# Approximating minimum-power edge-multicovers 

Nachshon Cohen and Zeev Nutov<br>The Open University of Israel, nachshonc@gmail.com, nutov@openu.ac.il


#### Abstract

Given a graph with edge costs, the power of a node is the maximum cost of an edge incident to it, and the power of a graph is the sum of the powers of its nodes. Motivated by applications in wireless networks, we consider the following fundamental problem in wireless network design. Given a graph $G=(V, E)$ with edge costs and degree bounds $\{r(v): v \in V\}$, the Minimum-Power Edge-Multi-Cover (MPEMC) problem is to find a minimum-power subgraph $J$ of $G$ such that the degree of every node $v$ in $J$ is at least $r(v)$. We give two approximation algorithms for MPEMC, with ratios $O(\log k)$ and $k+1 / 2$, where $k=\max _{v \in V} r(v)$ is the maximum degree bound. This improves the previous ratios $O(\log n)$ and $k+1$, and implies ratios $O(\log k)$ for the Minimum-Power $k$-Outconnected Subgraph and $O\left(\log k \log \frac{n}{n-k}\right)$ for the Minimum-Power $k$-Connected Subgraph problems; the latter is the currently best known ratio for the min-cost version of the problem.


## 1 Introduction

### 1.1 Motivation and problems considered

Wireless networks are studied extensively due to their wide applications. The power consumption of a station determines its transmission range, and thus also the stations it can send messages to; the power typically increases at least quadratically in the transmission range. Assigning power levels to the stations (nodes) determines the resulting communication network. Conversely, given a communication network, the power required at $v$ only depends on the farthest node reached directly by $v$. This is in contrast with wired networks, in which every pair of stations that communicate directly incurs a cost. An important network property is fault-tolerance, which is often measured by minimum degree or node-connectivity of the network. Node-connectivity is much more central here than edge-connectivity, as it models stations failures. Such power minimization problems were vastly studied; see for example $[1,2,5,8,9]$ and the references therein for a small sample of papers in this area. The first problem we consider is finding a low power network with specified lower degree bounds. The second problem is the Min-Power $k$-Connected Subgraph problem. We give approximation algorithms for these problems, improving the previously best known ratios.

Definition 1. Let $(V, J)$ be a graph with edge-costs $\{c(e): e \in J\}$. For a node $v \in V$ let $\delta_{J}(v)$ denote the set of edges incident to $v$ in $J$. The power $p_{J}(v)$ of $v$ is the maximum cost of an edge in $J$ incident to $v$, or 0 if $v$ is an isolated node of $J$; i.e., $p_{J}(v)=\max _{e \in \delta_{J}(v)} c(e)$ if $\delta_{J}(v) \neq \emptyset$, and $p_{J}(v)=0$ otherwise. For $V^{\prime} \subseteq V$ the power of $V^{\prime}$ w.r.t. $J$ is the sum $p_{J}\left(V^{\prime}\right)=\sum_{v \in V^{\prime}} p_{J}(v)$ of the powers of the nodes in $V^{\prime}$.

Unless stated otherwise, all graphs are assumed to be undirected and simple. Let $n=|V|$. Given a graph $G=(V, E)$ with edge-costs $\{c(e): e \in E\}$, we seek to find a low power subgraph $(V, J)$ of $G$ that satisfies some prescribed property. One of the most fundamental problems in Combinatorial Optimization is finding a minimum-cost subgraph that obeys specified degree constraints (sometimes called also "matching problems") c.f. [10]. Another fundamental property is fault-tolerance (connectivity). In fact, these problems are related, and we use our algorithm for the former as a tool for approximating the latter.

Definition 2. Given degree bounds $r=\{r(v): v \in V\}$, we say that an edge-set $J$ on $V$ is an $r$-edge cover if $d_{J}(v) \geq r(v)$ for every $v \in V$, where $d_{J}(v)=\left|\delta_{J}(v)\right|$ is the degree of $v$ in the graph $(V, J)$.

Minimum-Power Edge-Multi-Cover (MPEMC):
Instance: A graph $G=(V, E)$ with edge-costs $\{c(e): e \in E\}$, degree bounds $r=\{r(v): v \in V\}$.
Objective: Find a minimum power $r$-edge cover $J \subseteq E$.
Given an instance of MPEMC, let $k=\max _{v \in V} r(v)$ denote the maximum requirement.

We now define our connectivity problems. A graph is $k$-outconnected from $s$ if it contains $k$ internally-disjoint $s v$-paths for all $v \in V \backslash\{s\}$. A graph is $k$-connected if it is $k$-outconnected from every node, namely, if it contains $k$ internally-disjoint $u v$-paths for all $u, v \in V$.
Minimum-Power $k$-Outonnected Subgraph (MPkOS):
Instance: A graph $G=(V, E)$ with edge-costs $\{c(e): e \in E\}$, a root $s \in V$, and an integer $k$.
Objective: Find a minimum-power $k$-outconnected from $s$ spanning subgraph $J$ of $G$.
Minimum-Power $k$-Connected Subgraph (MP $k$ CS):
Instance: A graph $G=(V, E)$ with edge-costs $\{c(e): e \in E\}$ and an integer $k$. Objective: Find a minimum-power $k$-connected spanning subgraph $J$ of $G$.

