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Abstract

Let G = (V,E) be a graph and p be a positive integer. A subset S ⊆ V

is called a p-dominating set if each vertex not in S has at least p neighbors in
S. The p-domination number γp(G) is the size of a smallest p-dominating set
of G. The p-reinforcement number rp(G) is the smallest number of edges whose
addition to G results in a graph G′ with γp(G

′) < γp(G). In this paper, we give
an original study on the p-reinforcement, determine rp(G) for some graphs such
as paths, cycles and complete t-partite graphs, and establish some upper bounds
of rp(G). In particular, we show that the decision problem on rp(G) is NP-hard
for a general graph G and a fixed integer p ≥ 2.
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1 Induction

For notation and graph-theoretical terminology not defined here we follow [21]. Specif-
ically, let G = (V,E) be an undirected graph without loops and multi-edges, where
V = V (G) is the vertex-set and E = E(G) is the edge-set, where E 6= ∅.

For x ∈ V , the open neighborhood, the closed neighborhood and the degree of x are
denoted by NG(x) = {y ∈ V : xy ∈ E}, NG[x] = NG(x) ∪ {x} and degG(x) = |NG(x)|,
respectively. δ(G) = min{degG(x) : x ∈ V } and ∆(G) = max{degG(x) : x ∈ V } are
the minimum degree and the maximum degree of G, respectively. For any X ⊆ V , let
NG[X ] = ∪x∈XNG[x].

For a subset D ⊆ V , let D = V \ D. The notation Gc denotes the comple-
ment of G, that is , Gc is the graph with vertex-set V (G) and edge-set {xy : xy /∈
E(G) for any x, y ∈ V (G)}. For B ⊆ E(Gc), we use G + B to denote the graph with
vertex-set V and edge-set E ∪B. For convenience, we denote G+ {xy} by G+ xy for
an xy ∈ E(Gc).

A nonempty subset D ⊆ V is called a dominating set of G if |NG(x) ∩ D| ≥ 1
for each x ∈ D. The domination number γ(G) of G is the minimum cardinality of all
dominating sets in G. The domination is a classical concept in graph theory. The early
literature on the domination with related topics is, in detail, surveyed in the two books
by Haynes, Hedetniemi, and Slater [14, 15].

In 1985, Fink and Jacobson [12] introduced the concept of a generalization domi-
nation in a graph. Let p be a positive integer. A subset D ⊆ V is a p-dominating set of
G if |NG(x)∩D| ≥ p for each x ∈ D. The p-domination number γp(G) is the minimum
cardinality of all p-dominating sets in G. A p-dominating set with cardinality γp(G) is
called a γp-set of G. For S, T ⊆ V , the set S can p-dominate T in G if |NG(x)∩S| ≥ p
for every x ∈ T \ S. Clearly, the 1-dominating set is the classical dominating set, and
so γ1(G) = γ(G). The p-domination is investigated by many authors (see, for example,
[1, 2, 4, 5, 11]). Very recently, Chellali et al.[4] have given an excellent survey on this
topics. The following are two simple observations.

Observation 1.1 If G is a graph with |V (G)| ≥ p, then γp(G) ≥ p.

Observation 1.2 Every p-dominating set of a graph contains all vertices of degree at

most p− 1.

Clearly, addition of some extra edges to a graph could result in decrease of its
domination number. In 1990, Kok and Mynhardt [19] first investigated this problem
and proposed the concept of the reinforcement number. The reinforcement number

r(G) of a graph G is defined as the smallest number of edges whose addition to G
results in a graph G′ with γ(G′) < γ(G). By convention r(G) = 0 if γ(G) = 1.

The reinforcement number has received much research attention (see, for example,
[3, 7, 18]), and its many variations have also been well described and studied in graph
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theory, including total reinforcement [16, 20], independence reinforcement [22], frac-
tional reinforcement [6, 8] and so on. In particular, Blair et al. [3], Hu and Xu [17],
independently, showed that the problem determining r(G) for a general graph G is
NP-hard.

Motivated by the work of Kok and Mynhardt [19], in this paper, we introduce the
p-reinforcement number, which is a natural extension of the reinforcement number.
The p-reinforcement number rp(G) of a graph G is the smallest number of edges of Gc

that have to be added to G in order to reduce γp(G), that is

rp(G) = min{|B| : B ⊆ E(Gc) with γp(G+B) < γp(G)}.

It is clear that r1(G) = r(G). By Observation 1.1, we can also make a convention,
rp(G) = 0 if γp(G) ≤ p. Thus rp(G) is well-defined for any graph G and integer p ≥ 1.
In this paper, we always assume γp(G) > p when we consider the p-reinforcement
number for a graph G.

