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Abstract We study the problem of maximizing a monotone non-decreasing
function f subject to a matroid constraint. Fisher, Nemhauser and Wolsey
have shown that, if f is submodular, the greedy algorithm will find a solution
with value at least 1

2 of the optimal value under a general matroid constraint
and at least 1− 1

e of the optimal value under a uniform matroid (M = (X, I),
I = {S ⊆ X : |S| ≤ k}) constraint. In this paper, we show that the greedy
algorithm can find a solution with value at least 1

1+µ of the optimum value for a
general monotone non-decreasing function with a general matroid constraint,
where µ = α, if 0 ≤ α ≤ 1; µ = αK(1−αK)

K(1−α) if α > 1; here α is a constant
representing the “elemental curvature” of f , and K is the cardinality of the
largest maximal independent sets. We also show that the greedy algorithm
can achieve a 1 − ( α+···+αk−1

1+α+···+αk−1 )k approximation under a uniform matroid
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constraint. Under this unified α-classification, submodular functions arise as
the special case 0 ≤ α ≤ 1.
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1 Introduction

1.1 Background

In this work, we deal with the following combinatorial optimization problem.
Given a ground set X of n elements and a monotone non-decreasing set func-
tion f : 2X → ℜ+, we wish to find

max
S∈I

f(S) (1)

where I is an independent family of subsets of X. Without loss of generality,
let X = {1, 2, . . . , n}. The family I ⊆ 2X is independent if, for all B ∈ I, any
set A ⊆ B is also in I. Furthermore, if for all A ∈ I, B ∈ I, |A| < |B|, there
exists j ∈ B \ A such that A ∪ {j} ∈ I, where |S| denotes the cardinality of
set S, then M = (X, I) is called a matroid.

A set function f is non-decreasing if f(A) ≤ f(B) for all A ⊆ B. We assume
f(∅) = 0, otherwise f can be replaced by f − f(∅). The function f is called
submodular if, for all A ⊆ B ⊆ X and j ∈ X \ B, f(A ∪ {j}) − f(A) ≥ f(B ∪
{j})−f(B). The problem of maximizing a submodular set function subject to
independence constraints is NP-hard and a practical, computationally feasible
solution can often be found using a greedy algorithm. The greedy algorithm
starts with the empty set S = ∅, and then incrementally adds to the current
solution set S (according to f) an element j which most improves f(S) while
maintaining the condition S ∈ I.

Based on classical results in linear programming, Nemhauser et al. (1978)
proved that the greedy algorithm yields a (1− 1

e )-approximation for the Prob-
lem (1) with a value oracle1 if f is a monotone non-decreasing submodular
function under a uniform matroid, i.e., I = {S ⊆ X : |S| ≤ k}. Moreover, this
is the best possible performance guarantee in polynomial time with a value
oracle model(Nemhauser and Wolsey 1978). Feige (1998) proved that if f is an
explicitly given coverage function, then the best possible performance guaran-
tee is 1−1/e unless P = NP . For a general matroid M in Problem (1) with a
monotone non-decreasing submodular function f , Fisher et al. (1978) proved
that the greedy algorithm provides a 1

2 -approximation of the optimum.
Conforti and Cornuéjols (1984) generalized the results given by Nemhauser,

Wolsey and Fisher (Nemhauser et al. 1978; Fisher et al. 1978) and proposed
a 1

1+c -approximation to Problem (1) with a value oracle when a monotone

1 Given a set S ∈ I, return f(S).
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non-decreasing submodular function f has a total curvature c, defined as c =
maxj∈X{1 − f(X)−f(X\{j})

f({j})−f(∅) }. In the case of uniform matroid constraints, the
approximation factor is 1

c (1 − e−c). Note that if c = 1, the result is the same
as that obtained by Nemhauser et al. (1978) and Fisher et al. (1978).

Recently, using the idea of a multilinear extension of submodular functions,
Vondrák (2010) has proposed a continuous greedy algorithm that together
with the pipage rounding technique (Ageev and Sviridenko 2004) and which
can achieve a 1

c (1− e−c) approximation of the optimal value for any matroid,
where c ∈ [0, 1] is the curvature with respect to the optimum. This is optimal
in the value oracle model in the sense that any better approximation would
require an exponential number of value queries.

