On the p-reinforcement and the complexity*

You Lu ${ }^{a} \quad$ Fu-Tao Hu ${ }^{b}$ Jun-Ming Xu $u^{b \dagger}$
${ }^{a}$ Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an Shanxi 710072, P. R. China
Email: luyou@nwpu.edu.cn
${ }^{b}$ Department of Mathematics, University of Science and Technology of China, Wentsun Wu Key Laboratory of CAS, Hefei, Anhui, 230026, P. R. China
Email: hufu@mail.ustc.edu.cn; xujm@ustc.edu.cn

Abstract

Let $G=(V, E)$ be a graph and p be a positive integer. A subset $S \subseteq V$ is called a p-dominating set if each vertex not in S has at least p neighbors in S. The p-domination number $\gamma_{p}(G)$ is the size of a smallest p-dominating set of G. The p-reinforcement number $r_{p}(G)$ is the smallest number of edges whose addition to G results in a graph G^{\prime} with $\gamma_{p}\left(G^{\prime}\right)<\gamma_{p}(G)$. In this paper, we give an original study on the p-reinforcement, determine $r_{p}(G)$ for some graphs such as paths, cycles and complete t-partite graphs, and establish some upper bounds of $r_{p}(G)$. In particular, we show that the decision problem on $r_{p}(G)$ is NP-hard for a general graph G and a fixed integer $p \geq 2$.

Keywords: domination, p-domination, p-reinforcement, NP-hard
AMS Subject Classification (2000): 05C69

[^0]
1 Induction

For notation and graph-theoretical terminology not defined here we follow [21]. Specifically, let $G=(V, E)$ be an undirected graph without loops and multi-edges, where $V=V(G)$ is the vertex-set and $E=E(G)$ is the edge-set, where $E \neq \emptyset$.

For $x \in V$, the open neighborhood, the closed neighborhood and the degree of x are denoted by $N_{G}(x)=\{y \in V: x y \in E\}, N_{G}[x]=N_{G}(x) \cup\{x\}$ and $\operatorname{deg}_{G}(x)=\left|N_{G}(x)\right|$, respectively. $\delta(G)=\min \left\{d e g_{G}(x): x \in V\right\}$ and $\Delta(G)=\max \left\{d e g_{G}(x): x \in V\right\}$ are the minimum degree and the maximum degree of G, respectively. For any $X \subseteq V$, let $N_{G}[X]=\cup_{x \in X} N_{G}[x]$.

For a subset $D \subseteq V$, let $\bar{D}=V \backslash D$. The notation G^{c} denotes the complement of G, that is,G^{c} is the graph with vertex-set $V(G)$ and edge-set $\{x y$: $x y \notin$ $E(G)$ for any $x, y \in V(G)\}$. For $B \subseteq E\left(G^{c}\right)$, we use $G+B$ to denote the graph with vertex-set V and edge-set $E \cup B$. For convenience, we denote $G+\{x y\}$ by $G+x y$ for an $x y \in E\left(G^{c}\right)$.

A nonempty subset $D \subseteq V$ is called a dominating set of G if $\left|N_{G}(x) \cap D\right| \geq 1$ for each $x \in \bar{D}$. The domination number $\gamma(G)$ of G is the minimum cardinality of all dominating sets in G. The domination is a classical concept in graph theory. The early literature on the domination with related topics is, in detail, surveyed in the two books by Haynes, Hedetniemi, and Slater [14, 15].

In 1985, Fink and Jacobson [12] introduced the concept of a generalization domination in a graph. Let p be a positive integer. A subset $D \subseteq V$ is a p-dominating set of G if $\left|N_{G}(x) \cap D\right| \geq p$ for each $x \in \bar{D}$. The p-domination number $\gamma_{p}(G)$ is the minimum cardinality of all p-dominating sets in G. A p-dominating set with cardinality $\gamma_{p}(G)$ is called a γ_{p}-set of G. For $S, T \subseteq V$, the set S can p-dominate T in G if $\left|N_{G}(x) \cap S\right| \geq p$ for every $x \in T \backslash S$. Clearly, the 1-dominating set is the classical dominating set, and so $\gamma_{1}(G)=\gamma(G)$. The p-domination is investigated by many authors (see, for example, [1, 2, 4, 5, 11]). Very recently, Chellali et al. [4] have given an excellent survey on this topics. The following are two simple observations.

Observation 1.1 If G is a graph with $|V(G)| \geq p$, then $\gamma_{p}(G) \geq p$.

Observation 1.2 Every p-dominating set of a graph contains all vertices of degree at most $p-1$.

Clearly, addition of some extra edges to a graph could result in decrease of its domination number. In 1990, Kok and Mynhardt [19] first investigated this problem and proposed the concept of the reinforcement number. The reinforcement number $r(G)$ of a graph G is defined as the smallest number of edges whose addition to G results in a graph G^{\prime} with $\gamma\left(G^{\prime}\right)<\gamma(G)$. By convention $r(G)=0$ if $\gamma(G)=1$.

The reinforcement number has received much research attention (see, for example, [3, 7, 18]), and its many variations have also been well described and studied in graph
theory, including total reinforcement [16, 20], independence reinforcement [22], fractional reinforcement [6, 8] and so on. In particular, Blair et al. [3], Hu and Xu [17], independently, showed that the problem determining $r(G)$ for a general graph G is NP-hard.

Motivated by the work of Kok and Mynhardt [19], in this paper, we introduce the p-reinforcement number, which is a natural extension of the reinforcement number. The p-reinforcement number $r_{p}(G)$ of a graph G is the smallest number of edges of G^{c} that have to be added to G in order to reduce $\gamma_{p}(G)$, that is

$$
r_{p}(G)=\min \left\{|B|: B \subseteq E\left(G^{c}\right) \text { with } \gamma_{p}(G+B)<\gamma_{p}(G)\right\}
$$

It is clear that $r_{1}(G)=r(G)$. By Observation 1.1, we can also make a convention, $r_{p}(G)=0$ if $\gamma_{p}(G) \leq p$. Thus $r_{p}(G)$ is well-defined for any graph G and integer $p \geq 1$. In this paper, we always assume $\gamma_{p}(G)>p$ when we consider the p-reinforcement number for a graph G.

The rest of this paper is organized as follows. In Section 2 we present an equivalent parameter for calculating the p-reinforcement number of a graph. As its applications, we determine the values of the p-reinforcement numbers for special classes of graphs such as paths, cycles and complete t-partite graphs in Sections 3, and show that the decision problem on p-reinforcement is NP-hard for a general graph and a fixed integer $p \geq 2$ in Section 4. Finally, we establish some upper bounds for the p-reinforcement number of a graph G by terms of other parameters of G in Section 5 .

2 Preliminary

Let G be a graph with $\gamma(G)>1$ and $B \subseteq E\left(G^{c}\right)$ with $|B|=r(G)$ such that $\gamma(G+B)<$ $\gamma(G)$. Let X be a γ-set of $G+B$. Then $|B| \geq\left|V(G) \backslash N_{G}[X]\right|$. On the other hand, given any set $X \subseteq V(G)$, we can always choose a subset $B \subseteq E\left(G^{c}\right)$ with $|B|=\left|V(G) \backslash N_{G}[X]\right|$ such that X dominates $G+B$. It is a simple observation that, to calculate $r(G)$, Kok and Mynhardt [19] proposed the following parameter

$$
\begin{equation*}
\eta(G)=\min \left\{\left|V(G) \backslash N_{G}[X]\right|: X \subseteq V(G),|X|<\gamma(G)\right\} \tag{2.1}
\end{equation*}
$$

and showed $r(G)=\eta(G)$. We can refine this technique to deal with the p-reinforcement number $r_{p}(G)$.

