C,) > 1 and
772(5'7i+17X7 Cn) Z L. SO

T2(Cn) = nQ(V(Cn)>Xa Pn) > 772(93i>X’ CN) + 772(Ii+1aX> Cn) > 2
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Hence ro(C,,) = 2.

If n is even, then n > 6. Deleting X and all vertices 2-dominated by X from C,,
we can obtain a result graph, denoted by H, each of whose components is a path with
length at least 2. Denote all components of H by Hy,---, H,, where h > 1. In the
case that h = 1 and the length of H; is equal to one, X can 2-dominate a subgraph of
C,, that is isomorphic to P,_,. By Observation B.1]

n—2 n
(X[ 2 (Pae) = [——]+1=7,
2 2
which contradicts that |X| = 1(C,) =1 = [§] =1 = § — 1. In other cases, we can
find that
TQ(CH) = 772(‘/(0”)’ X> Cn) > 4.
Let

n_y
X// = U {1’22‘_1}.
i=1
It is easy to check that | X"| = £ —1 = 75(C,) — 1 and n2(V(Cy), X", Cy,) = 4. So
7’2(Cn) = 772(V(Cn>v X, Cn) < 772(V(Cn)7 X//v Cn) =4.
Hence ry(C),) = 4 and so the theorem is true. I

Next we consider the p-reinforcement number for a complete ¢-partite graph K, ... ,.
To state our results, we need some symbols. For any subset X = {n;, .. n, } of
{nh o 7nt}7 define

[ X| =7 and f(X)=) n.
j=1
For convenience, let | X| =0 and f(X)=0if X = 0. let
2 ={X: X is asubset of {ny,---,n:} with f(X) >,(G)}
and, for every X € 2, define

fH(X) =max{f(Y):Y is a subset of X with |Y| = |X|—1and f(Y) < p}.

Theorem 3.4 For any integer p > 1 and a complete t-partite graph G = K,, ... n, with

t > 2 and v,(G) > p,

t

rp(G) = min{(p — f*(X))(f(X) =3(G) +1): X € Z7}.

Proof. Let N = {ny,---,n} and V(G) = V3 U--- UV, be the vertex-set of G such
that |V;| = n; for each ¢ = 1,--- ,t. Let

m = min{(p — f*(X))(f(X) = %(G) +1): X € Z}.



We first prove that r,(G) < m. Let X C 2 (without loss of generality, assume
X ={ny, - ,ng,ngp1} for some 0 < k <t —1) such that

fH(X) =m+ - 4 and (p — f7(X))(f(X) = %(G) +1) =m.

By X C 2, we know that ni41 = f(X) — f(X) > 7,(G) — f*(X). So we can pick a
vertex-subset V., from Vi, such that |V, | = v,(G) — f*(X) — 1. Let

D=ViU---UV,UV.,.

Clearly, |D| = ~,(G) — 1. Since 7,(G) > p, |D| > p and so D can p-dominate U;_, . ,V;.
Hence by the definition of 1, (V(G), D, G),

np(V(G)aDaG) = np(V(G)\D>D>G)

t

= Z np(U,D,G)—|— Z np(‘/ivaG)

VeV 1\V/ 4 i=k+2
Vi \ Vigal(p = f7(X)) + 0

= (p— (X))t — ((G) — f(X) = 1)]
(p = fHX)(X) = %(G) +1)

m.
By Theorem 2.2, we have r,(G) = n,(G) < n,(V(G), D,G) = m.

On the other hand, we will show that 7,(G) > m. For any subset M of N, we use
I(M) to denote the subindex-sets of all elements in M, that is,

I(M)={i:n; € M}.

Let S be an 7,-set of G and let

Y ={n;: |[Vin S| =1V for 1 <i <t}, and
A={n;: 0<|V;NS| < |V;] for 1 <i <t}

Thus

FYUA) =)+ f(A)= D [Vil+ Y Vil 2|8 =7(G) — 1 (3.1)

i€I(Y) i€I(A)

by Observation 2.1l Since U;cryyV; (€ S) cannot p-dominate G,

fY) = Z ni = | Uierey) Vil < p. (3.2)
)

icl(Y

Hence, by [B.1) and 7,(G) > p,
fA) =2 7(G) =1 = f(Y) > 3(G) —p—1>0,
which implies that |A| > 1.



Claim. [A| = 1.