In Vondrák’s approach, a continuous greedy algorithm is used to approxi-
mate max{F (y) : y ∈ P (M)} within a factor of 1

c (1 − e−c), where P (M) =
{x ≥ 0 : ∀S ⊆ X;

∑
j∈S xj ≤ rM(S)} is the matroid polytope, and F (y) =∑

S⊆X f(S)
∏

i∈S yi

∏
j /∈S(1 − yj) is a multilinear extension of submodular

function f . Inspired by the pipage rounding technique described in Ageev
and Sviridenko (2004), a variant of that technique is used by Calinescu et al.
(2011) to convert a fractional solution y ∈ P (M) to a discrete solution S,
f(S) ≥ F (y) ≥ 1

c (1 − e−c)OPT . This method has been applied to the Sub-
modular Welfare Problem (SWP) (Vondrák 2008) and the Generalized As-
signment Problem (GAP) (Calinescu et al. 2011). Using the same continuous
greedy process, Kulik et al. (2009) have extended the (1 − 1

e )-approximation
to a single knapsack constraint on the Max-Coverage Problem given by Sviri-
denko (2004), and obtained a (1 − ϵ)(1 − 1

e )-approximation for ϵ > 0 under a
constant number of knapsack constraints.

Based on non-oblivious local search (Alimonti 1994), Filmus and Ward
(2012) proposed an optimal, combinatorial (1 − 1

e )-approximation algorithm
that requires no rounding for monotone submodular optimization over a ma-
troid constraint.

Fisher et al. (1978) proved the greedy algorithm yields a 1
1+p -approximation

for maximizing a submodular function subject to a p-system2 independence
constraint (e.g. the intersection of p matroids). A recent result by Lee et al.
(2010) shows that, for any p ≥ 2 and any ϵ > 0, there is a natural local-
search algorithm that has approximation guarantee of 1

p+ϵ for the problem of
maximizing a monotone submodular function subject to p matroid constraints.

In the setting of non-negative non-monotone submodular maximization,
based on an adaptation of the greedy approach which exploits certain sym-
metry properties, Buchbinder et al. (2012) gave a simple randomized linear
time algorithm achieving a tight approximation guarantee of 1

2 for the un-
constrained problem. Lee et al. (2009, 2010) considered the multiple matroid
and knapsack constraints, attaining a 1

p+1+ 1
p−1+ϵ

-approximation for p ≥ 2

2 Given an independence family I and a set Y ⊆ X, let B(Y ) be the set of maximal

independent sets of I included in Y . Then I is a p-system if, for all Y ⊆ X,
maxA∈B(Y ) |A|
minA∈B(Y ) |A| ≤

p. See the definition in Korte and Hausmann (1978) and Calinescu et al. (2011).
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matroid constraints, and a ( 1
5 − ϵ)-approximation under the p knapsack con-

straints (ϵ > 0 is any constant) using local search. Chekuri et al. (2011)
gave non-monotone counterparts of the continuous greedy algorithm (Vondrák
2010) and defined a contention resolution rounding scheme which allows one
to obtain approximations for different combinations of constraints, deriving a
number of new results for maximizing a non-negative submodular set function
subject to a variety of packing type constraints including (multiple) matroid
constraints, knapsack constraints, and their intersections.

In the case of the demand oracle model3, which is stronger than the value
oracle model since a demand oracle can simulate a value oracle in polyno-
mial time, better results for some special submodular functions have been
obtained. A (1− 1

e )-approximation for SWP has been given by Dobzinski and
Schapira (2006). Based on configuration linear programming and a contention
resolution technique, Feige and Vondrák (2006, 2010) presented a (1− 1

e + ϵ)-
approximation for some small fixed ϵ > 0 for SWP and GAP. Chakrabarty and
Goel (2008) proved that it is NP -hard to approximate SWP within a ratio
better than 15

16 and the GAP within a ratio better than 10
11 . Badanidiyuru et al.

(2011) presented a 8
9 -approximation algorithm for the problem of maximizing

a monotone submodular function subject to a cardinality constraint and a
( 8
9 − ϵ)-approximation for the problem of maximizing a monotone submodu-

lar function subject to a knapsack constraint for an arbitrary small constant
ϵ > 0.