Let G be a graph with $\gamma_{p}(G)>p$. For any $X \subseteq V(G)$, let

$$
\begin{equation*}
X^{*}=\left\{x \in \bar{X}:\left|N_{G}(x) \cap X\right|<p\right\} . \tag{2.2}
\end{equation*}
$$

Let $B \subseteq E\left(G^{c}\right)$ with $|B|=r_{p}(G)$ such that $\gamma_{p}(G+B)<\gamma_{p}(G)$, and let X be a γ_{p}-set of $G+B$. Then

$$
|B| \geq \sum_{x \in X^{*}}\left(p-\left|N_{G}(x) \cap X\right|\right)
$$

On the other hand, given any set $X \subseteq V(G)$ with $|X| \geq p$, we can always choose a subset $B \subseteq E\left(G^{c}\right)$ with

$$
|B|=\sum_{x \in X^{*}}\left(p-\left|N_{G}(x) \cap X\right|\right)
$$

such that X can p-dominate $G+B$. Motivated by this observation, we introduce the following notations. For a subset $X \subseteq V(G)$,

$$
\begin{align*}
\eta_{p}(x, X, G) & =\left\{\begin{array}{ll}
p-\left|N_{G}(x) \cap X\right| & \text { if } x \in X^{*} \\
0 & \text { otherwise }
\end{array} \text { for } x \in V(G),\right. \tag{2.3}\\
\eta_{p}(S, X, G) & =\sum_{x \in S} \eta_{p}(x, X, G) \text { for } S \subseteq V(G), \text { and } \tag{2.4}\\
\eta_{p}(G) & =\min \left\{\eta_{p}(V(G), X, G):|X|<\gamma_{p}(G)\right\} . \tag{2.5}
\end{align*}
$$

A subset $X \subseteq V(G)$ is called an η_{p}-set of G if $\eta_{p}(G)=\eta_{p}(V(G), X, G)$. Clearly, for any two subsets $S^{\prime}, S \subseteq V(G)$ and two subsets $X^{\prime}, X \subseteq V(G)$,

$$
\begin{array}{ll}
\eta_{p}\left(S^{\prime}, X, G\right) \leq \eta_{p}(S, X, G) & \text { if } S^{\prime} \subseteq S \\
\eta_{p}(S, X, G) \leq \eta_{p}\left(S, X^{\prime}, G\right) & \text { if }\left|X^{\prime}\right| \leq|X|
\end{array}
$$

Thus, we have the following simple observation.

Observation 2.1 If X is an η_{p}-set of a graph G, then $|X|=\gamma_{p}(G)-1$.

The following result shows that computing $r_{p}(G)$ can be referred to computing $\eta_{p}(G)$ for a graph G with $\gamma_{p}(G) \geq p+1$.

Theorem 2.2 For any graph G and positive integer $p, r_{p}(G)=\eta_{p}(G)$ if $\gamma_{p}(G)>p$.

Proof. Let X be an η_{p}-set of G. Then $|X|=\gamma_{p}(G)-1$ by Observation 2.1. Let $Y=\left\{y \in V(G): \eta_{p}(y, X, G)>0\right\}$. Then $Y=X^{*}$ is contained in \bar{X}, where X^{*} is defined in (2.2). Thus, $\eta_{p}(G)=\eta_{p}\left(X^{*}, X, G\right)$. We construct a new graph G^{\prime} from G, for each $y \in X^{*}$, by adding $\eta_{p}(y, X, G)$ edges of G^{c} to G joining y to $\eta_{p}(y, X, G)$ vertices in X. Clearly, X is a p-dominating set of G^{\prime}, that is, $\gamma_{p}\left(G^{\prime}\right) \leq|X|$. Let $B=E\left(G^{\prime}\right)-E(G)$. Then

$$
\gamma_{p}(G)=|X|+1>|X| \geq \gamma_{p}\left(G^{\prime}\right)=\gamma_{p}(G+B)
$$

which implies $r_{p}(G) \leq|B|$. It follows that

$$
\begin{equation*}
r_{p}(G) \leq|B|=\sum_{y \in X^{*}} \eta_{p}(y, X, G)=\eta_{p}\left(X^{*}, X, G\right)=\eta_{p}(G) \tag{2.6}
\end{equation*}
$$

On the other hand, let B be a subset of $E\left(G^{c}\right)$ such that $|B|=r_{p}(G)$ and $\gamma_{p}(G+$ $B)=\gamma_{p}(G)-1$. Let $G^{\prime}=G+B$ and X^{\prime} be a γ_{p}-set of G^{\prime}. For every $x y \in B, X^{\prime}$ cannot p-dominate the graph $G^{\prime}-x y$ by the minimality of B. This fact means that
only one of x and y is in X^{\prime}. Without loss of generality, assume $y \in \overline{X^{\prime}}$. Since X^{\prime} cannot p-dominate y in $G^{\prime}-x y$ and so in $G,\left|N_{G}(y) \cap X^{\prime}\right|<p$. Let Z be all end-vertices of edges in B and $Y=\overline{X^{\prime}} \cap Z$. Since X^{\prime} is a γ_{p}-set of $G^{\prime},\left|N_{G^{\prime}}(u) \cap X^{\prime}\right| \geq p$ for any $u \in \overline{X^{\prime}}$. In other words, any $u \in \overline{X^{\prime}}$ with $\left|N_{G}(u) \cap X^{\prime}\right|<p$ must be in Y. It follows that

$$
\begin{equation*}
\sum_{u \in \overline{X^{\prime}}} \eta_{p}\left(u, X^{\prime}, G\right)=\sum_{y \in Y}\left(p-\left|N_{G}(y) \cap X^{\prime}\right|\right)=|B| . \tag{2.7}
\end{equation*}
$$

By (2.7), we immediately have that

$$
\eta_{p}(G) \leq \eta_{p}\left(V(G), X^{\prime}, G\right)=\sum_{u \in \overline{X^{\prime}}} \eta_{p}\left(u, X^{\prime}, G\right)=|B|=r_{p}(G)
$$

Combining this with (2.6), we obtain $r_{p}(G)=\eta_{p}(G)$, and so the theorem follows.
Note that when $p=1, X^{*}$ defined in (2.2) is $V(G) \backslash N_{G}[X]$. This fact means that $\eta(G)$ defined in (2.1) is a special case of $p=1$ in (2.5), that is, $\eta_{1}(G)=\eta(G)$. Thus, the following corollary holds immediately.

Corollary 2.1 (Kok and Mynhardt [19]) $r(G)=\eta(G)$ if $\gamma(G)>1$.
Using Observation 1.2 and Theorem [2.2, the following corollary is obvious.
Corollary 2.2 Let $p \geq 1$ be an integer and G be a graph with $\gamma_{p}(G)>p$. If $\Delta(G)<p$, then

$$
r_{p}(G)=p-\Delta(G)
$$

3 Some Exact Values

In this section we will use Theorem 2.2 to calculate the p-reinforcement numbers for some classes of graphs.

We first determine the p-reinforcement numbers for paths and cycles. Let P_{n} and C_{n} denote, respectively, a path and a cycle with n vertices. When $p=1$, Kok and Mynhardt [19] proved that $r\left(P_{n}\right)=r\left(C_{n}\right)=i$ if $n=3 k+i \geq 4$, where $i \in\{1,2,3\}$. We will give the exact values of $r_{p}\left(P_{n}\right)$ and $r_{p}\left(C_{n}\right)$ for $p \geq 2$. The following observation is simple but useful.