Proof of Claim. Suppose that |A| > 2. Then we can choose i and j from /(A) such
that ¢ # j. By the definition of A, we have 0 < |V; N S| < |Vi] and 0 < |V; NS| < |V}].
Therefore, we can pick two vertices x and y from V; N S and V; \ S, respectively. Let

§' = (S\{=z}) U{y}.

Obviously, |5'| = |S| =7,(G) — 1, |[V;iN S| =|V;NS|—1and |[V;NS|=|V;NS|+ 1.

Note that G is a complete t-partite graph. For any v € V(G), we can easily find
the value of n,(v, 5", G) — n,(v, S, G) by the definitions of n,(v, 5", G) and n,(v, S, G)
as follows:

(p—|S|+|VinS|—1)—-0 ifvo=zx
-1 foeV\S
np(U’S,’G)_np(U>S>G): 0—(p—\5\—|—\‘/;ﬂ5|) ifU:y
1 ifee (V;\9)\ {y)

0  otherwise.
Since S is an n,-set of G and |S’| = |S|, we have

0 S np(V(G)> Sla G) - np(V(G)a S’ G)
= Z (np(U>SlaG) _np(v>5> G))

veV(Q)
(=151 +Vin S| =1) = [Vi\ S| = (p = IS[+ [V; 0 S]) + [(V; \ S) \ {y}|
(Vi S| = [Vi\ S = ([V; 0 S| = [V;\ S) = 2.

This means that

(IVin S| = ViA S)) = (IV; 0 S| = [Vi\ S]) + 2.
However, by the symmetry of V; and Vj, we can also obtain

(IV; 0S| =Vi\ S = (IVin S| = [Vi\ S]) + 2

by applying the similar discussion. This is a contradiction, and so the claim holds. O

By Claim, we can assume that I(A) = {h}. From the definitions of Y and A, we
have [Y UA| = |Y|+ 1 and

FYUA) = D" Vil + Vil = > Vil + (IVin S| +1) =S|+ 1 = 7,(G).
icl(Y) iel(Y)

It follows that Y U A € 2. Thus, by (8:2) and the definition of f*(Y U A), we have
fY) < f*(YUA). Since 7,(G) > p, |S] = 1(G) —1 > p, and so S p-dominates



V(G)\ (Uiervua)V;). Therefore, by Theorem

mp(G) = 1p(G) = np(V(G), S,G) = np(V(G)\ S, 5,G)
= Z np(va S’ G)

veEVR\S
= (= fY)[Va\ S|

i
(= FONIVAl = (5] = F(Y))]
it

(= FY)NY UA) =7(G)+1)
(P = YUAFYUA) —%(G)+1)

m.

AVARLY,

This completes the proof of the theorem.
For example, let G = Ky51017 and p = 11. Then 71, (G) = 12, and so
2 ={{17},{2,10},{2,17},{10,17},{2,2,10},{2,2,17},{2,10,17},{2,2,10,17}}.

By Theorem [3.4], for any X € 2", we have that

0 if X = {17},{2,10,17} or {2,2,10,17);
o )2 ifx ={217)
FXY=9 4 i x = {2.2,10} or {2,2,17):
10 if X = {2, 10} or {10, 17}.

Hence

r11(G) = min{(11 — f*(X)(f(X) —m(G)+1): X € Z'}
= min{(11 - fA(X)(f(X)—-11): X € 27}
= (11— f*({2,10}))(f({2,10}) — 11)
= 1.

4 Complexity

Blair et al. [3], Hu and Xu [I7], independently, showed that the 1-reinforcement prob-
lem is NP-hard. Thus, for any positive integer p, the p-reinforcement problem is also
NP-hard since the 1-reinforcement is a sub-problem of the p-reinforcement problem.

For each fixed p, p-dominating set is polynomial-time computable (see Downey and
Fellows [9], [10] for definitions and discussion). However, the p-reinforcement number

problem is hard even for specific values of the parameters. In this section, we will

consider the following decision problem.
p-Reinforcement

Instance: A graph G, p (> 2) is a fixed integer.
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Question: Is r,(G) < 17

We will prove that p-Reinforcement (p > 2) is also NP-hard by describing a
polynomial transformation from the following NP-hard problem (see [13]).