1.2 Main Contributions

In this paper, we propose a unified approximation bound 1
1+µ for the solution

of (1) using a greedy algorithm under a general matroid constraint (in the
Theorem 1). The constant µ depends on the elemental curvature α of the
underlying non-decreasing monotone function f and the cardinality K of the
largest maximal independent sets. To be precise, µ = α, if 0 < α ≤ 1, and
µ = αK(1−αK)

K(1−α) , if α > 1. Under such a framework, the aforementioned existing
approximation bound appears as a special case where α = 1. In addition,
we show that for a uniform matroid the greedy algorithm finds a solution
with a 1 − ( α+...+αk−1

1+α+...+αk−1 )k approximation, where k is the cardinality of the
solution. Using an example, we demonstrate that if the bound of α is known,
which maybe considered as a stronger oracle, it can be used to obtain a tighter
approximation bound for a submodular function.

3 Given prices p1, . . . , pn, return a bundle S ∈ arg maxT,T⊆X f(T ) −
∑

i∈T pi.
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1.3 Preliminaries

Submodular functions. A set-function f : 2X → ℜ+ is submodular if, for
all subsets A ⊆ B ⊆ X and j ∈ X \ B,

fj(A) ≥ fj(B)

where fj(S) , f(S ∪ {j}) − f(S) is the “marginal value ”for given S ⊂ X. A
submodular function has a natural diminishing returns property. It may also
be defined in the following two equivalent forms:

1. The set-function f is submodular if for all subsets A,B ⊆ X,

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B).

2. The set-function f is submodular if for all subsets, A ⊂ X and i, j ∈ X \A,

fi(A) ≥ fi(A ∪ {j}).

In the following, we assume that f(∅) = 0 and f is monotone non-decreasing.
Curvature. The total curvature of a monotone non-decreasing submodular
function f is, (Conforti and Cornuéjols 1984),

c = max
j∈X

{
1 − f(X) − f(X \ {j})

f({j}) − f(∅)

}
.

Note that c ∈ [0, 1]. The readers may refer to paper (Conforti and Cornuéjols
1984) for the analysis of c dependent greedy algorithms.
Elemental Curvature. The elemental curvature of a monotone non-decreasing
function f is defined as

α = max
S⊂X,i,j∈X\S,i̸=j

fi(S ∪ {j})
fi(S)

.

In other words, α is the smallest value such that, for every S ⊂ X and i, j ∈
X \ S,

f(S ∪ {j} ∪ {i}) − f(S ∪ {j}) ≤ α[f(S ∪ {i}) − f(S)].

Note that α ∈ [0, +∞). If α = 0, f is a constant valued set function; if
0 ≤ α ≤ 1, then f is a submodular function. In this work, we assume that
α ̸= 0.
Matroids. A matroid is a pair M = (X, I), where I ⊆ 2X and 1) ∀B ∈
I, A ⊂ B → A ∈ I; 2) ∀A,B ∈ I; |A| < |B| → ∃j ∈ B \ A; A ∪ {j} ∈ I.
A matroid is a structure which captures and generalizes the notion of linear
independence in vector spaces. In a matroid, all maximal sets have the same
cardinality.
Uniform Matroid. A matroid M = (X, I) is a uniform matroid if I = {A ⊆
X : |A| ≤ k}, where k is a given integer with 0 ≤ k ≤ |X|.
Partition Matroid. A matroid M = (X, I) is a partition matroid if X is
partitioned into l sets X1, X2, . . . , Xl with associated integers k1, k2, . . . , kl,
and a set S ⊆ X is independent if and only if |S ∩ Xi| ≤ ki. If l = 1, then
M = (X, I) is the uniform matroid.
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2 The Bound 1/(1 + µ)

Lemma 1 Let X be a finite set and f : 2X → ℜ+ be a monotone non-
decreasing set function with f(∅) = 0 and elemental curvature α. Then for
any set S ⊂ T ⊆ X, f(T ) − f(S) ≤ β

∑
j∈T\S fj(S), where

β =
{

1−αr

r(1−α) , α ̸= 1, r = |T \ S|;
1, α = 1.

Proof For arbitrary S ⊂ T with T \ S = {j1, j2, . . . , jr}, we have,

f(T ) − f(S) = f(S ∪ {j1, j2, . . . , jr}) − f(S)

=
r∑

t=1

[f(S ∪ {j1, . . . , jt}) − f(S ∪ {j1, . . . , jt−1})]

=
r∑

t=1

fjt(S ∪ {j1, . . . , jt−1}).