Observation 3.1 For integer $p \geq 2$,

$$
\gamma_{p}\left(P_{n}\right)=\left\{\begin{aligned}
\left\lfloor\frac{n}{2}\right\rfloor+1 & \text { if } p=2 \\
n & \text { if } p \geq 3
\end{aligned} \text { and } \gamma_{p}\left(C_{n}\right)=\left\{\begin{aligned}
\left\lceil\frac{n}{2}\right\rceil & \text { if } p=2 \\
n & \text { if } p \geq 3 .
\end{aligned}\right.\right.
$$

Theorem 3.2 Let $p \geq 2$ be an integer. If $\gamma_{p}\left(P_{n}\right)>p$ then

$$
r_{p}\left(P_{n}\right)= \begin{cases}2 & \text { if } p=2 \text { and } n \text { is odd } \\ 1 & \text { if } p=2 \text { and } n \text { is even } \\ p-2 & \text { if } p \geq 3\end{cases}
$$

Proof. Let $P_{n}=x_{1} x_{2} \cdots x_{n}$ and X be an η_{p}-set of P_{n}. By Theorem 2.2 and $\gamma_{p}\left(P_{n}\right)>p$, $r_{p}\left(P_{n}\right)=\eta_{p}\left(P_{n}\right)=\eta_{p}\left(V\left(P_{n}\right), X, P_{n}\right) \geq 1$. For $p \geq 3$, it is easy to see that $r_{p}\left(P_{n}\right)=p-2$ by Corollary 2.2. Assume that $p=2$ below.

If n is even, then by Observation 3.1, $\gamma_{2}\left(P_{n}\right)-\gamma_{2}\left(C_{n}\right)=1$, which implies that $r_{2}\left(P_{n}\right) \leq 1$. Furthermore, $r_{2}\left(P_{n}\right)=1$.

If n is odd, then $\gamma_{2}\left(P_{n}\right)=\frac{n+1}{2}$ by Observation 3.1, and so $n \geq 5$ since $\gamma_{2}\left(P_{n}\right)>2$. Let

$$
X^{\prime}=\bigcup_{i=1}^{\frac{n-1}{2}}\left\{x_{2 i}\right\}
$$

Clearly, $\left|X^{\prime}\right|=\frac{n-1}{2}=\gamma_{2}\left(P_{n}\right)-1$. So

$$
\eta_{2}\left(V\left(P_{n}\right), X, P_{n}\right) \leq \eta_{2}\left(V\left(P_{n}\right), X^{\prime}, P_{n}\right)=\eta_{2}\left(x_{1}, X^{\prime}, P_{n}\right)+\eta_{2}\left(x_{n}, X^{\prime}, P_{n}\right)=2
$$

Suppose that $\eta_{2}\left(V\left(P_{n}\right), X, P_{n}\right)=1$. Then X can 2-dominate either $V\left(P_{n}\right) \backslash\left\{x_{1}\right\}$ or $V\left(P_{n}\right) \backslash\left\{x_{n}\right\}$. In both cases, we have

$$
|X| \geq \gamma_{2}\left(P_{n-1}\right)=\left\lfloor\frac{n-1}{2}\right\rfloor+1=\frac{n-1}{2}+1
$$

which contradicts with $|X|=\frac{n-1}{2}$. Hence $r_{2}\left(P_{n}\right)=\eta_{2}\left(V\left(P_{n}\right), X, P_{n}\right)=2$.

Theorem 3.3 Let $p \geq 2$ be an integer. If $\gamma_{p}\left(C_{n}\right)>p$ then

$$
r_{p}\left(C_{n}\right)= \begin{cases}2 & \text { if } p=2 \text { and } n \text { is odd } \\ 4 & \text { if } p=2 \text { and } n \text { is even } \\ p-2 & \text { if } p \geq 3 .\end{cases}
$$

Proof. Let $C_{n}=x_{1} x_{2} \cdots x_{n} x_{1}$. If $p \geq 3$ then the result holds obviously by Corollary 2.2. In the following, we only need to calculate the values of $r_{p}\left(C_{n}\right)$ for $p=2$. Let X be an η_{2}-set of C_{n}. Then $r_{2}\left(C_{n}\right)=\eta_{2}\left(C_{n}\right)=\eta_{2}\left(V\left(C_{n}\right), X, C_{n}\right)$ by Theorem 2.2. Note that $n \geq 5$ since $\gamma_{2}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil>2$.

If n is odd, then let

$$
X^{\prime}=\bigcup_{i=1}^{\frac{n-1}{2}}\left\{x_{2 i-1}\right\}
$$

Clearly, $\left|X^{\prime}\right|=\frac{n-1}{2}=\gamma_{2}\left(C_{n}\right)-1$ by Observation 3.1, and $\eta_{2}\left(V\left(C_{n}\right), X^{\prime}, C_{n}\right)=$ $\eta_{2}\left(x_{n-1}, X^{\prime}, C_{n}\right)+\eta_{2}\left(x_{n}, X^{\prime}, C_{n}\right)=2$. So

$$
r_{2}\left(C_{n}\right)=\eta_{2}\left(V\left(C_{n}\right), X, C_{n}\right) \leq \eta_{2}\left(V\left(C_{n}\right), X^{\prime}, C_{n}\right)=2 .
$$

Since X is not a 2-dominating set of C_{n}, there must be two adjacent vertices, denoted by x_{i} and x_{i+1}, of C_{n} not in X. This fact means that $\eta_{2}\left(x_{i}, X, C_{n}\right) \geq 1$ and $\eta_{2}\left(x_{i+1}, X, C_{n}\right) \geq 1$. So

$$
r_{2}\left(C_{n}\right)=\eta_{2}\left(V\left(C_{n}\right), X, P_{n}\right) \geq \eta_{2}\left(x_{i}, X, C_{n}\right)+\eta_{2}\left(x_{i+1}, X, C_{n}\right) \geq 2 .
$$

Hence $r_{2}\left(C_{n}\right)=2$.
If n is even, then $n \geq 6$. Deleting X and all vertices 2 -dominated by X from C_{n}, we can obtain a result graph, denoted by H, each of whose components is a path with length at least 2. Denote all components of H by H_{1}, \cdots, H_{h}, where $h \geq 1$. In the case that $h=1$ and the length of H_{1} is equal to one, X can 2-dominate a subgraph of C_{n} that is isomorphic to P_{n-2}. By Observation 3.1.

$$
|X| \geq \gamma_{2}\left(P_{n-2}\right)=\left\lfloor\frac{n-2}{2}\right\rfloor+1=\frac{n}{2}
$$

which contradicts that $|X|=\gamma_{2}\left(C_{n}\right)-1=\left\lceil\frac{n}{2}\right\rceil-1=\frac{n}{2}-1$. In other cases, we can find that

$$
r_{2}\left(C_{n}\right)=\eta_{2}\left(V\left(C_{n}\right), X, C_{n}\right) \geq 4
$$

Let

$$
X^{\prime \prime}=\bigcup_{i=1}^{\frac{n}{2}-1}\left\{x_{2 i-1}\right\}
$$

It is easy to check that $\left|X^{\prime \prime}\right|=\frac{n}{2}-1=\gamma_{2}\left(C_{n}\right)-1$ and $\eta_{2}\left(V\left(C_{n}\right), X^{\prime \prime}, C_{n}\right)=4$. So

$$
r_{2}\left(C_{n}\right)=\eta_{2}\left(V\left(C_{n}\right), X, C_{n}\right) \leq \eta_{2}\left(V\left(C_{n}\right), X^{\prime \prime}, C_{n}\right)=4
$$