### 1.2 Our Results

The previous best approximation ratio for MPEMC was $O(\log n)$ [3]. Our main result improves this ratio to $O(\log k)$.

Theorem 1. MPEMC admits an $O(\log k)$-approximation algorithm.

For small values of $k$, the problem admits also the ratios $k+1$ for arbitrary $k$ [2], while for $k=1$ the best known ratio is $k+1 / 2=3 / 2$ [4]. Our second result extends the latter ratio to arbitrary $k$.

Theorem 2. MPEMC admits a ( $k+1 / 2$ )-approximation algorithm.
For small values of $k$, say $k \leq 6$, the ratio $(k+1 / 2)$ is better than $O(\log k)$ because of the constant hidden in the $O(\cdot)$ term. And overall, our paper gives the currently best known ratios for all values $k \geq 2$.

In [5] it is proved that an $\alpha$-approximation for MPEMC implies an $(\alpha+4)$ approximation for MPkOS. The previous best ratio for MP $k$ OS was $O(\log n)+$ $4=O(\log n)$ [5] for large values of $k=\Omega(\log n)$, and $k+1$ for small values of $k$ [9]. From Theorem 1 we obtain the following.

Theorem 3. MPkOS admits an $O(\log k)$-approximation algorithm.
In [2] it is proved that an $\alpha$-approximation for MPEMC and a $\beta$-approximation for Min-Cost $k$-Connected Subgraph implies a $(\alpha+2 \beta)$-approximation for MP $k$ CS. Thus the previous best ratio for MPkCS was $2 \beta+O(\log n)$ [3], where $\beta$ is the best ratio for MCkCS (for small values of $k$ better ratios for MP $k$ CS are given in [9]). The currently best known value of $\beta$ is $O\left(\log k \log \frac{n}{n-k}\right)$ [7], which is $O(\log k)$, unless $k=n-o(n)$. From Theorem 1 we obtain the following.

Theorem 4. MPkCS admits an $O(\beta+\log k)$-approximation algorithm, where $\beta$ is the best ratio for MCkCS. In particular, MPkCS admits an $O\left(\log k \log \frac{n}{n-k}\right)$ approximation algorithm.

### 1.3 Overview of the techniques

Let the trivial solution for MPEMC be obtained by picking for every node $v \in V$ the cheapest $r(v)$ edges incident to $v$. It is known and easy to see that this produces an edge set of power at most $(k+1)$ - opt, see [2].

Our $O(\log k)$-approximation algorithm uses the following idea. Extending and generalizing an idea from [3], we show how to find an edge set $I \subseteq E$ of power $O$ (opt) such that for the residual instance, the trivial solution value is reduced by a constant fraction. We repeatedly find and add such an edge set $I$ to the constructed solution, while updating the degree bounds accordingly to $r(v) \leftarrow \max \left\{r(v)-d_{I}(v), 0\right\}$. After $O(\log k)$ steps, the trivial solution value is reduced to opt, and the total power of the edges we picked is $O(\log k) \cdot$ opt. At this point we add to the constructed solution the trivial solution of the residual problem, which at this point has value opt, obtaining an $O(\log k)$-approximate solution.

Our ( $k+1 / 2$ )-approximation algorithm uses a two-stage reduction. The first reduction reduces MPEMC to a constrained version of MPEMC with $k=1$, where we also have lower bounds $\ell_{v}$ on the power of each node $v \in V$; these lower bounds are determined by the trivial solution to the problem. We will
show that a $\rho$-approximation algorithm to this constrained version implies a $(k-$ $1+\rho)$-approximation algorithm for MPEMC. The second reduction reduces the constrained version to the Minimum-Cost Edge Cover problem with a loss of $3 / 2$ in the approximation ratio. As Minimum-Cost Edge Cover admits a polynomial time algorithm, we get a ratio $\rho=3 / 2$ for the constrained problem, which in turn gives the ratio $k-1+\rho=k+1 / 2$ for MPEMC.

## 2 An $O(\log k)$-approximation (proof of Theorem 1)

As in [3], we reduce MPEMC to Bipartite MPEMC, where $G=(V, E)$ is a bipartite graph with sides $A, B$, and $r(a)=0$ for every $a \in A$ (so, only the nodes in $B$ may have positive degree bound). This is done by taking two copies $A=\left\{a_{v}: v \in V\right\}$ and $B=\left\{b_{v}: v \in V\right\}$ of $V$, for every edge $e=u v \in E$ adding the two edges $a_{u} b_{v}$ and $a_{v} b_{u}$ of cost $c(e)$ each, and for every $v \in V$ setting $r\left(b_{v}\right)=r(v)$ and $r\left(a_{v}\right)=0$. It is proved in [3] that this reduction invokes a factor of 2 in the approximation ratio, namely, that a $\rho$-approximation for bipartite MPEMC implies a $2 \rho$-approximation for general MPEMC.

Let opt denote the optimal solution value of a problem instance at hand. For $v \in V$, let $w_{v}$ be the cost of the $r(v)$-th least cost edge incident to $v$ in $E$ if $r(v) \geq 1$, and $w_{v}=0$ otherwise. Given a partial solution $J$ to Bipartite MPEMC let $r_{J}(v)=\max \left\{r(v)-d_{J}(v), 0\right\}$ be the residual bound of $v$ w.r.t. $J$. Let

$$
R_{J}=\sum_{b \in B} w_{b} r_{J}(b)
$$

The main step in our algorithm is given in the following lemma, which will be proved later.