(2)

From the definition of elemental curvature, (2) can be written as

f(T ) − f(S) ≤ fj1(S) + αfj2(S) + . . . + αr−1fjr
(S)

=
r∑

t=1

αt−1fjt(S).
(3)

We note that the value of the above inequality does not depend on the order
of j1, j2, . . . , jr. It is possible to choose a set P of r permutations π from the
group of all permutations, such that if π, π′ ∈ P , then π′π−1 is fixed point free.
That is, π(i) ̸= π′(i) for all i. It can easily be seen that |P | = r. The above
process can be repeated for each choice of permutation; that is, {j1, j2, . . . , jr}
is replace by {jπ(1), jπ(2), . . . , jπ(r)}. If all of these r inequalities are summed,
the following inequality follows.

r(f(T ) − f(S)) ≤
r∑

t=1

αt−1
r∑

t=1

fjt(S) =
r∑

t=1

αt−1
∑

j∈T\S

fj(S). (4)

Therefore, when α ̸= 1,

f(T ) − f(S) ≤ 1 − αr

r(1 − α)

∑
j∈T\S

fj(S), (5)

and, when α = 1,
f(T ) − f(S) ≤

∑
j∈T\S

fj(S). (6)

Lemma 2 Let X be a finite set and f : 2X → ℜ+ be a monotone non-
decreasing set function with f(∅) = 0 and elemental curvature α. Then for all
S ⊂ T ⊆ X, j ∈ X \ T , fj(S) ≥ 1

αr fj(T ), where r = |T \ S|.
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Proof For arbitrary S ⊂ T with T \ S = {j1, j2, . . . , jr}, we have,

fj(S) = f(S ∪ {j}) − f(S)

≥ 1
α

[f(S ∪ {j} ∪ {j1}) − f(S ∪ {j1})]

≥ 1
αr

[f(S ∪ {j} ∪ {j1} ∪ . . . ∪ {jr}) − f(S ∪ {j1} ∪ . . . ∪ {jr})]

=
1
αr

[f(T ∪ {j}) − f(T )].

(7)

Lemma 3 Let r ∈ {z ≥ 1 : z ∈ Z+}, β(r) = 1−αr

r(1−α) . Then β(r) is decreasing
with respect to r if α ∈ (0, 1) and increasing with respect to r if α ∈ (1, +∞).

Proof For all r ∈ {z ≥ 1 : z ∈ Z+} and α ∈ (0, +∞) \ {1},

β(r + 1) − β(r) =
1 − αr+1

(r + 1)(1 − α)
− 1 − αr

r(1 − α)

=
1

1 − α

αr(1 + r − rα) − 1
r(r + 1)

=
1

1 − α

γ(r)
r(r + 1)

,

(8)

where γ(r) = αr(1 + r − rα) − 1. For all r ∈ {z ≥ 1 : z ∈ Z+} take the first
derivative of γ with respect to α to obtain

γ′(α) = r(r + 1)(1 − α)αr−1. (9)

If 0 ≤ α ≤ 1, then γ′(α) ≥ 0 and γ(α) is non-decreasing with respect to α.
Similarly, if α > 1, then γ′(α) < 0 and γ(α) is non-increasing with respect
to α. Therefore, ∀r, γ(r) ≤ max γ = γ(1) = 0. Then β(r + 1) − β(r) ≤ 0 for
α ∈ (0, 1) and β(r + 1) − β(r) ≥ 0 for α ∈ (1, +∞).

Assume M = (X, I) is a matroid. The greedy algorithm commences by
setting G0 = ∅, then selects a set in I. At each step i = {1, 2, . . .}, the new
element selected is:

gi = arg max
j∈X\Gi−1

fj(Gi−1), (10)

where Gi = Gi−1 ∪ {gi} and Gi ∈ I.

