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25 Abstract. Information exchange is a fundamental communication prim-
26 itive in radio networks. We study this problem in multi-channel single-
27 hop networks. In particular, given k pieces of information, initially stored
28 in k nodes respectively, the task is to broadcast these information pieces
29 to the entire network via a set of F channels. We develop efficient dis-
30 tributed algorithms for this task for the scenario where both the identities
31 and the number k of the initial information holders are unknown to the
32 participating nodes.
33 Assuming nodes with collision detection, we present an efficient random-
34 ized algorithm for unrestricted information exchange, where multiple in-
35 formation items can be combined into a single message. The algorithm
36 disseminates all the information items within O(% + Flog®n) times-
37 lots with high probability. To the best of our knowledge, this is the first
38 algorithm that breaks the 2(k) lower bound for unrestricted informa-
39 tion exchange if only a single channel is available. This result establishes
40 the superiority of multiple channels for the task of unrestricted infor-
mation exchange. Moreover, for restricted information exchange, where
j; each message can carry only one information item, we devise a random-
43 ized algorithm that completes the task in O(k + @ +logn) timeslots.
44 When k is large, both algorithms are asymptotically optimal, as they can
45 reach the trivial lower bounds of £2(%) and £2(k) for unrestricted and
16 restricted information exchange, respectively.
47
48 1 Introduction
49
50 Today, most wireless devices, such as those using wireless LAN or Bluetooth,
g% can use multiple channels over their allocated radio spectrum to communicate.
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Devices using the 802.11 standard have access to around a dozen channels [1],
whereas Bluetooth devices have access to around 75 [3]. A natural question then
arises: How much faster can we send information around if indeed we have ac-
cess to multiple communication channels? Surprisingly, despite the amount of
work done so far on multiple access channels for the problem of transmission
scheduling, the exact benefits of multiple communication channels for the fun-
damental task of information dissemination, or their characterization, remain
largely unexplored.

In this paper we address this missing piece—the effects of multiple channels
on the performance of information dissemination—in the theory of wireless net-
work communication. We consider the task of information dissemination (also
called information exchange) because it is the most fundamental one of all prim-
itive operations. The task is to disseminate k information items, initially stored
at k different nodes, to all the nodes in the network via a number of shared
communication channels. As the channels are shared, collision of transmissions
is a common phenomenon. When a collision occurs, none of the transmissions
involved can be successful. The goal of an effective algorithm for information
exchange is to minimize the time required to disseminate the information by
avoiding collisions as much as possible.

2 Our Results

We study information exchange in a synchronized single-hop communication
network, where each node can directly communicate with every other node.
Single-hop networks on one hand represent our first step towards solving the
problem for a wide range of networking scenarios, and on the other hand they
can be practical as many ad-hoc wireless networks formed with a small physical
space are most likely single-hop. The communication takes place through F > 2
available channels. In each timeslot, each node can choose one of the F channels,
and then to either listen to or transmit a message using the chosen channel. We
assume that nodes can detect whether or not a collision has taken place. But
nodes have no prior knowledge about which nodes possess the information items
initially, nor the number k.

We first give an efficient distributed algorithm for unrestricted information
exchange. A message is unrestricted if there is no bound on the number of infor-
mation items that it can carry. Our algorithm can disseminate all information
items to all nodes in O(% + Flog? n) timeslots with high probability*. This result
demonstrates the superiority of multiple channels over a single one for the task
of information exchange when multiple information items can be combined into
a single message. Note that in order to accomplish information exchange, each of
the k information item holders needs to transmit a message to at least one other
node, and so if only one channel is available, we have a lower bound of (k)
on disseminating all information items. In addition to showing the advantage

4 In this context, we say an event occurs with high probability if its probability of
occurrence is 1 —n~¢ for a constant ¢ > 0.
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of multiple channels, we prove that our algorithm is asymptotically optimal for
k = 2(F2log?n), by deriving an (%) lower bound valid for every unrestricted
information exchange algorithm using F channels.

We then present a randomized algorithm for restricted information exchange
where each message can only contain one information item. Our algorithm can
accomplish information exchange in O(k + @ + logn) timeslots with high
probability, which improves the best known O(k + log® n) result [9] for a single-
channel case when k is small. A trivial lower bound for solving information
exchange is £2(k), since in each timeslot, a node can only receive at most one

message. The proposed algorithm is asymptotically optimal when k = Q(@ +
logn).

In the following sections, we first give an overview of the related work, in
Section 3. The network models are presented in Section 4. We describe the
unrestricted and restricted information exchange algorithms in Section 5 and
Section 6 respectively. We conclude the paper in Section 7.