The rest of this paper is organized as follows. In Section 2 we present an equivalent
parameter for calculating the p-reinforcement number of a graph. As its applications,
we determine the values of the p-reinforcement numbers for special classes of graphs
such as paths, cycles and complete t-partite graphs in Sections 3, and show that the
decision problem on p-reinforcement is NP-hard for a general graph and a fixed integer
p ≥ 2 in Section 4. Finally, we establish some upper bounds for the p-reinforcement
number of a graph G by terms of other parameters of G in Section 5.

2 Preliminary

Let G be a graph with γ(G) > 1 and B ⊆ E(Gc) with |B| = r(G) such that γ(G+B) <
γ(G). Let X be a γ-set of G + B. Then |B| ≥ |V (G) \ NG[X ]|. On the other
hand, given any set X ⊆ V (G), we can always choose a subset B ⊆ E(Gc) with
|B| = |V (G) \NG[X ]| such that X dominates G + B. It is a simple observation that,
to calculate r(G), Kok and Mynhardt [19] proposed the following parameter

η(G) = min{|V (G) \NG[X ]| : X ⊆ V (G), |X| < γ(G)}, (2.1)

and showed r(G) = η(G). We can refine this technique to deal with the p-reinforcement
number rp(G).

Let G be a graph with γp(G) > p. For any X ⊆ V (G), let

X∗ = {x ∈ X : |NG(x) ∩X| < p}. (2.2)

Let B ⊆ E(Gc) with |B| = rp(G) such that γp(G+ B) < γp(G), and let X be a γp-set
of G+B. Then

|B| ≥
∑

x∈X∗

(p− |NG(x) ∩X|).
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On the other hand, given any set X ⊆ V (G) with |X| ≥ p, we can always choose a
subset B ⊆ E(Gc) with

|B| =
∑

x∈X∗

(p− |NG(x) ∩X|)

such that X can p-dominate G + B. Motivated by this observation, we introduce the
following notations. For a subset X ⊆ V (G),

ηp(x,X,G) =

{

p− |NG(x) ∩X| if x ∈ X∗

0 otherwise
for x ∈ V (G), (2.3)

ηp(S,X,G) =
∑

x∈S

ηp(x,X,G) for S ⊆ V (G), and (2.4)

ηp(G) = min{ηp(V (G), X,G) : |X| < γp(G)}. (2.5)

A subset X ⊆ V (G) is called an ηp-set of G if ηp(G) = ηp(V (G), X,G). Clearly, for
any two subsets S ′, S ⊆ V (G) and two subsets X ′, X ⊆ V (G),

ηp(S
′, X,G) ≤ ηp(S,X,G) if S ′ ⊆ S,

ηp(S,X,G) ≤ ηp(S,X
′, G) if |X ′| ≤ |X|.

Thus, we have the following simple observation.

Observation 2.1 If X is an ηp-set of a graph G, then |X| = γp(G)− 1.

The following result shows that computing rp(G) can be referred to computing
ηp(G) for a graph G with γp(G) ≥ p + 1.

Theorem 2.2 For any graph G and positive integer p, rp(G) = ηp(G) if γp(G) > p.

Proof. Let X be an ηp-set of G. Then |X| = γp(G) − 1 by Observation 2.1. Let
Y = {y ∈ V (G) : ηp(y,X,G) > 0}. Then Y = X∗ is contained in X , where X∗ is
defined in (2.2). Thus, ηp(G) = ηp(X

∗, X,G). We construct a new graph G′ from
G, for each y ∈ X∗, by adding ηp(y,X,G) edges of Gc to G joining y to ηp(y,X,G)
vertices in X . Clearly, X is a p-dominating set of G′, that is, γp(G

′) ≤ |X|. Let
B = E(G′)−E(G). Then

γp(G) = |X|+ 1 > |X| ≥ γp(G
′) = γp(G+B),

which implies rp(G) ≤ |B|. It follows that

rp(G) ≤ |B| =
∑

y∈X∗

ηp(y,X,G) = ηp(X
∗, X,G) = ηp(G). (2.6)

On the other hand, let B be a subset of E(Gc) such that |B| = rp(G) and γp(G +
B) = γp(G) − 1. Let G′ = G + B and X ′ be a γp-set of G′. For every xy ∈ B, X ′

cannot p-dominate the graph G′ − xy by the minimality of B. This fact means that
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only one of x and y is in X ′. Without loss of generality, assume y ∈ X ′. Since X ′

cannot p-dominate y in G′−xy and so in G, |NG(y)∩X ′| < p. Let Z be all end-vertices
of edges in B and Y = X ′ ∩ Z. Since X ′ is a γp-set of G

′, |NG′(u) ∩ X ′| ≥ p for any
u ∈ X ′. In other words, any u ∈ X ′ with |NG(u) ∩ X ′| < p must be in Y . It follows
that

∑

u∈X′

ηp(u,X
′, G) =

∑

y∈Y

(p− |NG(y) ∩X ′|) = |B|. (2.7)

By (2.7), we immediately have that

ηp(G) ≤ ηp(V (G), X ′, G) =
∑

u∈X′

ηp(u,X
′, G) = |B| = rp(G).