3-Satisfiability (3SAT)

Instance: A set U = {uy,...,u,} of variables and a collection € = {C,...,C,}
of clauses over U such that |C;| =3 fori=1,2,...,m
Furthermore, every literal is used in at least one clause.

Question: Is there a satisfying truth assignment for C?7
Theorem 4.1 For a fixed integer p > 2, p-Reinforcement is NP-hard.

Proof. Let U = {uy,...,u,} and € = {C4,...,C,} be an arbitrary instance I of
3SAT. We will show the NP-hardness of p-Reinforcement by reducing 3SAT to it
in polynomial time. To this aim, we construct a graph G as follows:

a. For each variable u; € U, associate a graph H;, where H; can be obtained from
a complete graph Kap o with vertex-set {u;,w;} U (UJ_ {v;;, Ty, }) by deleting the
-1 _
edge-subset U§:1 {uivy;, wpvg, 1
b. For each clause C; € €, create a single vertex ¢; and join ¢; to the vertex u;

(resp. @;) in H; if and only if the literal u; (resp. u;) appears in clause C; for any

ie{l,...,n};

c. Add a complete graph T (=2 K,,) and join all of its vertices to each c;.

For convenience, let X; = U_ {v;,} and X; = U)_{7;,}. Then V(H;) = {u;,u;} U
X; UX,. Use Hy to denote the induced subgraph by {c1, -+ ,em P UV(T).

It is clear that the construction of G can be accomplished in polynomial time. To
complete the proof of the theorem, we only need to prove that % is satisfiable if and
only if 7,(G) = 1. We first prove the following two claims.

Claim 1. Let D be a v,-set of G. Then |D| = p(n + 1), moreover, |V (H;) N D| = p
and [{u;,w;} N D| <1 for each i € {1,2,...,n}.

Proof of Claim 1. Suppose there is some ¢ € {1,2,--- ,n} such that |V (H;)ND| < p.
Then there must be a vertex, say x, of V(H;) \ D such that Ng(z) € V(H;). And
so |[Ng(x) N D| < |V(H;) N D| < p, which contradicts that D is a 7,-set of G. Thus
|V(H;) " D| > p for each i € {0,1,---,n}, and so

= |D| = ZW )N D| > p(n+1). (4.1)
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On the other hand, let

n

D' = JI(X: = {o, H U fmH U V(D).

i=1

Clearly, |D'| = p(n + 1) and D’ is a p-dominating set of G. Hence by (4.)),
p(n+1) <> [V(H) N D[ =7(G) <|D'| = p(n+1),
i=0

which implies that ~,(G) = p(n + 1) and |V(H;) N D| = p for each 0 < i < n.
Furthermore, if [{u;,@;} N D| = 2 then |(X; U X;) N D| = p — 2. So we can choose
a vertex from X; U X; that is not p-dominated by D. This is impossible since D is a
vp-set of G, and so |{u;,u;} N D| < 1. The claim holds. [

Claim 2. If there is an edge e = xy € G° such that v,(G +e) < 7,(G), then any v,-set
D, of G + e satisfies the following properties.

(1) |V(H;) N De| =p and |{u;,w;} N D.| <1 for eachi € {1,--- ,n};

(it) {c1,-+ ,em} N D=0, and so |V(T)ND,| =p—1;
(7i1) One of x and y belongs to V(T) \ D. and the other belongs to H N D,., where

Proof of Claim 2. Because D, is a 7y,-set of G + e and ~,(G + ¢) < 7,(G), one of
x and y is not in D, but the other is in D.. Without loss of generality, say = ¢ D, and
y € D.. It is clear that |[Ng(x) N D.| = p — 1. Since vertex z is the unique vertex not
be p-dominated by D., we have

np(V(G)>Dea G) = np(x>De>G) =P— (p - 1) =1 (42)

Let
D = D.,U{x}.

Then D is a p-dominating set of G and |D| = |D.|+ 1 = 7,(G+¢) +1 < 7,(G). That
is, D is a 7y,-set of G. By Claim 1,

|V(H;)ND| =pforeachi=0,1,---,n, (4.3)

and [{u;, 7;} N D.| < [{us, w;} N D] <1forl<i<n.