Theorem 1 Let X be a finite set and f : 2X → ℜ+ a monotone non-
decreasing set function with f(∅) = 0 and elemental curvature α. Then the
greedy algorithm achieves a 1

1+µ approximation for any matroid M = (X, I),

where µ = α if 0 < α ≤ 1, and µ = αK(1−αK)
K(1−α) if α > 1, and K is the cardinality

of the largest maximal independent sets.
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Proof Let O be an optimal solution and G the greedy solution. Since M =
(X, I) is a matroid and f is non-decreasing, without loss of generality, we can
assume that O is a maximal independent set such that |O| = |G| = K (G is
a maximal independent set in I and all maximal independent sets have the
same cardinality). Write G = {g1, g2, . . . , gK} and let r = |O \ G|, so that
G = O if r = 0. Now suppose that r ̸= 0 and define OK = O. Then, from the
exchange property of matroids and the fact that GK−1 = {g1, g2, . . . , gK−1} is
in I, there exists a oK ∈ OK \ GK−1 such that GK−1 ∪ {oK} ∈ I. Here OK−1,
defined to be OK \ {oK}, is also in I by the hereditary property of matroids.
We now repeat this argument with OK−1 in place of OK and GK−1 by GK−2

and continue to define Oi (i = K − 1, . . . , 1) in the same way. This procedure
matches the elements of G and O. Note that this guarantees that Gi−1 ∪ {oi}
is in I. Let O \ G = {oi1 , oi2 , . . . , oir} and O ∩ G = {oir+1 , oir+2 , . . . , oiK

}. By
Lemma 1 and the non-decreasing property of f ,

f(O) ≤ f(G ∪ O) ≤ f(G) + β(r)
∑

j∈O\G

fj(G)

= f(G) + β(r)
r∑

s=1

fois
(G)

(11)

where β(r) =

{
1−αr

r(1−α) ; α ̸= 1

1; α = 1
. According to Lemma 2, we have,

f(O) ≤ f(G) + β(r)
r∑

s=1

αK−is+1fois
(Gis−1) (12)

≤ f(G) + β(r)
r∑

s=1

αK−is+1fois
(Gis−1) + β(r)

K∑
s=r+1

αK−is+1fois
(Gis−1)

(13)

≤

{
f(G) + αβ(r)

∑K
s=1 fois

(Gis−1); α ≤ 1
f(G) + αKβ(r)

∑K
s=1 fois

(Gis−1); α > 1
(14)

(13) is derived from the non-negative property of β(r), α and fois
(Gis−1).

In view of Lemma 3 and the definition of the greedy algorithm, we obtain

f(O) ≤

{
f(G) + αβ(1)

∑K
s=1 fois

(Gis−1);α ≤ 1
f(G) + αKβ(K)

∑K
s=1 fois

(Gis−1);α > 1

≤

{
f(G) + αβ(1)

∑K
s=1 fgis

(Gis−1); α ≤ 1
f(G) + αKβ(K)

∑K
s=1 fgis

(Gis−1);α > 1

=

{
f(G) + αβ(1)f(G);α ≤ 1
f(G) + αKβ(K)f(G);α > 1.

(15)
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Therefore,

f(G) ≥ 1
1 + µ

f(O), (16)

where

µ =

{
α; 0 < α ≤ 1
αK(1−αK)

K(1−α) ; α > 1.
(17)

Corollary 1 f(G) ≥ 1
2f(O) if f is a monotone non-decreasing submodular

function with matroid constraint (Fisher et al. 1978).

Remark 1

1. It is worth emphasizing that the proposed approximation bound 1
1+µ ob-

tained by the greedy algorithm is general in the sense that f does not
have to be a submodular function. The result provides a worst-case guar-
antee for the solution of the greedy algorithm with a general monotone
non-decreasing function under a general matroid constraint.

2. µ → ∞ when α → ∞. Additionally, lim
α→1+

µ = lim
α→1−

µ = µ(1) = 1 and µ is

continuous with respect to α ∈ (0,+∞).
3. For a given application, if f is a submodular function and the bound of

its elemental curvature α is known, our approximation ratio 1
1+α is tighter

than the existing result 1
2 . The latter occurs as the worst case (that is,

α = 1), for which point the elemental curvature is undefined.

3 The Bound 1 − ( α+...+αk−1

1+α+...+αk−1 )k

Theorem 2 Let X be a finite set and f : 2X → ℜ+ a monotone non-
decreasing set function with f(∅) = 0 and elemental curvature α. Then the
greedy algorithm achieves a 1 − ( α+...+αk−1

1+α+...+αk−1 )k approximation under a uni-
form matroid M = (X, I), where k is the cardinality of the solution.