Combining this with (2.6), we obtain rp(G) = ηp(G), and so the theorem follows.

Note that when p = 1, X∗ defined in (2.2) is V (G) \NG[X ]. This fact means that
η(G) defined in (2.1) is a special case of p = 1 in (2.5), that is, η1(G) = η(G). Thus,
the following corollary holds immediately.

Corollary 2.1 (Kok and Mynhardt [19]) r(G) = η(G) if γ(G) > 1.

Using Observation 1.2 and Theorem 2.2, the following corollary is obvious.

Corollary 2.2 Let p ≥ 1 be an integer and G be a graph with γp(G) > p. If ∆(G) < p,
then

rp(G) = p−∆(G).

3 Some Exact Values

In this section we will use Theorem 2.2 to calculate the p-reinforcement numbers for
some classes of graphs.

We first determine the p-reinforcement numbers for paths and cycles. Let Pn and
Cn denote, respectively, a path and a cycle with n vertices. When p = 1, Kok and
Mynhardt [19] proved that r(Pn) = r(Cn) = i if n = 3k+ i ≥ 4, where i ∈ {1, 2, 3}. We
will give the exact values of rp(Pn) and rp(Cn) for p ≥ 2. The following observation is
simple but useful.

Observation 3.1 For integer p ≥ 2,

γp(Pn) =

{

⌊n
2
⌋ + 1 if p = 2

n if p ≥ 3
and γp(Cn) =

{

⌈n
2
⌉ if p = 2
n if p ≥ 3.

Theorem 3.2 Let p ≥ 2 be an integer. If γp(Pn) > p then

rp(Pn) =







2 if p = 2 and n is odd

1 if p = 2 and n is even

p− 2 if p ≥ 3.
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Proof. Let Pn = x1x2 · · ·xn andX be an ηp-set of Pn. By Theorem 2.2 and γp(Pn) > p,
rp(Pn) = ηp(Pn) = ηp(V (Pn), X, Pn) ≥ 1. For p ≥ 3, it is easy to see that rp(Pn) = p−2
by Corollary 2.2. Assume that p = 2 below.

If n is even, then by Observation 3.1, γ2(Pn) − γ2(Cn) = 1, which implies that
r2(Pn) ≤ 1. Furthermore, r2(Pn) = 1.

If n is odd, then γ2(Pn) =
n+1
2

by Observation 3.1, and so n ≥ 5 since γ2(Pn) > 2.
Let

X ′ =

n−1

2
⋃

i=1

{x2i}.

Clearly, |X ′| = n−1
2

= γ2(Pn)− 1. So

η2(V (Pn), X, Pn) ≤ η2(V (Pn), X
′, Pn) = η2(x1, X

′, Pn) + η2(xn, X
′, Pn) = 2.

Suppose that η2(V (Pn), X, Pn) = 1. Then X can 2-dominate either V (Pn) \ {x1}
or V (Pn) \ {xn}. In both cases, we have

|X| ≥ γ2(Pn−1) =

⌊

n− 1

2

⌋

+ 1 =
n− 1

2
+ 1,

which contradicts with |X| = n−1
2
. Hence r2(Pn) = η2(V (Pn), X, Pn) = 2.

Theorem 3.3 Let p ≥ 2 be an integer. If γp(Cn) > p then

rp(Cn) =







2 if p = 2 and n is odd

4 if p = 2 and n is even

p− 2 if p ≥ 3.

Proof. Let Cn = x1x2 · · ·xnx1. If p ≥ 3 then the result holds obviously by Corollary
2.2. In the following, we only need to calculate the values of rp(Cn) for p = 2. Let X
be an η2-set of Cn. Then r2(Cn) = η2(Cn) = η2(V (Cn), X, Cn) by Theorem 2.2. Note
that n ≥ 5 since γ2(Cn) = ⌈n

2
⌉ > 2.

If n is odd, then let

X ′ =

n−1

2
⋃

i=1

{x2i−1}.

Clearly, |X ′| = n−1
2

= γ2(Cn) − 1 by Observation 3.1, and η2(V (Cn), X
′, Cn) =

η2(xn−1, X
′, Cn) + η2(xn, X

′, Cn) = 2. So

r2(Cn) = η2(V (Cn), X, Cn) ≤ η2(V (Cn), X
′, Cn) = 2.

Since X is not a 2-dominating set of Cn, there must be two adjacent vertices, de-
noted by xi and xi+1, of Cn not in X . This fact means that η2(xi, X, Cn) ≥ 1 and
η2(xi+1, X, Cn) ≥ 1. So

r2(Cn) = η2(V (Cn), X, Pn) ≥ η2(xi, X, Cn) + η2(xi+1, X, Cn) ≥ 2.
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Hence r2(Cn) = 2.