Lemma 1. There exists a polynomial time algorithm that given an edge set $J \subseteq E$, an integer $\tau$, and a parameter $\gamma>1$, either correctly establishes that $\tau<\mathrm{opt}$, or returns an edge set $I \subseteq E \backslash J$ such that $p_{I}(V) \leq(1+\gamma) \tau$ and $R_{J \cup I} \leq \theta R_{J}$, where $\theta=1-\left(1-\frac{1}{\gamma}\right)\left(1-\frac{1}{e}\right)$.

Lemma 2. Let $J \subseteq E$ and let $F \subseteq E \backslash J$ be an edge set obtained by picking $r_{J}(b)$ least cost edges in $\delta_{E \backslash J}(b)$ for every $b \in B$. Then $J \cup F$ is an $r$-edge-cover and: $p_{F}(B) \leq \mathrm{opt}, p_{F}(A) \leq R_{J} \leq k \cdot$ opt.

Proof. Since $F$ is an $r_{J}$-edge-cover, $J \cup F$ is an $r$-edge-cover. By the definition of $F$, for any $r$-edge-cover $I, p_{F}(b) \leq w_{b} \leq p_{I}(b)$ for all $b \in B$. In particular, if $I$ is an optimal $r$-edge-cover, then

$$
p_{F}(B) \leq \sum_{b \in B} w_{b} \leq \sum_{b \in B} p_{I}(b)=p_{I}(B) \leq \mathrm{opt}
$$

Also,

$$
R_{J}=\sum_{b \in B} w_{b} r_{J}(b) \leq k \cdot \sum_{b \in B} w_{b} \leq k \cdot \mathrm{opt}
$$

Finally, $p_{F}(A) \leq R_{J}$ since

$$
p_{F}(A)=\sum_{a \in A} p_{F}(a) \leq \sum_{a \in A} \sum_{e \in \delta_{F}(a)} c(e)=\sum_{e \in F} c(e) \leq \sum_{b \in B} w_{b} r_{J}(b)=R_{J}
$$

This concludes the proof of the lemma.
Theorem 1 is deduced from Lemmas 1 and 2 as follows. We set $\gamma$ to be constant strictly greater than 1 , say $\gamma=2$. Then $\theta=1-\frac{1}{2}\left(1-\frac{1}{e}\right)$. Using binary search, we find the least integer $\tau$ such that the following procedure computes an edge set $J$ satisfying $R_{J} \leq \tau$.
Initialization: $J \leftarrow \emptyset$.
Loop: Repeat $\left\lceil\log _{1 / \theta} k\right\rceil$ times:
Apply the algorithm from Lemma 2:

- If it establishes that $\tau<$ opt then return "ERROR" and STOP.
- Else do $J \leftarrow J \cup I$.

After computing $J$ as above, we compute an edge set $F \subseteq E \backslash J$ as in Lemma 2. The edge-set $J \cup F$ is a feasible solution, by Lemma 2 . We claim that for any $\tau \geq$ opt the above procedure returns an edge set $J$ satisfying $R_{J} \leq \tau$; thus binary search indeed applies. To see this, note that $R_{\emptyset} \leq k \cdot$ opt and thus

$$
R_{J} \leq R_{\emptyset} \cdot \theta^{\left\lceil\log _{1 / \theta} k\right\rceil} \leq k \cdot \mathrm{opt} \cdot 1 / k=\mathrm{opt} \leq \tau
$$

Consequently, the least integer $\tau$ for which the above procedure does not return "ERROR" satisfies $\tau \leq$ opt. Thus $p_{J}(V) \leq\left\lceil\log _{1 / \theta} k\right\rceil \cdot(1+\gamma) \cdot \tau=O(\log k) \cdot$ opt. Also, by Lemma $2, p_{F}(V) \leq$ opt $+R_{J} \leq 2$ opt. Consequently,

$$
p_{J \cup F}(V) \leq p_{J}(V)+p_{F}(V)=O(\log k) \cdot \mathrm{opt}+2 \mathrm{opt}=O(\log k) \cdot \mathrm{opt}
$$

In the rest of this section we prove Lemma 1. It is sufficient to prove the statement in the lemma for the residual instance $\left((V, E \backslash J), r_{J}\right)$ with edgecosts restricted to $E \backslash J$; namely, we may assume that $J=\emptyset$. Let $R=R_{\emptyset}=$ $\sum_{b \in B} w_{b} r(b)$.

Definition 3. An edge $e \in E$ incident to a node $b \in B$ is $\tau$-cheap if $c(e) \leq$ $\frac{\tau \gamma}{R} \cdot w_{b} r(b)$.