Proof Let O = {o1, o2, . . . , ok} be the optimal k-element subset, and G =
{g1, g2, . . . , gk} the set chosen by the greedy algorithm. At the ith stage of the
greedy algorithm, with i ∈ {0, 1, . . . , k − 1}, according to Lemma 1 we may
write

f(O) ≤ f(O ∪ Gi) ≤ f(Gi) + β(ri)
∑

j∈O\Gi

fj(Gi), (18)

where

β(ri) =

{
1−αri

ri(1−α) ;α ̸= 1

1; α = 1
, ri = |O \ Gi|, and G0 = ∅.

By definition of gi+1, fgi+1(Gi) ≥ fj(Gi), (j ∈ X \ Gi, Gi ∪ {j} ∈ I). Hence

f(O) ≤ f(Gi) + β(ri)
∑

j∈O\Gi

fgi+1(Gi)

= f(Gi) + riβ(ri)fgi+1(Gi).
(19)
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For α ∈ (0, +∞), the function

rβ(r) =

{
1−αr

1−α , α ̸= 1,

r, α = 1

is increasing in r ∈ {1, . . . , k}. As a result, we obtain,

f(O) ≤ f(Gi) + β(k)kfgi+1(Gi). (20)

Let µ = β(k). It follows from the definition of fgi+1(Gi) that

f(Gi) =
i∑

j=1

fgj (Gj−1), (21)

and, for all i ∈ {0, 1, . . . , k − 1},

f(O) ≤
i∑

j=1

fgj (Gj−1) + µkfgi+1(Gi). (22)

Multiplying both sides of (22) by (1− 1
µk )k−1−i (i ∈ {0, 1, . . . , k − 1}) and

summing, we obtain

[1 − (
µk − 1

µk
)k]f(O) ≤

k∑
i=1

fgi(Gi−1) = f(G), (23)

where the coefficient of f(O) follows from

k−1∑
i=0

(1 − 1
µk

)k−1−i =
k−1∑
i=0

(1 − 1
µk

)i =
1 − (1 − 1

µk )k

1 − (1 − 1
µk )

= µk
(
1 − (

µk − 1
µk

)k
)
,

(24)

and the coefficient fgi(Gi−1) over {1, . . . , k} is achieved by

µk(1 − 1
µk

)k−i +
k−1∑
j=i

(1 − 1
µk

)k−1−j = µk(1 − 1
µk

)k−i + µk
(
1 − (1 − 1

µk
)k−i

)
= µk.

(25)

Finally, we note that

[1 − (
µk − 1

µk
)k] = 1 − (

α + · · · + αk−1

1 + α + · · · + αk−1
)k,

yielding

f(G) ≥ [1 − (
α + · · · + αk−1

1 + α + · · · + αk−1
)k]f(O). (26)

Corollary 2 f(G) ≥ (1− 1
e )f(O) if f is a monotone non-decreasing submod-

ular function with uniform matroid constraint (Nemhauser et al. 1978).
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Proof If f is a monotone non-decreasing submodular function, then 0 < α ≤ 1.
For any fixed k, 1 − ( α+···+αk−1

1+α+···+αk−1 )k is decreasing as a function of α ∈ (0, 1].

Therefore, 1 − ( α+···+αk−1

1+α+···+αk−1 )k ≥ 1 − (k−1
k )k, ∀k > 1; [1 − (k−1

k )k] → 1 −
1
e , ∀ k → ∞.

4 Application examples

Two application examples are presented in this section to demonstrate the use-
fulness of the proposed approximation bounds in different matroid constraints.

Example 1 concerns the case for α ≤ 1. Let the ground set be X = {1, . . . , n}.
∀S ⊆ X, define

f(S) =
1
n

n∑
i=1

(
1 −

∏
j∈S

(1 − pij)
)
, (27)

where pij ∈ [0, 1], ∀i, j ∈ X. Since for all S ⊂ X, s ∈ X \ S, fs(S) =
1
n

∑n
i=1 pis

∏
j∈S(1 − pij). It is easily verified that (27) is a monotone non-

decreasing submodular function. For all S ⊂ X, s, t ∈ X \ S,

fs(S ∪ {t})
fs(S)

=

∑n
i=1 pis

∏
j∈S(1 − pij)(1 − pit)∑n

i=1 pis

∏
j∈S(1 − pij)

≤ max
i,t∈X

(1 − pit).
(28)

Therefore, the elemental curvature α = 1 − mini,j∈X pij . By Theorem 2,
a greedy algorithm obtains a 1 − ( α+...+αk−1

1+α+...+αk−1 )k approximation of the op-
timal objective value if a uniform matroid constraint is imposed. Potential
applications of the submodular function (27) include the coverage-aware self-
scheduling in sensor networks (Lu and Suda 2003) and social network inference
problem (Kempe et al. 2005).