If n is even, then n ≥ 6. Deleting X and all vertices 2-dominated by X from Cn,
we can obtain a result graph, denoted by H , each of whose components is a path with
length at least 2. Denote all components of H by H1, · · · , Hh, where h ≥ 1. In the
case that h = 1 and the length of H1 is equal to one, X can 2-dominate a subgraph of
Cn that is isomorphic to Pn−2. By Observation 3.1,

|X| ≥ γ2(Pn−2) = ⌊
n− 2

2
⌋ + 1 =

n

2
,

which contradicts that |X| = γ2(Cn) − 1 = ⌈n
2
⌉ − 1 = n

2
− 1. In other cases, we can

find that
r2(Cn) = η2(V (Cn), X, Cn) ≥ 4.

Let

X ′′ =

n
2
−1
⋃

i=1

{x2i−1}.

It is easy to check that |X ′′| = n
2
− 1 = γ2(Cn)− 1 and η2(V (Cn), X

′′, Cn) = 4. So

r2(Cn) = η2(V (Cn), X, Cn) ≤ η2(V (Cn), X
′′, Cn) = 4.

Hence r2(Cn) = 4 and so the theorem is true.

Next we consider the p-reinforcement number for a complete t-partite graphKn1,··· ,nt
.

To state our results, we need some symbols. For any subset X = {ni1, ··· , nir
} of

{n1, · · · , nt}, define

|X| = r and f(X) =
r

∑

j=1

nij .

For convenience, let |X| = 0 and f(X) = 0 if X = ∅. let

X = {X : X is a subset of {n1, · · · , nt} with f(X) ≥ γp(G)}

and, for every X ∈ X , define

f ∗(X) = max{f(Y ) : Y is a subset of X with |Y | = |X| − 1 and f(Y ) < p}.

Theorem 3.4 For any integer p ≥ 1 and a complete t-partite graph G = Kn1,··· ,nt
with

t ≥ 2 and γp(G) > p,

rp(G) = min{(p− f ∗(X))(f(X)− γp(G) + 1) : X ∈ X }.

Proof. Let N = {n1, · · · , nt} and V (G) = V1 ∪ · · · ∪ Vt be the vertex-set of G such
that |Vi| = ni for each i = 1, · · · , t. Let

m = min{(p− f ∗(X))(f(X)− γp(G) + 1) : X ∈ X }.
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We first prove that rp(G) ≤ m. Let X ⊆ X (without loss of generality, assume
X = {n1, · · · , nk, nk+1} for some 0 ≤ k ≤ t− 1) such that

f ∗(X) = n1 + · · ·+ nk and (p− f ∗(X))(f(X)− γp(G) + 1) = m.

By X ⊆ X , we know that nk+1 = f(X)− f ∗(X) ≥ γp(G)− f ∗(X). So we can pick a
vertex-subset V ′

k+1 from Vk+1 such that |V ′
k+1| = γp(G)− f ∗(X)− 1. Let

D = V1 ∪ · · · ∪ Vk ∪ V ′
k+1.

Clearly, |D| = γp(G)− 1. Since γp(G) > p, |D| ≥ p and so D can p-dominate ∪t
i=k+2Vi.

Hence by the definition of ηp(V (G), D,G),

ηp(V (G), D,G) = ηp(V (G) \D,D,G)

=
∑

v∈Vk+1\V
′

k+1

ηp(v,D,G) +

t
∑

i=k+2

ηp(Vi, D,G)

= |Vk+1 \ V
′
k+1|(p− f ∗(X)) + 0

= (p− f ∗(X))[nk+1 − (γp(G)− f ∗(X)− 1)]

= (p− f ∗(X))(f(X)− γp(G) + 1)

= m.

By Theorem 2.2, we have rp(G) = ηp(G) ≤ ηp(V (G), D,G) = m.

On the other hand, we will show that rp(G) ≥ m. For any subset M of N , we use
I(M) to denote the subindex-sets of all elements in M , that is,

I(M) = {i : ni ∈ M}.

Let S be an ηp-set of G and let

Y = {ni : |Vi ∩ S| = |Vi| for 1 ≤ i ≤ t}, and

A = {ni : 0 < |Vi ∩ S| < |Vi| for 1 ≤ i ≤ t}.

Thus

f(Y ∪A) = f(Y ) + f(A) =
∑

i∈I(Y )

|Vi|+
∑

i∈I(A)

|Vi| ≥ |S| = γp(G)− 1 (3.1)

by Observation 2.1. Since ∪i∈I(Y )Vi (⊆ S) cannot p-dominate G,

f(Y ) =
∑

i∈I(Y )

ni = | ∪i∈I(Y ) Vi| < p. (3.2)

Hence, by (3.1) and γp(G) > p,

f(A) ≥ γp(G)− 1− f(Y ) > γp(G)− p− 1 ≥ 0,

which implies that |A| ≥ 1.

8



Claim. |A| = 1.