3 Related Work

The problem of restricted information exchange on multiple channels is not
new [15,14]. But these works have a different objective: they target at asymp-
totically optimal solutions using as few channels as possible. In [15], Holzer et al.
presented both randomized and deterministic asymptotically optimal algorithms
for restricted information exchange when there are enough available channels.
Specifically, for k& < /logn and logn < k < % with an elaborately set
constant 3, they gave randomized algorithms which can disseminate all informa-
tion items in O (k) timeslots with high probability using O(n'/?) and O(n? 18 #/k)
channels, respectively. If there are n channels available, a deterministic algorithm
was proposed to accomplish information exchange in O(max{k, logn}) timeslots.
The deterministic result was improved in [14] which achieves asymptotically op-
timal time bound using O(n'°8*/¥) channels when k < & logn and log' ™ (n/k)
channels otherwise. An 2(n?(1/k)+logi 7) Jower bound was also derived for any
asymptotically optimal deterministic information exchange algorithm when the
message size is restricted. With the assumption that nodes can listen to and
receive messages from multiple channels concurrently, Shi et al. [21] gave an
O(log kloglog k) time randomized information exchange algorithm using ©(n)
channels. Furthermore, in a very recent paper [8], Daum et al. gave a random-

log? n

ized protocol with time complexity O(klogn+ =5 +lognloglog n) when there
are F available channels. In contrast, very few works addressed unrestricted in-
formation exchange on multiple channels. To the best of our knowledge, there
is only one result, which is given in [8]. Their proposed randomized algorithm
can accomplish information exchange in O(k + @ + lognloglogn) timeslots
with high probability. All the above works did not try to study the benefit of
collision detection when it is used in solving the information exchange problem
on multiple channels.
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Information exchange on a single channel has been very well studied. There
is a long list of papers addressing this problem since 1970s [4, 13, 20]. In single-
channel networks, information exchange is also known as contention resolution or
k-selection. Previous studies mainly focus on the restricted information exchange
with or without collision detection. Assuming collision detection as in here, a
randomized adaptive protocol with expected running time of O(k + logn) was
presented by Martel in [19]. By making use of the expected O(loglogn) selection
protocol in [22], Kowalski [17] argued that the protocol in [19] can be improved
to O(k + loglogn) in expectation. In [22], Willard also gave an 2(loglogn) ex-
pected time lower bound for fair selection protocols. When requiring high prob-
ability results, the best known randomized algorithm was given in [9], which can
solve the k-selection problem in O(k 4 log®n) rounds without assuming colli-
sion detection. This protocol is asymptotically optimal for k € 2(log®n) given
the trivial lower bound (2(k). Furthermore, an 2(logn) expected time lower
bound for randomized k-selection protocols is implied by the result in [18] on
the expected time needed to get the first message delivered without collision in
a radio network. In a recent work [10], by assuming that the channel can provide
feedback on whether a message is successfully transmitted, an O(k) randomized
protocol was proposed even without knowing n. However, the error probability
that can be incurred by this protocol is %, rather than % Concerning deter-
ministic solutions, with collision detection and making use of the technique of
tree algorithms, adaptive protocols for k-selection were presented with running
time O(klog(n/k)) in [4,13,20]. A lower bound of £2(k log,, n) is shown in [12] for
this class of protocols. Furthermore, oblivious protocols in which the sequence of
transmissions of a node is independent of the received messages have also been
studied in [16, 7, 17]. There are also some other work focusing on dynamic packet
arrivals, e.g., in a stochastic model [11], in adversarial queuing models [2,5,17],
and message arrivals determined by an adversary [23].

4 Model and Preliminaries

Consider a single-hop network with n nodes, i.e., each pair of nodes can directly
communicate with each other. There are F > 2 available channels. We use
[F] :={1,2,---,F} to denote these channels. Time is synchronized and divided
into slots, and the nodes start executing the algorithm at the same time. In each
timeslot, each node can select one of the F channels and use this channel to
either listen or transmit. When a node v listens to a channel C, it can receive a
message if and only if there is only one node transmitting on channel C. When
two or more nodes transmit on the same channel, a collision occurs and none
of these transmissions can be successful. Specifically, a node that operates on
a channel in a given timeslot learns nothing about events on other channels. It
is assumed that nodes can detect collisions, i.e., they can distinguish between
collision and silence. Note that with collision detection, a transmitting node can
know whether the transmission succeeds or not.
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We next introduce some definitions and concrete assumptions about the in-
formation exchange problem.