Suppose that there exists some ¢ € {1,--- ,n} such that |V (H;) N D.| # p. Then by
B3), z € V(H;) and |V (H;)N D,| = p—1. Thus every vertex in (X; UX;)\ (D.U{z})
is dominated by at most p — 1 vertices of D.. Hence by |X; U X;| = 2p,
np(V(G)vDevG) Z np(XZ invDeuG) Z ‘(XZ UYZ) \ De‘ —1 Z 2p - (p - 1) —-1> 17
which contradicts with (4.2). Hence (7) holds.
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Suppose that there is some j € {1,---,m} such that ¢; € D.. By (i) and ([3),
xz € V(Hy) and so |V (Hy)ND,| = |V(Hy)ND|—1=p—1. Hence [V(T)ND,| <p—2
by V(Hy) = {c1, - ,cm} U V(T). Since each vertex of T (= K,,) has exact p — 1
neighbors in D,

p(V(G), De, G) =2 np(V(T), De, G) = [V(T')\ De| = p — [V(T) N De| = 2.

This contradicts with ([@2)). Thus {¢i, - ,cn} N D = 0, and so |[V(T) N D.| =
|V(Hy) N D.| =p— 1. Hence (i) holds.

By (i), T has a unique vertex, say z, not in D.. From |Ng(z)ND,.| = |V (Hy)ND.| =
p — 1, the vertex z is not p-dominated by D.. However, x is the unique vertex not
be p-dominated by D, in G by (£2). Thus z = z, and so x = z € V(T) \ D.. By
the construction of G and zy € G¢, it is clear that y € (U, V(H;)) N D,.. Hence (ii7)
holds. O

We now show that % is satisfiable if and only if 7,(G) = 1.

If ¢ is satisfiable, then ¢ has a satisfying truth assignment ¢ : U — {T,F}.
According to this satisfying assignment, we can choose a subset S from V' (G) as follows:

S=S,USiU---US,,

where Sy consists of p — 1 vertices of T" and

- uiU(Yi—{@p}) if t(u;) =T it onch § .
& {Uz'U(Xz’—{wp}) if t(u;) = F f hie{l,---,n}

It can be verified easily that |S| = p(n+1) — 1 = 7,(G) — 1 and U}_,V(H;) can be
p-dominated by S. Since t is a satisfying true assignment for &, each clause C; € €
contains at least one true literal. That is, the corresponding vertex c; has at least
one neighbor in {uy, @ -+, uy,, 4, } NS by the definitions of G and S, and so every
¢; € {c1,-+-,cn} has at least p neighbors in S since Sy C Ng(c;j). Note that the
unique vertex in V(T') \ Sy has exact p — 1 neighbors in S. By Theorem and
5] =7(G) -1,

mp(G) = mp(G) < (V(G), 5, G) = mp(V(T) \ S0, 5,G) =p—(p—1) = 1.
Furthermore, we have r,(G) = 1 since 7,(G) > p by Claim 1.

Conversely, assume r,(G) = 1. That is, there exists an edge e = xy in G° such that
(G +¢€) < 7,(G). Let D, be a y,-set of G + e. Define t : U — {T, F'} by

fori=1,--- n. (4.4)

Hug) = T if vertex u; € D,
YT Fif vertex u; ¢ D,

We will show that ¢ is a satisfying truth assignment for €. Let C; be an arbitrary
clause in €. By (i7) and (¢ii) of Claim 2, the corresponding vertex ¢; is not in D, and
|Na(cj) N D.| > psince ¢; ¢ {x,y}. Then there must be some i € {1,---,n} such that

{wi, @} N Neg(cj) N De| =1, (4.5)
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since T contains exact p—1 vertices of D, by (¢) and (47) of Claim 2. If u; € Ng(c;)N Dk,
then u; € C; and t(u;) = T by the construction of G and ([@4)). If w; € Ng(cj) N D,
then the literal u; belongs to C; by the construction of G. Note that u; ¢ D, from
u; € D, and (i) of Claim 2. This means that ¢(u;) = F by (44]). Hence t(uw;) = T.
The arbitrariness of C; with 1 < j < m shows that all the clauses in ¢ is satisfied by
t. That is, € is satisfiable.

The theorem follows. 1

5 Upper Bounds

For a graph G and p = 1, Kok and Mynhardt [19] provided an upper bound for r(G)
in terms of the smallest private neighborhood of a vertex in some v-set of G. Let
X CV(G) and x € X. The private neighborhood of x with respect to X is defined as
the set

PN (2, X, G) = Nela] \ Ne X\ {x}]. (5.1)

Set
w(X,G) =min{|PN(z, X,G)|: z € X}
and
w(G) = min{u(X,G) : X is a y-set of G}. (5.2)
Using this parameter, Kok and Mynhardt [19] showed that 7(G) < u(G) if v(G) > 2
with equality if 7(G) = 1. We generalize this result to any positive integer p.