Hence $r_{2}\left(C_{n}\right)=4$ and so the theorem is true.
Next we consider the p-reinforcement number for a complete t-partite graph $K_{n_{1}, \cdots, n_{t}}$. To state our results, we need some symbols. For any subset $X=\left\{n_{i_{1}}, \ldots, n_{i_{r}}\right\}$ of $\left\{n_{1}, \cdots, n_{t}\right\}$, define

$$
|X|=r \quad \text { and } \quad f(X)=\sum_{j=1}^{r} n_{i_{j}}
$$

For convenience, let $|X|=0$ and $f(X)=0$ if $X=\emptyset$. let

$$
\mathscr{X}=\left\{X: X \text { is a subset of }\left\{n_{1}, \cdots, n_{t}\right\} \text { with } f(X) \geq \gamma_{p}(G)\right\}
$$

and, for every $X \in \mathscr{X}$, define

$$
f^{*}(X)=\max \{f(Y): Y \text { is a subset of } X \text { with }|Y|=|X|-1 \text { and } f(Y)<p\} .
$$

Theorem 3.4 For any integer $p \geq 1$ and a complete t-partite graph $G=K_{n_{1}, \cdots, n_{t}}$ with $t \geq 2$ and $\gamma_{p}(G)>p$,

$$
r_{p}(G)=\min \left\{\left(p-f^{*}(X)\right)\left(f(X)-\gamma_{p}(G)+1\right): X \in \mathscr{X}\right\}
$$

Proof. Let $N=\left\{n_{1}, \cdots, n_{t}\right\}$ and $V(G)=V_{1} \cup \cdots \cup V_{t}$ be the vertex-set of G such that $\left|V_{i}\right|=n_{i}$ for each $i=1, \cdots, t$. Let

$$
m=\min \left\{\left(p-f^{*}(X)\right)\left(f(X)-\gamma_{p}(G)+1\right): X \in \mathscr{X}\right\} .
$$

We first prove that $r_{p}(G) \leq m$. Let $X \subseteq \mathscr{X}$ (without loss of generality, assume $X=\left\{n_{1}, \cdots, n_{k}, n_{k+1}\right\}$ for some $0 \leq k \leq t-1$) such that

$$
f^{*}(X)=n_{1}+\cdots+n_{k} \text { and }\left(p-f^{*}(X)\right)\left(f(X)-\gamma_{p}(G)+1\right)=m .
$$

By $X \subseteq \mathscr{X}$, we know that $n_{k+1}=f(X)-f^{*}(X) \geq \gamma_{p}(G)-f^{*}(X)$. So we can pick a vertex-subset V_{k+1}^{\prime} from V_{k+1} such that $\left|V_{k+1}^{\prime}\right|=\gamma_{p}(G)-f^{*}(X)-1$. Let

$$
D=V_{1} \cup \cdots \cup V_{k} \cup V_{k+1}^{\prime} .
$$

Clearly, $|D|=\gamma_{p}(G)-1$. Since $\gamma_{p}(G)>p,|D| \geq p$ and so D can p-dominate $\cup_{i=k+2}^{t} V_{i}$. Hence by the definition of $\eta_{p}(V(G), D, G)$,

$$
\begin{aligned}
\eta_{p}(V(G), D, G) & =\eta_{p}(V(G) \backslash D, D, G) \\
& =\sum_{v \in V_{k+1} \backslash V_{k+1}^{\prime}} \eta_{p}(v, D, G)+\sum_{i=k+2}^{t} \eta_{p}\left(V_{i}, D, G\right) \\
& =\left|V_{k+1} \backslash V_{k+1}^{\prime}\right|\left(p-f^{*}(X)\right)+0 \\
& =\left(p-f^{*}(X)\right)\left[n_{k+1}-\left(\gamma_{p}(G)-f^{*}(X)-1\right)\right] \\
& =\left(p-f^{*}(X)\right)\left(f(X)-\gamma_{p}(G)+1\right) \\
& =m .
\end{aligned}
$$

By Theorem [2.2, we have $r_{p}(G)=\eta_{p}(G) \leq \eta_{p}(V(G), D, G)=m$.
On the other hand, we will show that $r_{p}(G) \geq m$. For any subset M of N, we use $I(M)$ to denote the subindex-sets of all elements in M, that is,

$$
I(M)=\left\{i: n_{i} \in M\right\} .
$$

Let S be an η_{p}-set of G and let

$$
\begin{aligned}
& Y=\left\{n_{i}: \quad\left|V_{i} \cap S\right|=\left|V_{i}\right| \text { for } 1 \leq i \leq t\right\}, \text { and } \\
& A=\left\{n_{i}: 0<\left|V_{i} \cap S\right|<\left|V_{i}\right| \text { for } 1 \leq i \leq t\right\} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
f(Y \cup A)=f(Y)+f(A)=\sum_{i \in I(Y)}\left|V_{i}\right|+\sum_{i \in I(A)}\left|V_{i}\right| \geq|S|=\gamma_{p}(G)-1 \tag{3.1}
\end{equation*}
$$

by Observation 2.1. Since $\cup_{i \in I(Y)} V_{i}(\subseteq S)$ cannot p-dominate G,

$$
\begin{equation*}
f(Y)=\sum_{i \in I(Y)} n_{i}=\left|\cup_{i \in I(Y)} V_{i}\right|<p \tag{3.2}
\end{equation*}
$$

Hence, by (3.1) and $\gamma_{p}(G)>p$,

$$
f(A) \geq \gamma_{p}(G)-1-f(Y)>\gamma_{p}(G)-p-1 \geq 0
$$

which implies that $|A| \geq 1$.

Claim. $|A|=1$.
Proof of Claim. Suppose that $|A| \geq 2$. Then we can choose i and j from $I(A)$ such that $i \neq j$. By the definition of A, we have $0<\left|V_{i} \cap S\right|<\left|V_{i}\right|$ and $0<\left|V_{j} \cap S\right|<\left|V_{j}\right|$. Therefore, we can pick two vertices x and y from $V_{i} \cap S$ and $V_{j} \backslash S$, respectively. Let

$$
S^{\prime}=(S \backslash\{x\}) \cup\{y\}
$$

Obviously, $\left|S^{\prime}\right|=|S|=\gamma_{p}(G)-1,\left|V_{i} \cap S^{\prime}\right|=\left|V_{i} \cap S\right|-1$ and $\left|V_{j} \cap S^{\prime}\right|=\left|V_{j} \cap S\right|+1$.
Note that G is a complete t-partite graph. For any $v \in V(G)$, we can easily find the value of $\eta_{p}\left(v, S^{\prime}, G\right)-\eta_{p}(v, S, G)$ by the definitions of $\eta_{p}\left(v, S^{\prime}, G\right)$ and $\eta_{p}(v, S, G)$ as follows:

$$
\eta_{p}\left(v, S^{\prime}, G\right)-\eta_{p}(v, S, G)=\left\{\begin{aligned}
\left(p-|S|+\left|V_{i} \cap S\right|-1\right)-0 & \text { if } v=x \\
-1 & \text { if } v \in V_{i} \backslash S \\
0-\left(p-|S|+\left|V_{j} \cap S\right|\right) & \text { if } v=y \\
1 & \text { if } v \in\left(V_{j} \backslash S\right) \backslash\{y\} \\
0 & \text { otherwise. }
\end{aligned}\right.
$$