Lemma 3. Let $F$ be an $r$-edge-cover, let $\tau \geq p_{F}(B)$, and let

$$
I=\bigcup_{b \in B}\left\{e \in \delta_{E}(b): c(e) \leq \frac{\tau \gamma}{R} \cdot w_{b} r(b)\right\}
$$

be the set of $\tau$-cheap edges in $E$. Then $R_{I \cap F} \leq R / \gamma$ and $p_{I}(B) \leq \gamma \tau$.
Proof. Let $D=\left\{b \in B: \delta_{F \backslash I}(b) \neq \emptyset\right\}$. Since for every $b \in D$ there is an edge $e \in F \backslash I$ incident to $b$ with $c(e)>\frac{\tau \gamma}{R} \cdot w_{b} r(b)$, we have $p_{F \backslash I}(b) \geq \frac{\tau \gamma}{R} \cdot w_{b} r(b)$ for every $b \in D$. Thus

$$
\tau \geq p_{F}(B) \geq p_{F \backslash I}(B)=\sum_{b \in D} p_{F \backslash I}(b) \geq \tau \cdot \frac{\gamma}{R} \sum_{b \in D} w_{b} r(b)
$$

This implies $\sum_{b \in D} w_{b} r(b) \leq R / \gamma$. Note that for every $b \in B \backslash D, \delta_{F}(b) \subseteq \delta_{I}(b)$ and hence $r_{I \cap F}(b)=r_{F}(b)=0$. Thus we obtain:

$$
R_{I \cap F}=\sum_{b \in B} w_{b} r_{I \cap F}(b)=\sum_{b \in D} w_{b} r_{I \cap F}(b) \leq \sum_{b \in D} w_{b} r(b) \leq R / \gamma
$$

To see that $p_{I}(B) \leq \gamma \tau$ note that

$$
p_{I}(B)=\sum_{b \in B} p_{I}(b) \leq \frac{\tau \gamma}{R} \sum_{b \in B} w_{b} r(b)=\frac{\tau \gamma}{R} \cdot R=\tau \gamma
$$

This concludes the proof of the lemma.
In [3] it is proved that the following problem, which is a particular case of submodular function minimization subject to matroid and knapsack constraint (see [6]) admits a $\left(1-\frac{1}{e}\right)$-approximation algorithm.

## Bipartite Power-Budgeted Maximum Edge-Multi-Coverage (BPBMEM):

Instance: A bipartite graph $G=(A \cup B, E)$ with edge-costs $\{c(e): e \in E\}$ and node-weights $\left\{w_{v}: v \in B\right\}$, degree bounds $\{r(v): v \in B\}$, and a budget $\tau$.
Objective: Find $I \subseteq E$ with $p_{I}(A) \leq \tau$ that maxmizes

$$
\operatorname{val}(I)=\sum_{v \in B} w_{v} \cdot \min \left\{d_{I}(v), r(v)\right\}
$$

The following algorithm computes an edge set as in Lemma 1.

1. Among the $\tau$-cheap edges, compute a $\left(1-\frac{1}{e}\right)$-approximate solution $I$ to BPBMEM.
2. If $R_{I} \leq \theta R$ then return $I$, where $\theta=1-\left(1-\frac{1}{\gamma}\right)\left(1-\frac{1}{e}\right)$;

Else declare " $\tau<$ opt".
Clearly, $p_{I}(A) \leq \tau$. By Lemma $3, p_{I}(B) \leq \gamma \tau$. Thus $p_{I}(V) \leq p_{I}(A)+p_{I}(B) \leq$ $(1+\gamma) \tau$.

Now we show that if $\tau \geq$ opt then $R_{I} \leq \theta R$. Let $F$ be the set of cheap edges in some optimal solution. Then $p_{F}(A) \leq$ opt $\leq \tau$. By Lemma $3 R_{F} \leq R / \gamma$, namely, $F$ reduces $R$ by at least $R\left(1-\frac{1}{\gamma}\right)$. Hence our $\left(1-\frac{1}{e}\right)$-approximate solution $I$ to BPBMEM reduces $R$ by at least $R\left(1-\frac{1}{e}\right)\left(1-\frac{1}{\gamma}\right)$. Consequently, we have $R_{I} \leq R-R\left(1-\frac{1}{e}\right)\left(1-\frac{1}{\gamma}\right)=\theta R$, as claimed.

The proof of Theorem 1 is complete.

## 3 A $\left(k+\frac{1}{2}\right)$-approximation (proof of Theorem 2)

We say that an edge set $F \subseteq E$ covers a node set $U \subseteq V$, or that $F$ is a $U$-cover, if $\delta_{F}(v) \neq \emptyset$ for every $v \in U$. Consider the following auxiliary problem:

## Restricted Minimum-Power Edge-Cover

Instance: A graph $G=(V, E)$ with edge-costs $\{c(e): e \in E\}, U \subseteq V$, and degree bounds $\left\{\ell_{v}: v \in U\right\}$.
Objective: Find a power assignment $\{\pi(v): v \in V\}$ that minimizes $\sum_{v \in V} \pi(v)$, such that $\pi(v) \geq \ell_{v}$ for all $v \in U$, and such that the edge set $F=\{e=u v \in E: \pi(u), \pi(v) \geq c(e)\}$ covers $U$.

Later, we will prove the following lemma.

## Lemma 4. Restricted Minimum-Power Edge-Cover admits a $3 / 2$-approximation

 algorithm.Theorem 2 is deduced from Lemma 4 and the following statement.
Lemma 5. If Restricted Minimum-Power Edge-Cover admits a $\rho$-approximation algorithm, then Minimum-Power Edge-Multi-Cover admits a $(k-1+\rho)$-approximation algorithm.

Proof. Consider the following algorithm.