Proof of Claim. Suppose that |A| ≥ 2. Then we can choose i and j from I(A) such
that i 6= j. By the definition of A, we have 0 < |Vi ∩ S| < |Vi| and 0 < |Vj ∩ S| < |Vj|.
Therefore, we can pick two vertices x and y from Vi ∩ S and Vj \ S, respectively. Let

S ′ = (S \ {x}) ∪ {y}.

Obviously, |S ′| = |S| = γp(G)− 1, |Vi ∩ S ′| = |Vi ∩ S| − 1 and |Vj ∩ S ′| = |Vj ∩ S|+ 1.

Note that G is a complete t-partite graph. For any v ∈ V (G), we can easily find
the value of ηp(v, S

′, G) − ηp(v, S,G) by the definitions of ηp(v, S
′, G) and ηp(v, S,G)

as follows:

ηp(v, S
′, G)− ηp(v, S,G) =























(p− |S|+ |Vi ∩ S| − 1)− 0 if v = x
−1 if v ∈ Vi \ S

0− (p− |S|+ |Vj ∩ S|) if v = y
1 if v ∈ (Vj \ S) \ {y}
0 otherwise.

Since S is an ηp-set of G and |S ′| = |S|, we have

0 ≤ ηp(V (G), S ′, G)− ηp(V (G), S, G)

=
∑

v∈V (G)

(ηp(v, S
′, G)− ηp(v, S,G))

= (p− |S|+ |Vi ∩ S| − 1)− |Vi \ S| − (p− |S|+ |Vj ∩ S|) + |(Vj \ S) \ {y}|

= (|Vi ∩ S| − |Vi \ S|)− (|Vj ∩ S| − |Vj \ S|)− 2.

This means that

(|Vi ∩ S| − |Vi \ S|) ≥ (|Vj ∩ S| − |Vj \ S|) + 2.

However, by the symmetry of Vi and Vj, we can also obtain

(|Vj ∩ S| − |Vj \ S|) ≥ (|Vi ∩ S| − |Vi \ S|) + 2

by applying the similar discussion. This is a contradiction, and so the claim holds. ✷

By Claim, we can assume that I(A) = {h}. From the definitions of Y and A, we
have |Y ∪ A| = |Y |+ 1 and

f(Y ∪A) =
∑

i∈I(Y )

|Vi|+ |Vh| ≥
∑

i∈I(Y )

|Vi|+ (|Vh ∩ S|+ 1) = |S|+ 1 = γp(G).

It follows that Y ∪ A ∈ X . Thus, by (3.2) and the definition of f ∗(Y ∪ A), we have
f(Y ) ≤ f ∗(Y ∪ A). Since γp(G) > p, |S| = γp(G) − 1 ≥ p, and so S p-dominates
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V (G) \ (∪i∈I(Y ∪A)Vi). Therefore, by Theorem 2.2,

rp(G) = ηp(G) = ηp(V (G), S, G) = ηp(V (G) \ S, S,G)

=
∑

v∈Vh\S

ηp(v, S,G)

= (p− f(Y ))|Vh \ S|

= (p− f(Y ))[|Vh| − (|S| − f(Y ))]

= (p− f(Y ))(f(Y ∪ A)− γp(G) + 1)

≥ (p− f ∗(Y ∪A))(f(Y ∪ A)− γp(G) + 1)

≥ m.

This completes the proof of the theorem.

For example, let G = K2,2,10,17 and p = 11. Then γ11(G) = 12, and so

X = {{17}, {2, 10}, {2, 17}, {10, 17}, {2, 2, 10}, {2, 2, 17}, {2, 10, 17}, {2, 2, 10, 17}}.

By Theorem 3.4, for any X ∈ X , we have that

f ∗(X) =















0 if X = {17}, {2, 10, 17} or {2, 2, 10, 17};
2 if X = {2, 17};
4 if X = {2, 2, 10} or {2, 2, 17};
10 if X = {2, 10} or {10, 17}.

Hence

r11(G) = min{(11− f ∗(X))(f(X)− γ11(G) + 1) : X ∈ X }

= min{(11− f ∗(X))(f(X)− 11) : X ∈ X }

= (11− f ∗({2, 10}))(f({2, 10})− 11)

= 1.

4 Complexity

Blair et al. [3], Hu and Xu [17], independently, showed that the 1-reinforcement prob-
lem is NP-hard. Thus, for any positive integer p, the p-reinforcement problem is also
NP-hard since the 1-reinforcement is a sub-problem of the p-reinforcement problem.

For each fixed p, p-dominating set is polynomial-time computable (see Downey and
Fellows [9, 10] for definitions and discussion). However, the p-reinforcement number
problem is hard even for specific values of the parameters. In this section, we will
consider the following decision problem.

p-Reinforcement

Instance: A graph G, p (≥ 2) is a fixed integer.

10



Question: Is rp(G) ≤ 1?