Since S is an η_{p}-set of G and $\left|S^{\prime}\right|=|S|$, we have

$$
\begin{aligned}
0 & \leq \eta_{p}\left(V(G), S^{\prime}, G\right)-\eta_{p}(V(G), S, G) \\
& =\sum_{v \in V(G)}\left(\eta_{p}\left(v, S^{\prime}, G\right)-\eta_{p}(v, S, G)\right) \\
& =\left(p-|S|+\left|V_{i} \cap S\right|-1\right)-\left|V_{i} \backslash S\right|-\left(p-|S|+\left|V_{j} \cap S\right|\right)+\left|\left(V_{j} \backslash S\right) \backslash\{y\}\right| \\
& =\left(\left|V_{i} \cap S\right|-\left|V_{i} \backslash S\right|\right)-\left(\left|V_{j} \cap S\right|-\left|V_{j} \backslash S\right|\right)-2
\end{aligned}
$$

This means that

$$
\left(\left|V_{i} \cap S\right|-\left|V_{i} \backslash S\right|\right) \geq\left(\left|V_{j} \cap S\right|-\left|V_{j} \backslash S\right|\right)+2
$$

However, by the symmetry of V_{i} and V_{j}, we can also obtain

$$
\left(\left|V_{j} \cap S\right|-\left|V_{j} \backslash S\right|\right) \geq\left(\left|V_{i} \cap S\right|-\left|V_{i} \backslash S\right|\right)+2
$$

by applying the similar discussion. This is a contradiction, and so the claim holds.
By Claim, we can assume that $I(A)=\{h\}$. From the definitions of Y and A, we have $|Y \cup A|=|Y|+1$ and

$$
f(Y \cup A)=\sum_{i \in I(Y)}\left|V_{i}\right|+\left|V_{h}\right| \geq \sum_{i \in I(Y)}\left|V_{i}\right|+\left(\left|V_{h} \cap S\right|+1\right)=|S|+1=\gamma_{p}(G) .
$$

It follows that $Y \cup A \in \mathscr{X}$. Thus, by (3.2) and the definition of $f^{*}(Y \cup A)$, we have $f(Y) \leq f^{*}(Y \cup A)$. Since $\gamma_{p}(G)>p,|S|=\gamma_{p}(G)-1 \geq p$, and so S p-dominates
$V(G) \backslash\left(\cup_{i \in I(Y \cup A)} V_{i}\right)$. Therefore, by Theorem 2.2.

$$
\begin{aligned}
r_{p}(G)=\eta_{p}(G)=\eta_{p}(V(G), S, G) & =\eta_{p}(V(G) \backslash S, S, G) \\
& =\sum_{v \in V_{h} \backslash S} \eta_{p}(v, S, G) \\
& =(p-f(Y))\left|V_{h} \backslash S\right| \\
& =(p-f(Y))\left[\left|V_{h}\right|-(|S|-f(Y))\right] \\
& =(p-f(Y))\left(f(Y \cup A)-\gamma_{p}(G)+1\right) \\
& \geq\left(p-f^{*}(Y \cup A)\right)\left(f(Y \cup A)-\gamma_{p}(G)+1\right) \\
& \geq m .
\end{aligned}
$$

This completes the proof of the theorem.
For example, let $G=K_{2,2,10,17}$ and $p=11$. Then $\gamma_{11}(G)=12$, and so

$$
\mathscr{X}=\{\{17\},\{2,10\},\{2,17\},\{10,17\},\{2,2,10\},\{2,2,17\},\{2,10,17\},\{2,2,10,17\}\} .
$$

By Theorem 3.4, for any $X \in \mathscr{X}$, we have that

$$
f^{*}(X)=\left\{\begin{aligned}
0 & \text { if } X=\{17\},\{2,10,17\} \text { or }\{2,2,10,17\} \\
2 & \text { if } X=\{2,17\} ; \\
4 & \text { if } X=\{2,2,10\} \text { or }\{2,2,17\} \\
10 & \text { if } X=\{2,10\} \text { or }\{10,17\}
\end{aligned}\right.
$$

Hence

$$
\begin{aligned}
r_{11}(G) & =\min \left\{\left(11-f^{*}(X)\right)\left(f(X)-\gamma_{11}(G)+1\right): X \in \mathscr{X}\right\} \\
& =\min \left\{\left(11-f^{*}(X)\right)(f(X)-11): X \in \mathscr{X}\right\} \\
& =\left(11-f^{*}(\{2,10\})\right)(f(\{2,10\})-11) \\
& =1
\end{aligned}
$$

4 Complexity

Blair et al. [3], Hu and Xu [17], independently, showed that the 1-reinforcement problem is NP-hard. Thus, for any positive integer p, the p-reinforcement problem is also NP-hard since the 1-reinforcement is a sub-problem of the p-reinforcement problem.

For each fixed p, p-dominating set is polynomial-time computable (see Downey and Fellows [9, 10] for definitions and discussion). However, the p-reinforcement number problem is hard even for specific values of the parameters. In this section, we will consider the following decision problem.

p-Reinforcement

Instance: A graph $G, p(\geq 2)$ is a fixed integer.

Question: Is $r_{p}(G) \leq 1$?
We will prove that p-Reinforcement $(p \geq 2)$ is also NP-hard by describing a polynomial transformation from the following NP-hard problem (see [13]).

3-Satisfiability (3SAT)

Instance: A set $U=\left\{u_{1}, \ldots, u_{n}\right\}$ of variables and a collection $\mathscr{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ of clauses over U such that $\left|C_{i}\right|=3$ for $i=1,2, \ldots, m$.
Furthermore, every literal is used in at least one clause.
Question: Is there a satisfying truth assignment for C ?

Theorem 4.1 For a fixed integer $p \geq 2$, p-Reinforcement is NP-hard.

Proof. Let $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $\mathscr{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ be an arbitrary instance I of 3SAT. We will show the NP-hardness of p-Reinforcement by reducing 3SAT to it in polynomial time. To this aim, we construct a graph G as follows:
a. For each variable $u_{i} \in U$, associate a graph H_{i}, where H_{i} can be obtained from a complete graph $K_{2 p+2}$ with vertex-set $\left\{u_{i}, \bar{u}_{i}\right\} \cup\left(\cup_{j=1}^{p}\left\{v_{i_{j}}, \bar{v}_{i_{j}}\right\}\right)$ by deleting the edge-subset $\cup_{j=1}^{p-1}\left\{u_{i} \bar{v}_{i_{j}}, \bar{u}_{i} v_{i_{j}}\right\}$;
b. For each clause $C_{j} \in \mathscr{C}$, create a single vertex c_{j} and join c_{j} to the vertex u_{i} (resp. \bar{u}_{i}) in H_{i} if and only if the literal u_{i} (resp. \bar{u}_{i}) appears in clause C_{j} for any $i \in\{1, \ldots, n\}$;
c. Add a complete graph $T\left(\cong K_{p}\right)$ and join all of its vertices to each c_{j}.

For convenience, let $X_{i}=\cup_{j=1}^{p}\left\{v_{i_{j}}\right\}$ and $\bar{X}_{i}=\cup_{j=1}^{p}\left\{\bar{v}_{i_{j}}\right\}$. Then $V\left(H_{i}\right)=\left\{u_{i}, \bar{u}_{i}\right\} \cup$ $X_{i} \cup \bar{X}_{i}$. Use H_{0} to denote the induced subgraph by $\left\{c_{1}, \cdots, c_{m}\right\} \cup V(T)$.