1. Let $\pi(v)$ be the power assignment computed by the $\rho$-approximation algorithm for Restricted Minimum-Power Edge-Cover with $U=\{v \in V: r(v) \geq 1\}$ and bounds $\ell_{v}=w_{v}$ for all $v \in U$. Let $F=\{e=u v \in E: \pi(u), \pi(v) \geq c(e)\}$.
2. For every $v \in V$ let $I_{v}$ be the edge-set obtained by picking the least cost $r_{F}(v)$ edges in $\delta_{E \backslash F}(v)$ and let $I=\cup_{v \in V} I_{v}$.

Clearly, $F \cup I$ is a feasible solution to Minimum-Power Edge-Multi-Cover. Let opt denote the optimal solution value for Minimum-Power Edge-Multi-Cover. In what follows note that $\pi(V) \leq \rho \cdot$ opt and that $\sum_{v \in V} w_{v} \leq$ opt.

We claim that

$$
p_{I \cup F}(V) \leq \pi(V)+(k-1) \cdot \text { opt }
$$

As $\pi(V) \leq \rho \cdot$ opt, this implies $p_{I \cup F}(V) \leq(\rho+k-1) \cdot$ opt.
For $v \in V$ let $\Gamma_{v}$ be the set of neighbors of $v$ in the graph $\left(V, I_{v}\right)$. The contribution of each edge set $I_{v}$ to the total power is at most $p_{I_{v}}\left(\Gamma_{v}\right)+p_{I_{v}}(v)$. Note that $\pi(v) \geq p_{I_{v}}(v)$ and $\pi(v) \geq p_{F}(v)$ for every $v \in V$, hence $p_{F \cup I_{v}}(v) \leq$ $\pi(v)$. This implies

$$
p_{F \cup I}(V) \leq \sum_{v \in V}\left(\pi(v)+p_{I_{v}}\left(\Gamma_{v}\right)\right)=\pi(V)+\sum_{v \in V} p_{I_{v}}\left(\Gamma_{v}\right)
$$

Now observe that $\left|\Gamma_{v}\right|=\left|I_{v}\right|=r_{F}(v) \leq k-1$ and that $p_{I_{v}}(u) \leq w_{v}$ for every $u \in \Gamma_{v}$. Thus

$$
p_{I_{v}}\left(\Gamma_{v}\right) \leq(k-1) \cdot w_{v} \quad \forall v \in V
$$

Finally, using the fact that $\sum_{v \in V} w_{v} \leq$ opt, we obtain
$p_{F \cup I}(V) \leq \pi(V)+\sum_{v \in V} p_{I_{v}}\left(\Gamma_{v}\right) \leq \pi(V)+(k-1) \sum_{v \in V} w_{v} \leq \pi(V)+(k-1) \cdot$ opt.
This finishes the proof of the lemma.

In the rest of this section we prove Lemma 4.
We reduce Restricted Minimum-Power Edge-Cover to the following problem that admits an exact polynomial time algorithm, c.f. [10].

## Minimum-Cost Edge-Cover:

Instance: A multi-graph (possibly with loops) $G=(U, E)$ with edge-costs $\{c(e): e \in E\}$.
Objective: Find a minimum cost edge-set $F \subseteq E$ that covers $U$.
Our reduction is not approximation ratio preserving, but incurs a loss of $3 / 2$ in the approximation ratio. That is, given an instance ( $G, c, U, \ell$ ) of Restricted Minimum-Power Edge-Cover, we construct in polynomial time an instance ( $G^{\prime}, c^{\prime}$ ) of Minimum-Cost Edge-Cover such that:
(i) For any $U$-cover $I^{\prime}$ in $G^{\prime}$ corresponds a feasible solution $\pi$ to ( $G, c, U, \ell$ ) with $\pi(V) \leq c^{\prime}\left(I^{\prime}\right)$
(ii) $\mathrm{opt}^{\prime} \leq 3 \mathrm{opt} / 2$, where opt is an optimal solution value to Restricted MinimumPower Edge-Cover and opt ${ }^{\prime}$ is the minimum cost of a $U$-cover in $G^{\prime}$.

Hence if $I^{\prime}$ is an optimal (min-cost) solution to $\left(G^{\prime}, c^{\prime}\right)$, then $\pi(V) \leq c^{\prime}\left(I^{\prime}\right) \leq$ 3opt/2.

Clearly, we may set $\ell_{v}=0$ for all $v \in V \backslash U$. For $I \subseteq E$ let

$$
D(I)=\sum_{v \in V} \max \left\{p_{I}(v)-\ell_{v}, 0\right\}
$$

Here is the construction of the instance $\left(G^{\prime}, c^{\prime}\right)$, where $G^{\prime}=\left(U, E^{\prime}\right)$ and $E^{\prime}$ consists of the following three types of edges, where for every edge $e^{\prime} \in E^{\prime}$ corresponds a set $I\left(e^{\prime}\right) \subseteq E$ of one edge or of two edges.