We will prove that p-Reinforcement (p ≥ 2) is also NP-hard by describing a
polynomial transformation from the following NP-hard problem (see [13]).

3-Satisfiability (3SAT)

Instance: A set U = {u1, . . . , un} of variables and a collection C = {C1, . . . , Cm}

of clauses over U such that |Ci| = 3 for i = 1, 2, . . . , m.

Furthermore, every literal is used in at least one clause.

Question: Is there a satisfying truth assignment for C?

Theorem 4.1 For a fixed integer p ≥ 2, p-Reinforcement is NP-hard.

Proof. Let U = {u1, . . . , un} and C = {C1, . . . , Cm} be an arbitrary instance I of
3SAT. We will show the NP-hardness of p-Reinforcement by reducing 3SAT to it
in polynomial time. To this aim, we construct a graph G as follows:

a. For each variable ui ∈ U , associate a graph Hi, where Hi can be obtained from
a complete graph K2p+2 with vertex-set {ui, ui} ∪ (∪p

j=1{vij , vij}) by deleting the

edge-subset ∪p−1
j=1{uivij , uivij};

b. For each clause Cj ∈ C , create a single vertex cj and join cj to the vertex ui

(resp. ui) in Hi if and only if the literal ui (resp. ui) appears in clause Cj for any
i ∈ {1, . . . , n};

c. Add a complete graph T (∼= Kp) and join all of its vertices to each cj .

For convenience, let Xi = ∪p
j=1{vij} and Xi = ∪p

j=1{vij}. Then V (Hi) = {ui, ui} ∪

Xi ∪X i. Use H0 to denote the induced subgraph by {c1, · · · , cm} ∪ V (T ).

It is clear that the construction of G can be accomplished in polynomial time. To
complete the proof of the theorem, we only need to prove that C is satisfiable if and
only if rp(G) = 1. We first prove the following two claims.

Claim 1. Let D be a γp-set of G. Then |D| = p(n + 1), moreover, |V (Hi) ∩ D| = p
and |{ui, ui} ∩D| ≤ 1 for each i ∈ {1, 2, . . . , n}.

Proof of Claim 1. Suppose there is some i ∈ {1, 2, · · · , n} such that |V (Hi)∩D| < p.
Then there must be a vertex, say x, of V (Hi) \ D such that NG(x) ⊆ V (Hi). And
so |NG(x) ∩ D| ≤ |V (Hi) ∩ D| < p, which contradicts that D is a γp-set of G. Thus
|V (Hi) ∩D| ≥ p for each i ∈ {0, 1, · · · , n}, and so

γp(G) = |D| =
n

∑

i=0

|V (Hi) ∩D| ≥ p(n+ 1). (4.1)
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On the other hand, let

D′ =
n
⋃

i=1

[(Xi − {vip}) ∪ {ui}] ∪ V (T ).

Clearly, |D′| = p(n + 1) and D′ is a p-dominating set of G. Hence by (4.1),

p(n+ 1) ≤
n

∑

i=0

|V (Hi) ∩D| = γp(G) ≤ |D′| = p(n+ 1),

which implies that γp(G) = p(n + 1) and |V (Hi) ∩ D| = p for each 0 ≤ i ≤ n.
Furthermore, if |{ui, ui} ∩ D| = 2 then |(Xi ∪ X i) ∩ D| = p − 2. So we can choose
a vertex from Xi ∪X i that is not p-dominated by D. This is impossible since D is a
γp-set of G, and so |{ui, ui} ∩D| ≤ 1. The claim holds. �

Claim 2. If there is an edge e = xy ∈ Gc such that γp(G+e) < γp(G), then any γp-set
De of G+ e satisfies the following properties.

(i) |V (Hi) ∩De| = p and |{ui, ui} ∩De| ≤ 1 for each i ∈ {1, · · · , n};

(ii) {c1, · · · , cm} ∩De = ∅, and so |V (T ) ∩De| = p− 1;

(iii) One of x and y belongs to V (T ) \ De and the other belongs to H ∩ De, where

H = ∪n
i=1V (Hi).

Proof of Claim 2. Because De is a γp-set of G+ e and γp(G+ e) < γp(G), one of
x and y is not in De but the other is in De. Without loss of generality, say x /∈ De and
y ∈ De. It is clear that |NG(x) ∩De| = p− 1. Since vertex x is the unique vertex not
be p-dominated by De, we have

ηp(V (G), De, G) = ηp(x,De, G) = p− (p− 1) = 1. (4.2)

Let
D = De ∪ {x}.

Then D is a p-dominating set of G and |D| = |De|+ 1 = γp(G+ e) + 1 ≤ γp(G). That
is, D is a γp-set of G. By Claim 1,

|V (Hi) ∩D| = p for each i = 0, 1, · · · , n, (4.3)

and |{ui, ui} ∩De| ≤ |{ui, ui} ∩D| ≤ 1 for 1 ≤ i ≤ n.