It is clear that the construction of G can be accomplished in polynomial time. To complete the proof of the theorem, we only need to prove that \mathscr{C} is satisfiable if and only if $r_{p}(G)=1$. We first prove the following two claims.

Claim 1. Let D be a γ_{p}-set of G. Then $|D|=p(n+1)$, moreover, $\left|V\left(H_{i}\right) \cap D\right|=p$ and $\left|\left\{u_{i}, \bar{u}_{i}\right\} \cap D\right| \leq 1$ for each $i \in\{1,2, \ldots, n\}$.
Proof of Claim 1. Suppose there is some $i \in\{1,2, \cdots, n\}$ such that $\left|V\left(H_{i}\right) \cap D\right|<p$. Then there must be a vertex, say x, of $V\left(H_{i}\right) \backslash D$ such that $N_{G}(x) \subseteq V\left(H_{i}\right)$. And so $\left|N_{G}(x) \cap D\right| \leq\left|V\left(H_{i}\right) \cap D\right|<p$, which contradicts that D is a γ_{p}-set of G. Thus $\left|V\left(H_{i}\right) \cap D\right| \geq p$ for each $i \in\{0,1, \cdots, n\}$, and so

$$
\begin{equation*}
\gamma_{p}(G)=|D|=\sum_{i=0}^{n}\left|V\left(H_{i}\right) \cap D\right| \geq p(n+1) . \tag{4.1}
\end{equation*}
$$

On the other hand, let

$$
D^{\prime}=\bigcup_{i=1}^{n}\left[\left(X_{i}-\left\{v_{i_{p}}\right\}\right) \cup\left\{\bar{u}_{i}\right\}\right] \cup V(T) .
$$

Clearly, $\left|D^{\prime}\right|=p(n+1)$ and D^{\prime} is a p-dominating set of G. Hence by (4.1),

$$
p(n+1) \leq \sum_{i=0}^{n}\left|V\left(H_{i}\right) \cap D\right|=\gamma_{p}(G) \leq\left|D^{\prime}\right|=p(n+1)
$$

which implies that $\gamma_{p}(G)=p(n+1)$ and $\left|V\left(H_{i}\right) \cap D\right|=p$ for each $0 \leq i \leq n$. Furthermore, if $\left|\left\{u_{i}, \bar{u}_{i}\right\} \cap D\right|=2$ then $\left|\left(X_{i} \cup \bar{X}_{i}\right) \cap D\right|=p-2$. So we can choose a vertex from $X_{i} \cup \bar{X}_{i}$ that is not p-dominated by D. This is impossible since D is a γ_{p}-set of G, and so $\left|\left\{u_{i}, \bar{u}_{i}\right\} \cap D\right| \leq 1$. The claim holds.

Claim 2. If there is an edge $e=x y \in G^{c}$ such that $\gamma_{p}(G+e)<\gamma_{p}(G)$, then any γ_{p}-set D_{e} of $G+e$ satisfies the following properties.
(i) $\left|V\left(H_{i}\right) \cap D_{e}\right|=p$ and $\left|\left\{u_{i}, \bar{u}_{i}\right\} \cap D_{e}\right| \leq 1$ for each $i \in\{1, \cdots, n\}$;
(ii) $\left\{c_{1}, \cdots, c_{m}\right\} \cap D_{e}=\emptyset$, and so $\left|V(T) \cap D_{e}\right|=p-1$;
(iii) One of x and y belongs to $V(T) \backslash D_{e}$ and the other belongs to $H \cap D_{e}$, where $H=\cup_{i=1}^{n} V\left(H_{i}\right)$.

Proof of Claim 2. Because D_{e} is a γ_{p}-set of $G+e$ and $\gamma_{p}(G+e)<\gamma_{p}(G)$, one of x and y is not in D_{e} but the other is in D_{e}. Without loss of generality, say $x \notin D_{e}$ and $y \in D_{e}$. It is clear that $\left|N_{G}(x) \cap D_{e}\right|=p-1$. Since vertex x is the unique vertex not be p-dominated by D_{e}, we have

$$
\begin{equation*}
\eta_{p}\left(V(G), D_{e}, G\right)=\eta_{p}\left(x, D_{e}, G\right)=p-(p-1)=1 \tag{4.2}
\end{equation*}
$$

Let

$$
D=D_{e} \cup\{x\}
$$

Then D is a p-dominating set of G and $|D|=\left|D_{e}\right|+1=\gamma_{p}(G+e)+1 \leq \gamma_{p}(G)$. That is, D is a γ_{p}-set of G. By Claim 1,

$$
\begin{equation*}
\left|V\left(H_{i}\right) \cap D\right|=p \text { for each } i=0,1, \cdots, n, \tag{4.3}
\end{equation*}
$$

and $\left|\left\{u_{i}, \bar{u}_{i}\right\} \cap D_{e}\right| \leq\left|\left\{u_{i}, \bar{u}_{i}\right\} \cap D\right| \leq 1$ for $1 \leq i \leq n$.
Suppose that there exists some $i \in\{1, \cdots, n\}$ such that $\left|V\left(H_{i}\right) \cap D_{e}\right| \neq p$. Then by (4.3), $x \in V\left(H_{i}\right)$ and $\left|V\left(H_{i}\right) \cap D_{e}\right|=p-1$. Thus every vertex in $\left(X_{i} \cup \bar{X}_{i}\right) \backslash\left(D_{e} \cup\{x\}\right)$ is dominated by at most $p-1$ vertices of D_{e}. Hence by $\left|X_{i} \cup \bar{X}_{i}\right|=2 p$,
$\eta_{p}\left(V(G), D_{e}, G\right) \geq \eta_{p}\left(X_{i} \cup \bar{X}_{i}, D_{e}, G\right) \geq\left|\left(X_{i} \cup \bar{X}_{i}\right) \backslash D_{e}\right|-1 \geq 2 p-(p-1)-1>1$,
which contradicts with (4.2). Hence (i) holds.

Suppose that there is some $j \in\{1, \cdots, m\}$ such that $c_{j} \in D_{e}$. By (i) and (4.3), $x \in V\left(H_{0}\right)$ and so $\left|V\left(H_{0}\right) \cap D_{e}\right|=\left|V\left(H_{0}\right) \cap D\right|-1=p-1$. Hence $\left|V(T) \cap D_{e}\right| \leq p-2$ by $V\left(H_{0}\right)=\left\{c_{1}, \cdots, c_{m}\right\} \cup V(T)$. Since each vertex of $T\left(\cong K_{p}\right)$ has exact $p-1$ neighbors in D_{e},

$$
\eta_{p}\left(V(G), D_{e}, G\right) \geq \eta_{p}\left(V(T), D_{e}, G\right)=\left|V(T) \backslash D_{e}\right|=p-\left|V(T) \cap D_{e}\right| \geq 2
$$

This contradicts with (4.2). Thus $\left\{c_{1}, \cdots, c_{m}\right\} \cap D_{e}=\emptyset$, and so $\left|V(T) \cap D_{e}\right|=$ $\left|V\left(H_{0}\right) \cap D_{e}\right|=p-1$. Hence (ii) holds.

By $(i i), T$ has a unique vertex, say z, not in D_{e}. From $\left|N_{G}(z) \cap D_{e}\right|=\left|V\left(H_{0}\right) \cap D_{e}\right|=$ $p-1$, the vertex z is not p-dominated by D_{e}. However, x is the unique vertex not be p-dominated by D_{e} in G by (4.2). Thus $z=x$, and so $x=z \in V(T) \backslash D_{e}$. By the construction of G and $x y \in G^{c}$, it is clear that $y \in\left(\cup_{i=1}^{n} V\left(H_{i}\right)\right) \cap D_{e}$. Hence (iii) holds.