Example 2 concerns the case for α ≥ 1. This example deals with the applica-
tion of a greedy algorithm to the solution of a static Weapon Target Assign-
ment (WTA) problem. The WTA problem arises in the modeling of combat
operations where the total value of one’s own assets to be protected is maxi-
mized subject to a constraint on the number of weapons. Specifically, given a
set of offense targets N with the value of each target vn ≥ 0, n = 1, . . . , |N |
assume that a set of defensive weapons M is available to protect a set of assets
G with the value of each asset wk, k = 1, 2, . . . , |G|. The set of targets aimed
at each asset k is Hk, k = 1, 2, . . . , |G|. The probability that the nth target
destroys an asset to which it is aimed is assumed to be πn, n = 1, 2, . . . , |N |
and the probability that the mth weapon destroys the nth target is assumed
to be 0 ≤ pnm ≤ 1, n = 1, . . . , |N |, m = 1, . . . , |M |. The objective is to seek
a solution which can maximize the expected value of the surviving assets.
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Therefore, the objective function is considered to be the sum over all assign-
ment of one or more weapons to each target of the product of each asset value
and the survival probability, so that the underlying problem is the following
constrained maximization problem:

max
M1,M2,...,M|N|

|G|∑
k=1

wk

∏
n∈Hk

(
1 − πn

∏
m∈Mn

(1 − pnm)
)
,

s.t. Mn ∩ Ml = ∅, ∀n ̸= l, n, l ∈ N.

(29)

where Mn, n = 1, 2, . . . , |N | signifies the set of defense weapons assigned to
target n. The constraints in (29) imply that a weapon can assigned to at most
one target. It has been demonstrated by Lloyd and Witsenhausen (1986) that
the WTA is an NP-complete problem.

Define a ground set X = {(m,n)|n ∈ N, m ∈ M}, I = {S ⊆ X : |S| ≤
|M |∧ (@m, n1 ̸= n2 : (m,n1) ∈ S∧ (m,n2) ∈ S)}, and a function f on a subset
S ∈ I as

f(S) =
|G|∑
k=1

wk

( ∏
n∈Hk

(
1 − πn

∏
{m:(m,n)∈S}

(1 − pnm)
)
−
∏

n∈Hk

(1 − πn)

)
. (30)

Firstly, we note that M = (X, I) is a partition matroid. To see this, let
Xi = {(i, 1), . . . , (i, |N |)}, i = 1, . . . , |M |. Clearly, X = X1 ∪ X2 ∪ . . . ,∪X|M |.
According to the constraints in (29) that a weapon be assigned to at most one
target we conclude that ∀S ∈ I and Xi, |S ∩ Xi| ≤ 1. It follows that I is an
independent set family and M is a partition matroid.

Secondly, there is a one-to-one correspondence between the sets S and the
feasible solutions M1, M2, . . . ,M|N | for (29). Furthermore, the corresponding
solutions have identical values. Hence, (29) is equivalent to maxS∈I f(S). Next,
we show that (30) is a monotone non-decreasing function and its elemental
curvature α ≥ 1.

We note that f(∅) =
∑|G|

k=1 wk(
∏

n∈Hk
(1− πn)−

∏
n∈Hk

(1− πn)) = 0. Let
qnm = 1− pnm and ∀S ∈ I, s = (m1, n1) ∈ X \ S. Suppose that the target n1
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attacks the asset k1. We have

f(S ∪ {s}) − f(S)

=
|G|∑
k=1

wk

( ∏
n∈Hk

(1 − πn

∏
{m:(m,n)∈S∪{s}}

qnm) −
∏

n∈Hk

(1 − πn

∏
{m:(m,n)∈S}

qnm)
)

= wk1

∏
n∈Hk1\{n1}

(1 − πn

∏
{m:(m,n)∈S}

qnm)(1 − πn1

∏
{m:(m,n1)∈S∪{s}}

qn1m)

− wk1

∏
n∈Hk1\{n1}

(1 − πn

∏
{m:(m,n)∈S}

qnm)(1 − πn1

∏
{m:(m,n1)∈S}

qn1m)

= wk1

∏
n∈Hk1\{n1}

(1 − πn

∏
{m:(m,n)∈S}

qnm)πn1pn1m1

∏
{m:(m,n1)∈S}

qn1m

≥ 0 (31)

The result of (31) indicates that f is a monotone non-decreasing function with
f(∅) = 0.