Suppose that there exists some i ∈ {1, · · · , n} such that |V (Hi)∩De| 6= p. Then by
(4.3), x ∈ V (Hi) and |V (Hi)∩De| = p−1. Thus every vertex in (Xi∪X i)\ (De∪{x})
is dominated by at most p− 1 vertices of De. Hence by |Xi ∪X i| = 2p,

ηp(V (G), De, G) ≥ ηp(Xi ∪Xi, De, G) ≥ |(Xi ∪X i) \De| − 1 ≥ 2p− (p− 1)− 1 > 1,

which contradicts with (4.2). Hence (i) holds.
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Suppose that there is some j ∈ {1, · · · , m} such that cj ∈ De. By (i) and (4.3),
x ∈ V (H0) and so |V (H0)∩De| = |V (H0)∩D| − 1 = p− 1. Hence |V (T )∩De| ≤ p− 2
by V (H0) = {c1, · · · , cm} ∪ V (T ). Since each vertex of T (∼= Kp) has exact p − 1
neighbors in De,

ηp(V (G), De, G) ≥ ηp(V (T ), De, G) = |V (T ) \De| = p− |V (T ) ∩De| ≥ 2.

This contradicts with (4.2). Thus {c1, · · · , cm} ∩ De = ∅, and so |V (T ) ∩ De| =
|V (H0) ∩De| = p− 1. Hence (ii) holds.

By (ii), T has a unique vertex, say z, not inDe. From |NG(z)∩De| = |V (H0)∩De| =
p − 1, the vertex z is not p-dominated by De. However, x is the unique vertex not
be p-dominated by De in G by (4.2). Thus z = x, and so x = z ∈ V (T ) \ De. By
the construction of G and xy ∈ Gc, it is clear that y ∈ (∪n

i=1V (Hi)) ∩De. Hence (iii)
holds. ✷

We now show that C is satisfiable if and only if rp(G) = 1.

If C is satisfiable, then C has a satisfying truth assignment t : U → {T, F}.
According to this satisfying assignment, we can choose a subset S from V (G) as follows:

S = S0 ∪ S1 ∪ · · · ∪ Sn,

where S0 consists of p− 1 vertices of T and

Si =

{

ui ∪ (X i − {vip}) if t(ui) = T
ui ∪ (Xi − {vip}) if t(ui) = F

for each i ∈ {1, · · · , n}.

It can be verified easily that |S| = p(n + 1) − 1 = γp(G) − 1 and ∪n
i=1V (Hi) can be

p-dominated by S. Since t is a satisfying true assignment for C , each clause Cj ∈ C

contains at least one true literal. That is, the corresponding vertex cj has at least
one neighbor in {u1, ū1 · · · , un, ūn} ∩ S by the definitions of G and S, and so every
cj ∈ {c1, · · · , cm} has at least p neighbors in S since S0 ⊆ NG(cj). Note that the
unique vertex in V (T ) \ S0 has exact p − 1 neighbors in S. By Theorem 2.2 and
|S| = γp(G)− 1,

rp(G) = ηp(G) ≤ ηp(V (G), S, G) = ηp(V (T ) \ S0, S, G) = p− (p− 1) = 1.

Furthermore, we have rp(G) = 1 since γp(G) > p by Claim 1.

Conversely, assume rp(G) = 1. That is, there exists an edge e = xy in Gc such that
γp(G+ e) < γp(G). Let De be a γp-set of G+ e. Define t : U → {T, F} by

t(ui) =

{

T if vertex ui ∈ De

F if vertex ui /∈ De
for i = 1, · · · , n. (4.4)

We will show that t is a satisfying truth assignment for C . Let Cj be an arbitrary
clause in C . By (ii) and (iii) of Claim 2, the corresponding vertex cj is not in De and
|NG(cj)∩De| ≥ p since cj /∈ {x, y}. Then there must be some i ∈ {1, · · · , n} such that

|{ui, ui} ∩NG(cj) ∩De| = 1, (4.5)
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since T contains exact p−1 vertices ofDe by (i) and (ii) of Claim 2. If ui ∈ NG(cj)∩De,
then ui ∈ Cj and t(ui) = T by the construction of G and (4.4). If ui ∈ NG(cj) ∩De,
then the literal ui belongs to Cj by the construction of G. Note that ui /∈ De from
ui ∈ De and (i) of Claim 2. This means that t(ui) = F by (4.4). Hence t(ui) = T .
The arbitrariness of Cj with 1 ≤ j ≤ m shows that all the clauses in C is satisfied by
t. That is, C is satisfiable.

The theorem follows.