1. For every $v \in U, E^{\prime}$ has a loop-edge $e^{\prime}=v v$ with $c^{\prime}(v v)=\ell_{v}+D(\{v u\})$ where $v u$ is is an arbitrary chosen minimum cost edge in $\delta_{E}(v)$.
Here $I\left(e^{\prime}\right)=\{v u\}$.
2. For every $u v \in E$ such that $u, v \in U, E^{\prime}$ has an edge $e^{\prime}=u v$ with $c^{\prime}(u v)=$ $\ell_{u}+\ell_{v}+D((\{u v\})$.
Here $I\left(e^{\prime}\right)=\{u v\}$.
3. For every pair of edges $u x, x v \in E$ such that $c(u x) \geq c(x v), E^{\prime}$ has an edge $e^{\prime}=u v$ with $c^{\prime}(u v)=\ell_{v}+\ell_{u}+D(\{u x, x v\})$.
Here $I\left(e^{\prime}\right)=\{u x, x v\}$.
Lemma 6. Let $I^{\prime} \subseteq E^{\prime}$ be a $U$-cover in $G^{\prime}$, let $I=\cup_{e \in I^{\prime}} I(e)$, and let $\pi$ be a power assignment defined on $V$ by $\pi(v)=\max \left\{p_{I}(v), \ell_{v}\right\}$. Then $\pi(V) \leq c^{\prime}\left(I^{\prime}\right)$, $I$ is a $U$-cover in $G$, and $\pi$ is a feasible solution to $(G, c, U, \ell)$.

Proof. We have that $I$ is a $U$-cover in $G$, by the definition of $I$ and since $I\left(e^{\prime}\right)$ covers both endnodes of every $e^{\prime} \in E^{\prime}$. By the definition of $\pi$, we have that $I \subseteq\{e=u v \in E: \pi(u), \pi(v) \geq c(e)\}$. Hence $\pi$ is a feasible solution to $(G, c, U, \ell)$, as claimed.

We prove that $\pi(V) \leq c^{\prime}\left(I^{\prime}\right)$. For $e^{\prime}=u v \in E^{\prime}$ let $\ell\left(e^{\prime}\right)=\ell_{v}$ if $e^{\prime}$ is a type 1 edge, and $\ell\left(e^{\prime}\right)=\ell_{u}+\ell_{v}$ otherwise. Note that $\pi(v)=\max \left\{p_{I}(v), \ell(v)\right\}=$ $\ell_{v}+\max \left\{p_{I}(v)-\ell(v), 0\right\}$, hence

$$
\pi(V)=\sum_{v \in U} \ell_{v}+\sum_{v \in V} \max \left\{p_{I}(v)-\ell(v), 0\right\}=\sum_{v \in U} \ell_{v}+D(I)
$$

By the definition of $\ell\left(e^{\prime}\right)$ and since $I^{\prime}$ is a $U$-cover $\sum_{v \in U} \ell_{v} \leq \sum_{e^{\prime} \in I^{\prime}} \ell\left(e^{\prime}\right)$. Also, $D(I)=D\left(\cup_{e^{\prime} \in I^{\prime}} I\left(e^{\prime}\right)\right)$, by the definition of $I$. Thus we have

$$
\sum_{v \in U} \ell_{v}+D(I) \leq \sum_{e^{\prime} \in I^{\prime}} \ell\left(e^{\prime}\right)+D\left(\cup_{e^{\prime} \in I^{\prime}} I\left(e^{\prime}\right)\right)
$$

It is easy to see that

$$
D\left(\cup_{e^{\prime} \in I^{\prime}} I\left(e^{\prime}\right)\right) \leq \sum_{e^{\prime} \in I^{\prime}} D\left(I\left(e^{\prime}\right)\right)
$$

Finally, note that $\ell\left(e^{\prime}\right)+D\left(I\left(e^{\prime}\right)\right)=c^{\prime}\left(e^{\prime}\right)$ for every $e^{\prime} \in I^{\prime}$ (if $e^{\prime}$ is a type 1 edge, this follows from our assumption that $\left.\ell_{v} \geq \min \left\{c(e): e \in \delta_{E}(v)\right\}\right)$. Combining we get

$$
\begin{aligned}
\pi(V) & =\sum_{v \in U} \ell_{v}+D(I) \leq \\
& \leq \sum_{e^{\prime} \in I^{\prime}} \ell\left(e^{\prime}\right)+D\left(\cup_{e^{\prime} \in I^{\prime}} I\left(e^{\prime}\right)\right) \leq \\
& \leq \sum_{e^{\prime} \in I^{\prime}} \ell\left(e^{\prime}\right)+\sum_{e^{\prime} \in I^{\prime}} D\left(I\left(e^{\prime}\right)\right)= \\
& =\sum_{e^{\prime} \in I^{\prime}}\left(\ell\left(e^{\prime}\right)+D\left(I\left(e^{\prime}\right)\right)\right)= \\
& =\sum_{e^{\prime} \in I^{\prime}} c^{\prime}\left(e^{\prime}\right)=c^{\prime}\left(I^{\prime}\right)
\end{aligned}
$$

Lemma 7. Let $\{\pi(v): v \in V\}$ be a feasible solution to an instance ( $G, c, U, \ell$ ) of Restricted Minimum-Power Edge-Cover. Then there exists a $U$-cover $I^{\prime}$ in $G^{\prime}$ such that $c^{\prime}\left(I^{\prime}\right) \leq 3 \pi(V) / 2$.

Proof. Let $I \subseteq\{e=u v \in E: \pi(u), \pi(v) \geq c(e)\}$ be an inclusion minimal $U$ cover. We may assume that $\pi(v)=\max \left\{p_{I}(v), \ell_{v}\right\}$ for every $v \in V$. Since any inclusion minimal $U$-cover is a collection of node disjoint stars, it is sufficient to prove the statement for the case when $I$ is a star. Then $I$ has at most one node not in $U$, and if there is such a node, then it is the center of the star, if $|I| \geq 2$; in the case $I$ consists of a single edge $e$, then we define the center of $I$ to be the endnode of $e$ in $V \backslash U$ if such exists, or an arbitrary endnode of $e$ otherwise.