The elemental curvature α of f is calculated as follows. For each S ∈ I, s =
(m1, n1) ∈ X \ S, t = (m2, n2) ∈ X \ S, and s ̸= t. Suppose that the target n1

attacks the asset k1 and the target n2 attacks the asset k2, respectively. The
marginal difference ratio for computing α is derived as three cases:
(1) If n1 = n2, i.e., n1, n2 are the same one target, then k1 = k2,

f(S ∪ {s} ∪ {t}) − f(S ∪ {t})
f(S ∪ {s}) − f(S)

=
wk1

∏
n∈Hk1\{n1}(1 − πn

∏
{m:(m,n)∈S} qnm)πn1pn1m1

∏
{m:(m,n1)∈S∪{t}} qn1m

wk1

∏
n∈Hk1\{n1}(1 − πn

∏
{m:(m,n)∈S} qnm)πn1pn1m1

∏
{m:(m,n1)∈S} qn1m

= 1 − pn2m2 .

(32)

(2) If n1 ̸= n2 (the different two targets) and k1 = k2 (these two targets attack
the same asset),

f(S ∪ {s} ∪ {t}) − f(S ∪ {t})
f(S ∪ {s}) − f(S)

=
wk1

∏
n∈Hk1\{n1}(1 − πn

∏
{m:(m,n)∈S∪{t}} qnm)πn1pn1m1

∏
{m:(m,n1)∈S} qn1m

wk1

∏
n∈Hk1\{n1}(1 − πn

∏
{m:(m,n)∈S} qnm)πn1pn1m1

∏
{m:(m,n1)∈S} qn1m

=
1 − πn2

∏
{m:(m,n2)∈S∪{t}} qn2m

1 − πn2

∏
{m:(m,n2)∈S} qn2m

=
1 − πn2

∏
{m:(m,n2)∈S} qn2mqn2m2

1 − πn2

∏
{m:(m,n2)∈S} qn2m

≥ 1.

(33)
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Note that by (33), f is not submodular.
(3) If n1 ̸= n2 (the different two targets) and k1 ̸= k2 (these two targets attack
two different two assets),

f(S ∪ {s} ∪ {t}) − f(S ∪ {t})
f(S ∪ {s}) − f(S)

=
wk1

∏
n∈Hk1\{n1}(1 − πn

∏
{m:(m,n)∈S} qnm)πn1pn1m1

∏
{m:(m,n1)∈S} qn1m

wk1

∏
n∈Hk1\{n1}(1 − πn

∏
{m:(m,n)∈S} qnm)πn1pn1m1

∏
{m:(m,n1)∈S} qn1m

= 1.

(34)

From (32), (33) and (34), we conclude that

f(S ∪ {s} ∪ {t}) − f(S ∪ {t})
f(S ∪ {s}) − f(S)

≤
1 − πn2

∏
{m:(m,n2)∈S} qn2mqn2m2

1 − πn2

∏
{m:(m,n2)∈S} qn2m

≤ 1 − πn2qn2m2

1 − πn2

. (35)

From (35), we obtain that the elemental curvature α = maxn∈N,m∈M
1−πnqnm

1−πn
.

Both πn and qnm are probabilities, which indicates that α ≥ 1.

5 Conclusions

In this paper, we have described how the greedy algorithm achieves a 1
1+µ ap-

proximation for a monotone non-decreasing function with a general matroid
constraint, where µ = α, if 0 < α ≤ 1; µ = αK(1−αK)

K(1−α) , if α > 1. The parameter
α represents the “elemental curvature” of f , and K is the cardinality of the
largest maximal independent sets. We also show that a greedy algorithm can
find a solution with a 1 − ( α+···+αk−1

1+α+···+αk−1 )k approximation for a uniform ma-
troid, where k is the cardinality of the solution. Demonstrative examples are
presented showing the usefulness of these approximation bounds: 1) the ap-
proximation bound for maximizing monotone non-decreasing functions using
a greedy algorithm is expressed in a unified framework; 2) a tighter approxi-
mation can be obtained when the bound of α is known.
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