5 Upper Bounds

For a graph G and p = 1, Kok and Mynhardt [19] provided an upper bound for r(G)
in terms of the smallest private neighborhood of a vertex in some γ-set of G. Let
X ⊆ V (G) and x ∈ X . The private neighborhood of x with respect to X is defined as
the set

PN(x,X,G) = NG[x] \NG[X \ {x}]. (5.1)

Set
µ(X,G) = min{|PN(x,X,G)| : x ∈ X}

and
µ(G) = min{µ(X,G) : X is a γ-set of G}. (5.2)

Using this parameter, Kok and Mynhardt [19] showed that r(G) ≤ µ(G) if γ(G) ≥ 2
with equality if γ(G) = 1. We generalize this result to any positive integer p.

In order to state our results, we need some notations. Let X ⊆ V (G) and x ∈ X .
A vertex y ∈ X is called a p-private neighbor of x with respect to X if xy ∈ E(G) and
|NG(y) ∩X| = p. The p-private neighborhood of x with respect to X is defined as

PNp(x,X,G) = {y : y is a p-private neighbor of x with respect to X}. (5.3)

Let

µp(x,X,G) = |PNp(x,X,G)|+max{0, p− |NG(x) ∩X|}, (5.4)

µp(X,G) = min{µp(x,X,G) : x ∈ X}, and (5.5)

µp(G) = min{µp(X,G) : X is a γp-set of G}. (5.6)

Theorem 5.1 For any graph G and positive integer p,

rp(G) ≤ µp(G)

with equality if rp(G) = 1.

Proof. If γp(G) ≤ p, then rp(G) = 0 ≤ µp(G) by our convention. Assume that
γp(G) ≥ p+ 1 below. Let X be a γp-set of G and x ∈ X such that

µp(G) = µp(X,G) = µp(x,X,G).
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Since |X| = γp(G) ≥ p + 1, we can choose a vertex, say uy, from X \ NG(y) for each
y ∈ PNp(x,X,G), and a subset X ′ with |X ′| = max{0, p−|NG(x)∩X|} fromX\NG[x].
Let

G′ = G+ {yuy : y ∈ PNp(x,X,G)}+ {xv : v ∈ X ′}.

Obviously, X \ {x} is a p-dominating set of G′, which implies that

rp(G) ≤ |PNp(x,X,G)|+ |X ′| = µp(x,X,G) = µp(G).

Assume rp(G) = 1. Then γp(G) ≥ p+ 1 and there exists an edge xy ∈ E(Gc) such
that γp(G+ xy) = γp(G)− 1. Let G′ = G+ xy and X be a γp-set of G

′. Without loss
of generality, assume that x ∈ X and y ∈ X . Clearly, y is a p-private neighbor of x
with respect to X in G and X ∪ {y} is a γp-set of G, which implies

PNp(y,X ∪ {y}, G) = ∅ and p− |NG(y) ∩ (X ∪ {y})| = 1,

that is, µp(y,X ∪ {y}, G) = 1. It follows that

rp(G) ≤ µp(G) ≤ µp(X ∪ {y}, G) ≤ µp(y,X ∪ {y}, G) = 1.

Thus, rp(G) = µp(G) = 1. The theorem follows.

Note that |PNp(x,X,G)| ≤ degG(x) for any X ⊆ V (G) and x ∈ X . By Theorem
5.1, we obtain the following corollary immediately.

Corollary 5.1 For any graph G with maximum degree ∆(G) and positive integer p,
rp(G) ≤ ∆(G) + p.

Corollary 5.2 Let p be a positive integer and G be a graph with minimum degree δ(G).
If δ(G) < p, then rp(G) ≤ δ(G) + p.

Proof. Let X be a γp-set of G and x ∈ V (G) with degree δ(G). Since degG(x) =
δ(G) < p, x ∈ X by Observation 1.2. Note that |PNp(x,X,G)| ≤ degG(x) = δ(G) and
p− |NG(x) ∩X| ≤ p. By Theorem 5.1,

rp(G) ≤ µp(G)

≤ µp(x,X,G)

= |PNp(x,X,G)|+max{0, p− |NG(x) ∩X|}

≤ δ(G) + p.

The corollary follows.

Consider p = 1. Let X ⊆ V (G) and x ∈ X . If x is not an isolated vertex of
the induced subgraph G[X ], then PN(x,X,G) defined in (5.1) does not contain x
and max{0, 1 − |NG(x) ∩ X|} = 0 in (5.4). Otherwise, PN(x,X,G) contains x and
max{0, 1 − |NG(x) ∩ X|} = 1. Notice that PN1(x,X,G) defined in (5.3) does not
contain x. Hence, by (5.5),

µ1(x,X,G) = PN1(x,X,G) + max{0, 1− |NG(x) ∩X|} = |PN(x,X,G)|.

This fact means that µ(G) defined in (5.2) is a special case of p = 1 in (5.6), that is,
µ1(G) = µ(G). Thus, by Theorem 5.1, the following corollary holds immediately.
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Corollary 5.3 (Kok and Mynhardt [19]) For any graph G with γ(G) ≥ 2, r(G) ≤
µ(G), with equality if r(G) = 1.
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