We define a $U$-cover $I^{\prime}$ in $G^{\prime}$, and show that

$$
\begin{equation*}
c^{\prime}\left(I^{\prime}\right) \leq \frac{3}{2} \sum_{v \in V} \max \left\{p_{I}(v), \ell_{v}\right\}=\frac{3}{2} \pi(V) \tag{1}
\end{equation*}
$$

Let $v_{0}$ be the center of $I$ and let $\left\{v_{i}: 1 \leq i \leq d\right\}$ be the leaves of $I$ ordered by descending order of $\operatorname{costs} c\left(v_{0} v_{i}\right) \geq c\left(v_{0} v_{i+1}\right)$. The $U$-cover $I^{\prime} \subseteq E^{\prime}$ is defined as follows. We cover each pair $v_{2 i-1}, v_{2 i}, i=1, \ldots,\lfloor d / 2\rfloor$, by a type 3 edge. This covers all the nodes except $v_{0}$, and maybe $v_{d}$ if $d$ is odd. We add an additional edge $f$ of type 1 or 2 , if there are nodes in $U\left(v_{0}\right.$ and/or $\left.v_{d}\right)$ that remain uncovered by the picked type 3 edges. Formally, we have the following 4 cases, see Figure 1.


Fig. 1. Illustration to the definition of the $U$-cover $I^{\prime}$.

1. $d$ is even and $v_{0} \notin U$, see Figure 1 (a). Then $U$ is covered by type 3 edges.
2. $d$ is odd, and $v_{0} \notin U$, see Figure 1(b). Then we add a type 1 edge $f$ to cover $v_{d}$.
3. $d$ is odd and $v_{0} \in U$, see Figure $1(\mathrm{c})$. Then we add a type 2 edge $f$ to cover $v_{0}, v_{d}$.
4. $d$ is even and $v_{0} \in U$, see Figure $1(\mathrm{~d})$. Then we add a type 1 edge $f$ to cover $v_{0}$.

Consider a type 3 edge $v_{2 i-1} v_{2 i} \in I^{\prime}$. Let $q_{i}=\max \left\{c\left(v_{2 i-1} v_{0}\right)-\ell_{v_{0}}, 0\right\}$. Note that $c^{\prime}\left(v_{2 i-1} v_{2 i}\right) \leq \pi\left(v_{2 i-1}\right)+\pi\left(v_{2 i}\right)+q_{i}$. The key point is that

$$
q_{i} \leq \frac{1}{2}\left(\pi\left(v_{2 i-3}\right)+\pi\left(v_{2 i-2}\right)\right) \quad i=2, \ldots,\lfloor d / 2\rfloor .
$$

This is since $q_{i} \leq c\left(v_{0} v_{2 i-1}\right) \leq \frac{1}{2}\left(c\left(v_{0} v_{2 i-3}\right)+c\left(v_{0} v_{2 i-2}\right)\right)$ while $c\left(v_{0} v_{j}\right) \leq \pi\left(v_{j}\right)$. Therefore,

$$
\sum_{i=1}^{d / 2} c^{\prime}\left(v_{2 i-1} v_{2 i}\right) \leq \sum_{i=1}^{d / 2}\left[\pi\left(v_{2 i-1}\right)+\pi\left(v_{2 i}\right)+q_{i}\right] \leq \sum_{i=1}^{2\lfloor d / 2\rfloor} \pi\left(v_{i}\right)+q_{1}+\frac{1}{2} \sum_{i=1}^{d-2} \pi\left(v_{i}\right)
$$

Now, we prove that (1) hold in each one of our four cases.

1. $v_{0} \notin U$ and $d$ is even. Note that $q_{1} \leq c\left(v_{0} v_{1}\right) \leq \pi\left(v_{0}\right)$. Then:

$$
c^{\prime}\left(I^{\prime}\right)=\sum_{i=1}^{d / 2} c^{\prime}\left(e_{i}\right) \leq \frac{3}{2} \sum_{i=1}^{d} \pi\left(v_{i}\right)+q_{1} \leq \frac{3}{2} \sum_{i=1}^{d} \pi\left(v_{i}\right)+\pi\left(v_{0}\right) \leq \frac{3}{2} \sum_{i=0}^{d} \pi\left(v_{i}\right)
$$

2. $v_{0} \notin U$ and $d$ is odd. In this case $f=v_{d} v_{d}$ is a loop type 1 edge, so $c^{\prime}(f) \leq$ $\pi\left(v_{d}\right)+\max \left(c\left(v_{0} v_{d}\right)-\ell_{v_{0}}, 0\right)$. This implies

$$
\begin{aligned}
q_{1}+c^{\prime}(f) & \leq c\left(v_{0} v_{1}\right)+c\left(v_{0} v_{d}\right)+\pi\left(v_{d}\right) \leq \pi\left(v_{0}\right)+\frac{1}{2}\left[\pi\left(v_{0}\right)+\pi\left(v_{d}\right)\right]+\pi\left(v_{d}\right) \\
& =\frac{3}{2}\left(\pi\left(v_{0}\right)+\pi\left(v_{d}\right)\right)
\end{aligned}
$$