We now show that \mathscr{C} is satisfiable if and only if $r_{p}(G)=1$.
If \mathscr{C} is satisfiable, then \mathscr{C} has a satisfying truth assignment $t: U \rightarrow\{T, F\}$. According to this satisfying assignment, we can choose a subset S from $V(G)$ as follows:

$$
S=S_{0} \cup S_{1} \cup \cdots \cup S_{n},
$$

where S_{0} consists of $p-1$ vertices of T and

$$
S_{i}=\left\{\begin{array}{ll}
u_{i} \cup\left(\bar{X}_{i}-\left\{\bar{v}_{i_{p}}\right\}\right) & \text { if } t\left(u_{i}\right)=T \\
\bar{u}_{i} \cup\left(X_{i}-\left\{v_{i_{p}}\right\}\right) & \text { if } t\left(u_{i}\right)=F
\end{array} \text { for each } i \in\{1, \cdots, n\} .\right.
$$

It can be verified easily that $|S|=p(n+1)-1=\gamma_{p}(G)-1$ and $\cup_{i=1}^{n} V\left(H_{i}\right)$ can be p-dominated by S. Since t is a satisfying true assignment for \mathscr{C}, each clause $C_{j} \in \mathscr{C}$ contains at least one true literal. That is, the corresponding vertex c_{j} has at least one neighbor in $\left\{u_{1}, \bar{u}_{1} \cdots, u_{n}, \bar{u}_{n}\right\} \cap S$ by the definitions of G and S, and so every $c_{j} \in\left\{c_{1}, \cdots, c_{m}\right\}$ has at least p neighbors in S since $S_{0} \subseteq N_{G}\left(c_{j}\right)$. Note that the unique vertex in $V(T) \backslash S_{0}$ has exact $p-1$ neighbors in S. By Theorem 2.2 and $|S|=\gamma_{p}(G)-1$,

$$
r_{p}(G)=\eta_{p}(G) \leq \eta_{p}(V(G), S, G)=\eta_{p}\left(V(T) \backslash S_{0}, S, G\right)=p-(p-1)=1
$$

Furthermore, we have $r_{p}(G)=1$ since $\gamma_{p}(G)>p$ by Claim 1 .
Conversely, assume $r_{p}(G)=1$. That is, there exists an edge $e=x y$ in G^{c} such that $\gamma_{p}(G+e)<\gamma_{p}(G)$. Let D_{e} be a γ_{p}-set of $G+e$. Define $t: U \rightarrow\{T, F\}$ by

$$
t\left(u_{i}\right)=\left\{\begin{array}{ll}
T & \text { if vertex } u_{i} \in D_{e} \tag{4.4}\\
F & \text { if vertex } u_{i} \notin D_{e}
\end{array} \text { for } i=1, \cdots, n .\right.
$$

We will show that t is a satisfying truth assignment for \mathscr{C}. Let C_{j} be an arbitrary clause in \mathscr{C}. By (ii) and (iii) of Claim 2, the corresponding vertex c_{j} is not in D_{e} and $\left|N_{G}\left(c_{j}\right) \cap D_{e}\right| \geq p$ since $c_{j} \notin\{x, y\}$. Then there must be some $i \in\{1, \cdots, n\}$ such that

$$
\begin{equation*}
\left|\left\{u_{i}, \bar{u}_{i}\right\} \cap N_{G}\left(c_{j}\right) \cap D_{e}\right|=1, \tag{4.5}
\end{equation*}
$$

since T contains exact $p-1$ vertices of D_{e} by (i) and (ii) of Claim 2. If $u_{i} \in N_{G}\left(c_{j}\right) \cap D_{e}$, then $u_{i} \in C_{j}$ and $t\left(u_{i}\right)=T$ by the construction of G and (4.4). If $\bar{u}_{i} \in N_{G}\left(c_{j}\right) \cap D_{e}$, then the literal \bar{u}_{i} belongs to C_{j} by the construction of G. Note that $u_{i} \notin D_{e}$ from $\bar{u}_{i} \in D_{e}$ and (i) of Claim 2. This means that $t\left(u_{i}\right)=F$ by (4.4). Hence $t\left(\bar{u}_{i}\right)=T$. The arbitrariness of C_{j} with $1 \leq j \leq m$ shows that all the clauses in \mathscr{C} is satisfied by t. That is, \mathscr{C} is satisfiable.

The theorem follows.

5 Upper Bounds

For a graph G and $p=1$, Kok and Mynhardt [19] provided an upper bound for $r(G)$ in terms of the smallest private neighborhood of a vertex in some γ-set of G. Let $X \subseteq V(G)$ and $x \in X$. The private neighborhood of x with respect to X is defined as the set

$$
\begin{equation*}
P N(x, X, G)=N_{G}[x] \backslash N_{G}[X \backslash\{x\}] . \tag{5.1}
\end{equation*}
$$

Set

$$
\mu(X, G)=\min \{|P N(x, X, G)|: x \in X\}
$$

and

$$
\begin{equation*}
\mu(G)=\min \{\mu(X, G): X \text { is a } \gamma \text {-set of } G\} . \tag{5.2}
\end{equation*}
$$

Using this parameter, Kok and Mynhardt [19] showed that $r(G) \leq \mu(G)$ if $\gamma(G) \geq 2$ with equality if $\gamma(G)=1$. We generalize this result to any positive integer p.

In order to state our results, we need some notations. Let $X \subseteq V(G)$ and $x \in X$. A vertex $y \in \bar{X}$ is called a p-private neighbor of x with respect to X if $x y \in E(G)$ and $\left|N_{G}(y) \cap X\right|=p$. The p-private neighborhood of x with respect to X is defined as

$$
\begin{equation*}
P N_{p}(x, X, G)=\{y: y \text { is a } p \text {-private neighbor of } x \text { with respect to } X\} . \tag{5.3}
\end{equation*}
$$

Let

$$
\begin{align*}
\mu_{p}(x, X, G) & =\left|P N_{p}(x, X, G)\right|+\max \left\{0, p-\left|N_{G}(x) \cap X\right|\right\}, \tag{5.4}\\
\mu_{p}(X, G) & =\min \left\{\mu_{p}(x, X, G): x \in X\right\}, \text { and } \tag{5.5}\\
\mu_{p}(G) & =\min \left\{\mu_{p}(X, G): X \text { is a } \gamma_{p} \text {-set of } G\right\} . \tag{5.6}
\end{align*}
$$

Theorem 5.1 For any graph G and positive integer p,

$$
r_{p}(G) \leq \mu_{p}(G)
$$

with equality if $r_{p}(G)=1$.