In order to state our results, we need some notations. Let X C V(G) and z € X.
A vertex y € X is called a p-private neighbor of x with respect to X if zy € F(G) and
|Nc(y) N X| = p. The p-private neighborhood of x with respect to X is defined as

PN,(z,X,G) ={y: yis a p-private neighbor of = with respect to X}. (5.3)

Let
pp(z, X, G) = |PNy(z,X,G)|+ max{0,p — |[Ng(x) N X|}, (5.4)
(X, G) = min{p,(z,X,G) :z € X}, and :
tp(G) = min{p,(X,G): X is a y,-set of G}. (5.6)

Theorem 5.1 For any graph G and positive integer p,
(G) < (@)
with equality if r,(G) = 1.
Proof. If v,(G) < p, then r,(G) = 0 < p,(G) by our convention. Assume that
Yp(G) > p+ 1 below. Let X be a v,-set of G and x € X such that

IUP(G) = :up(Xa G) = Up($’X> G).
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Since | X| = 7,(G) > p+ 1, we can choose a vertex, say u,, from X \ Ng(y) for each
y € PN,(xz,X,G), and a subset X’ with |X’| = max{0, p—|Ng(z)NX|} from X\ N¢g[z].
Let

G'=G+{yuy,: y€ PNy(z,X,G)} +{zv: ve X'}

Obviously, X \ {z} is a p-dominating set of G’, which implies that
p(G) < |PNy(2, X, G)| + | X'| = pp(7, X, G) = p1,(G).

Assume 7,(G) = 1. Then ~,(G) > p+ 1 and there exists an edge zy € E(G¢) such
that v,(G + zy) = 7,(G) — 1. Let G’ = G + xy and X be a v,-set of G'. Without loss
of generality, assume that + € X and y € X. Clearly, y is a p-private neighbor of x
with respect to X in G and X U {y} is a v,-set of G, which implies

PN,(y, X U{y},G) =0 and p— [Ne(y) N (X U{y})[ =1,
that is, u,(y, X U{y},G) = 1. It follows that
(G) < p(G) < pp(X ULy}, G) < pply, X ULy}, G) = 1.
Thus, 7,(G) = u,(G) = 1. The theorem follows. I

Note that |PN,(z, X, G)| < degg(z) for any X C V(G) and z € X. By Theorem
.11 we obtain the following corollary immediately.

Corollary 5.1 For any graph G with mazimum degree A(G) and positive integer p,
rp(G) < A(G) +p.

Corollary 5.2 Let p be a positive integer and G be a graph with minimum degree §(G).
If 5(G) < p, then ry(G) < 6(G) + p.

Proof. Let X be a 7,-set of G and x € V(G) with degree §(G). Since degg(z) =
d(G) < p, x € X by Observation [[L2 Note that |PN,(z, X, G)| < degs(x) = §(G) and
p — |Ng(z) N X| < p. By Theorem [B.1]

mp(G) < (@)
pp(z, X, G)
|PNy(z, X, G)| + max{0,p — [Ng(z) N X|}
< §(G) +p.

The corollary follows. 1

N

Consider p = 1. Let X C V(G) and x € X. If x is not an isolated vertex of
the induced subgraph G[X], then PN(z, X, G) defined in (5.I)) does not contain z
and max{0,1 — |[Ng(z) N X|} = 0 in (54). Otherwise, PN (x, X, G) contains = and
max{0,1 — |Ng(z) N X|} = 1. Notice that PN,(z, X, ) defined in (53) does not
contain x. Hence, by (5.5),

wi(x, X,G) = PNy(x, X,G) + max{0,1 — |[Ng(z) N X|} = |PN(z, X, G)|.

This fact means that u(G) defined in (5.2)) is a special case of p = 1 in (5.6]), that is,
p1(G) = u(G). Thus, by Theorem [B.1] the following corollary holds immediately.
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Corollary 5.3 (Kok and Mynhardt [19]) For any graph G with v(G) > 2, r(G) <
w(G), with equality if r(G) = 1.
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