Thus

$$
c^{\prime}\left(I^{\prime}\right)=\sum_{i=1}^{d / 2} c^{\prime}\left(e_{i}\right)+c^{\prime}(f) \leq \frac{3}{2} \sum_{i=1}^{d-1} \pi\left(v_{i}\right)+c^{\prime}(f)+q_{1} \leq \frac{3}{2} \sum_{i=0}^{d} \pi\left(v_{i}\right)
$$

3. $v_{0} \in U$ and $d$ is odd. In this case $f=v_{0} v_{d}$, so $c^{\prime}(f) \leq \max \left(\ell_{v_{0}}, c\left(v_{0} v_{d}\right)\right)+$ $\pi\left(v_{d}\right)$. This implies $q_{1}+c^{\prime}(f) \leq c\left(v_{0} v_{1}\right)+c\left(v_{0} v_{d}\right)+\pi\left(v_{d}\right) \leq \frac{3}{2}\left(\pi\left(v_{0}\right)+\pi\left(v_{d}\right)\right)$. Thus

$$
c^{\prime}\left(I^{\prime}\right)=\sum_{i=1}^{d / 2} c^{\prime}\left(e_{i}\right)+c^{\prime}(f) \leq \frac{3}{2} \sum_{i=1}^{d-1} \pi\left(v_{i}\right)+c^{\prime}(f)+q_{1} \leq \frac{3}{2} \sum_{i=0}^{d} \pi\left(v_{i}\right)
$$

4. $v_{0} \in U$ and $d$ is even. In this case $f=v_{0} v_{0}$ is a loop type 1 edge, so $c^{\prime}(f) \leq \ell_{v_{0}}+c\left(v_{0} v_{d}\right) \leq \ell_{v_{0}}+\frac{1}{2}\left(\pi\left(v_{d-1}\right)+\pi\left(v_{d}\right)\right)$. This implies $q_{1}+c^{\prime}(f) \leq$ $c\left(v_{0} v_{1}\right)+\frac{1}{2}\left(\pi\left(v_{d-1}\right)+\pi\left(v_{d}\right)\right)$. Thus

$$
\begin{aligned}
c^{\prime}\left(I^{\prime}\right) & =\sum_{i=1}^{d / 2} c^{\prime}\left(e_{i}\right)+c^{\prime}(f) \leq \sum_{i=1}^{d} \pi\left(v_{i}\right)+\frac{1}{2} \sum_{i=1}^{d-2} \pi\left(v_{i}\right)+q_{1}+c^{\prime}(f) \\
& \leq \frac{3}{2} \sum_{i=1}^{d} \pi\left(v_{i}\right)+\pi\left(v_{0}\right) \leq \sum_{i=0}^{d} \pi\left(v_{i}\right)
\end{aligned}
$$

This concludes the proof of the lemma.
As was mentioned, Lemmas 6 and 7 imply Lemma 4. Lemmas 4 and 5 imply Theorem 2, hence the proof of Theorem 2 is now complete.

## 4 Conclusions and open problems

The main result of this paper is a new approximation algorithm for MPEMC with ratio $O(\log k)$. This improves the ratio $O(\log (n k))=O(\log n)$ of [3]. We also gave a $(k+1 / 2)$-approximation algorithm, which is better than our $O(\log k)$ approximation algorithm for small values of $k$ (roughly $k \leq 6$ ).

The main open problem is whether the ratio $O(\log k)$ shown in this paper is tight, or the problem admits a constant ratio approximation algorithm.

## References

1. E. Althaus, G. Calinescu, I. Mandoiu, S. Prasad, N. Tchervenski, and A. Zelikovsky. Power efficient range assignment for symmetric connectivity in static ad-hoc wireless networks. Wireless Networks, 12(3):287-299, 2006.
2. M. Hajiaghayi, G. Kortsarz, V. Mirrokni, and Z. Nutov. Power optimization for connectivity problems. Math. Programming, 110(1):195-208, 2007.
3. G. Kortsarz, V. Mirrokni, Z. Nutov, and E. Tsanko. Approximating minimumpower degree and connectivity problems. Algorithmica, 58, 2010.
4. G. Kortsarz and Z. Nutov. Approximating minimum-power edge-covers and 2, 3connectivity. Discrete Applied Mathematics, 157:1840-1847, 2009.
5. Y. Lando and Z. Nutov. On minimum power connectivity problems. J. of Discrete Algorithms, 8(2):164-173, 2010.
6. J. Lee, V. Mirrokni, V. Nagarajan, and M. Sviridenko. Maximizing nonmonotone submodular functions under matroid or knapsack constraints. SIAM J. Discrete Mathematics, 23(4):20532078, 2010.
7. Z. Nutov. An almost $O(\log k)$-approximation for $k$-connected subgraphs. In $S O D A$, pages 912-921, 2009.
8. Z. Nutov. Approximating minimum power covers of intersecting families and directed edge-connectivity problems. Theoretical Computer Science, 411(26-28):2502-2512, 2010.
9. Z. Nutov. Approximating minimum power $k$-connectivity. Ad Hoc $\&$ Sensor Wireless Networks, 9(1-2):129-137, 2010.
10. A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. SpringerVerlag Berlin, Heidelberg New York, 2004.