Proof. If $\gamma_{p}(G) \leq p$, then $r_{p}(G)=0 \leq \mu_{p}(G)$ by our convention. Assume that $\gamma_{p}(G) \geq p+1$ below. Let X be a γ_{p}-set of G and $x \in X$ such that

$$
\mu_{p}(G)=\mu_{p}(X, G)=\mu_{p}(x, X, G)
$$

Since $|X|=\gamma_{p}(G) \geq p+1$, we can choose a vertex, say u_{y}, from $X \backslash N_{G}(y)$ for each $y \in P N_{p}(x, X, G)$, and a subset X^{\prime} with $\left|X^{\prime}\right|=\max \left\{0, p-\left|N_{G}(x) \cap X\right|\right\}$ from $X \backslash N_{G}[x]$. Let

$$
G^{\prime}=G+\left\{y u_{y}: y \in P N_{p}(x, X, G)\right\}+\left\{x v: v \in X^{\prime}\right\} .
$$

Obviously, $X \backslash\{x\}$ is a p-dominating set of G^{\prime}, which implies that

$$
r_{p}(G) \leq\left|P N_{p}(x, X, G)\right|+\left|X^{\prime}\right|=\mu_{p}(x, X, G)=\mu_{p}(G)
$$

Assume $r_{p}(G)=1$. Then $\gamma_{p}(G) \geq p+1$ and there exists an edge $x y \in E\left(G^{c}\right)$ such that $\gamma_{p}(G+x y)=\gamma_{p}(G)-1$. Let $G^{\prime}=G+x y$ and X be a γ_{p}-set of G^{\prime}. Without loss of generality, assume that $x \in X$ and $y \in \bar{X}$. Clearly, y is a p-private neighbor of x with respect to X in G and $X \cup\{y\}$ is a γ_{p}-set of G, which implies

$$
P N_{p}(y, X \cup\{y\}, G)=\emptyset \text { and } p-\left|N_{G}(y) \cap(X \cup\{y\})\right|=1,
$$

that is, $\mu_{p}(y, X \cup\{y\}, G)=1$. It follows that

$$
r_{p}(G) \leq \mu_{p}(G) \leq \mu_{p}(X \cup\{y\}, G) \leq \mu_{p}(y, X \cup\{y\}, G)=1
$$

Thus, $r_{p}(G)=\mu_{p}(G)=1$. The theorem follows.
Note that $\left|P N_{p}(x, X, G)\right| \leq d e g_{G}(x)$ for any $X \subseteq V(G)$ and $x \in X$. By Theorem 5.1, we obtain the following corollary immediately.

Corollary 5.1 For any graph G with maximum degree $\Delta(G)$ and positive integer p, $r_{p}(G) \leq \Delta(G)+p$.

Corollary 5.2 Let p be a positive integer and G be a graph with minimum degree $\delta(G)$. If $\delta(G)<p$, then $r_{p}(G) \leq \delta(G)+p$.

Proof. Let X be a γ_{p}-set of G and $x \in V(G)$ with degree $\delta(G)$. Since $\operatorname{deg}_{G}(x)=$ $\delta(G)<p, x \in X$ by Observation 1.2, Note that $\left|P N_{p}(x, X, G)\right| \leq d e g_{G}(x)=\delta(G)$ and $p-\left|N_{G}(x) \cap X\right| \leq p$. By Theorem 5.1,

$$
\begin{aligned}
r_{p}(G) & \leq \mu_{p}(G) \\
& \leq \mu_{p}(x, X, G) \\
& =\left|P N_{p}(x, X, G)\right|+\max \left\{0, p-\left|N_{G}(x) \cap X\right|\right\} \\
& \leq \delta(G)+p .
\end{aligned}
$$

The corollary follows.
Consider $p=1$. Let $X \subseteq V(G)$ and $x \in X$. If x is not an isolated vertex of the induced subgraph $G[X]$, then $P N(x, X, G)$ defined in (5.1) does not contain x and $\max \left\{0,1-\left|N_{G}(x) \cap X\right|\right\}=0$ in (5.4). Otherwise, $P N(x, X, G)$ contains x and $\max \left\{0,1-\left|N_{G}(x) \cap X\right|\right\}=1$. Notice that $P N_{1}(x, X, G)$ defined in (5.3) does not contain x. Hence, by (5.5),

$$
\mu_{1}(x, X, G)=P N_{1}(x, X, G)+\max \left\{0,1-\left|N_{G}(x) \cap X\right|\right\}=|P N(x, X, G)| .
$$

This fact means that $\mu(G)$ defined in (5.2) is a special case of $p=1$ in (5.6), that is, $\mu_{1}(G)=\mu(G)$. Thus, by Theorem 5.1, the following corollary holds immediately.

Corollary 5.3 (Kok and Mynhardt [19]) For any graph G with $\gamma(G) \geq 2, r(G) \leq$ $\mu(G)$, with equality if $r(G)=1$.

References

[1] M. Blidia and M. Chellali, O. Favaron, Independence and 2-domination in trees. Austral. J. Combin. 33 (2005) 317-327.
[2] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees. Discrete Math. 306 (2006) 2031-2037.
[3] J.R.S. Blair, W. Goddard, S.T. Hedetniemi, S. Horton, P. Jones and G. Kubicki, On domination and reinforcement numbers in trees. Discrte Math. 308 (2008) 1165-1175.
[4] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-domination and k independence in graphs: A survey. Graphs \& Combin. doi 10.1007/s00373-011-1040-3.
[5] Y. Caro and Y. Roditty, A note on the k-domination number of a graph, Internat. J. Math. Sci. 13 (1990) 205-206.
[6] X. Chen, L. Sun and D. Ma, Bondage and reinforcement number of γ_{f} for complete multipartite graph, J. Beijin Inst. Technol. 12 (2003) 89-91.
[7] J. E. Dunbar, T. W. Haynes, U. Teschner and L. Volkmann, Bondage, insensitivity, and reinforcement. Domination in Graphs: Advanced Topics (T. W. Haynes, S. T. Hedetniemi, P. J. Slater eds.), 471-489, Monogr. Textbooks Pure Appl. Math., 209, Marcel Dekker, New York, (1998).
[8] G.S. Domke and R.C. Laskar, The bondage and reinforcement numbers of γ_{f} for some graphs. Discrete Math. 167/168 (1997) 249-259.
[9] R.G. Downey, M.R. Fellows, Fixed-parameter tractability and completeness I: Basic results. SIAM J. Comput. 24 (1995), 873-921.
[10] R.G. Downey, M.R. Fellows, Fixed-parameter tractability and completeness II: On completeness for $W[1]$. Theoretical Computer Science, 54 (3) (1997), 465-474.
[11] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence. J. Combin. Theory Ser. B 39 (1985) 101-102.
[12] J. F. Fink and M. S. Jacobson, n-domination in graphs. Graph Theory with Applications to Algorithms and Computer Science (Y. Alavi, A. J. Schwenk eds), 283-300, Wiley, New York, (1985).
[13] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, (1979).
[14] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, New York, Marcel Deliker, (1998).
[15] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, New York, Marcel Deliker (1998).
[16] M.A. Henning, N.J. Rad and J. Raczek, A note on total reinforcement in graph. Discrete Appl. Math. 159 (2011) 1443-1446.
[17] F.-T. Hu and J.-M. Xu, On the Complexity of the Bondage and Reinforcement Problems. Journal of Complexity (2011), doi:10.1016/j.jco.2011.11.001.
[18] J. Huang, J.W. Wang and J.-M. Xu, Reinforcement number of digraphs. Discrete Appl. Math. 157 (2009) 1938-1946.
[19] J. Kok and C.M. Mynhardt, Reinforcement in graphs. Congr. Numer. 79 (1990) 225-231.
[20] N. Sridharan, M.D. Elias and V.S.A. Subramanian, Total reinforcement number of a graph. AKCE Int. J. Graph Comb. 4 (2) (2007) 192-202.
[21] J.-M. Xu, Theory and Application of Graphs. Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
[22] J.H. Zhang, H.L. Liu and L. Sun, Independence bondage and reinforcement number of some graphs. Trans. Beijin Inst. Technol. 23 (2003) 140-142.

[^0]: *The work was supported by NNSF of China (No.10711233) and the Fundamental Research Fund of NPU (No. JC201150)
 ${ }^{\dagger}$ Corresponding author: xujm@ustc.edu.cn (J.-M. Xu)