Definition 1 (Information Exchange). In a wireless network consisting of
n nodes, there are a subset of k < n nodes, each of which is given a distinct piece
of information. The information exchange problem is to disseminate all these k
information items to every node in the network in the fewest timeslots.

It is assumed that the subset of nodes which are assigned information items
is determined by an adversary before the first time slot. We also assume that
nodes have no knowledge about the number &, nor the subset of nodes possessing
the information items. The only prior knowledge given to nodes is a polynomial
upper bound on the network size n. As shown in the subsequent sections, an
polynomial estimate only affects the time complexity of the proposed algorithms
by a constant factor, so we simply use n to denote the estimate. It is not difficult
to provide nodes with this estimate in reality.

We study two types of information exchange: unrestricted and restricted. In
unrestricted information exchange, a node can transmit a message containing
multiple information items in each timeslot. In the restricted case, messages are
of bounded size: precisely, we assume that each message can only carry one
information item.

Before concluding this section, we state the following lemmas which will be
useful later.

Lemma 1. Fori=1,2,--- ,n,z; €0, %}, it holds that

Lisw o T Lisn g
(Z)Z':lxz <[l -a) < (D)=
i=1

Lemma 2. [Chernoff Bound] For a parameter a > 0, let X1,..., X, be inde-
pendent or negatively associated non-negative random variables with X; < a. Let

X=X1+4+-+X, and p = E[X]. For § >0, it holds that

0 n/a

Furthermore, for every § € (0,1),

=

n/a
PT(X < (1 — 6)/,1,) < ((165)15> < 6_62“/2‘1_

5 Unrestricted Information Exchange Algorithm

In this section, we present a distributed algorithm for unrestricted information
exchange. We use the notation F' = F — 1.
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5.1 Algorithm

In the algorithm, the information items are first collected to a small number
of nodes through the first I’ channels, and then these nodes would disseminate
the information to all the other nodes by transmitting on the F'+ 1-th channel.
In particular, after the algorithm has started, each active node (possessing an
information item) tries to send its message to other active nodes through a
channel selected from the first F' channels. Once a node has successfully sent a
message that contains its own information item and perhaps also other received
information items to other active nodes, it becomes inactive and only listens.
While a node finds that it is the only one choosing a particular channel in
the round, it starts broadcasting its messages to all other nodes on the F'+ 1-th
channel. Since each node only becomes inactive after transmitting its information
to other active nodes or broadcast a message to all others, all information items
will finally get broadcast on channel F'+ 1, which ensures the correctness of the
algorithm.

During the algorithm, nodes may stay in four states: the information col-
lection state C', the broadcast state B, the adjusting state A and the inactive
state I. Initially, the state of nodes storing information items is set as C, and
others stay in state I during the algorithm execution. Nodes in state I do noth-
ing except listening on channel F' + 1. The algorithm execution is divided into
phases. A phase consists of ©(logn) rounds which contains two timeslots each.
Between any two consecutive phases, there is an extra timeslot, called the ad-
justing timeslot, which is set for adjusting the transmission probability of nodes
in state C. We next introduce the operations in states C'; B and A in more
detail. The pseudo-code is given in Algorithm 1.

Information Collection State C': State C' is when a small number of
nodes would collect their information items. At the beginning of the algorithm,
all active nodes (that have a piece of information) are in state C. In each round
of each phase, with probability 1/2, each node in state C' selects channel F + 1
on which it listens for receiving messages transmitted on this channel. With
the remaining probability, nodes select an operating channel from the first F’
channels uniformly at random. In the first timeslot of the round, nodes transmit
with specified probability. In the second timeslot of the round, nodes transmits
on the selected channel. The second timeslot is to determine whether there are
multiple nodes in a channel or not, which is the condition for a node to change
from state C to state B, which we will describe later. In the adjusting timeslot,
all nodes in state C listen on channel F' + 1.

The transmission probability of nodes in state C' is initially set as % If there
is no node in state A transmitting on channel F'+1 in the adjusting timeslot after
each phase, all nodes in state C double their transmission probability, or other-
wise they would leave the transmission probability unchanged. The transmission
probability will no longer be changed after it is increased to 1/2.

When a node in state C receives a message, it combines the received informa-
tion items and its original message into a new one, then transmits the updated
message during subsequent execution of the algorithm.
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Once a node v in state C' transmits its message successfully on the selected
channel in the first timeslot of a round, v will change its state to B or I according
to whether a collision is detected or not in the subsequent timeslot. If there is a
collision, i.e., other nodes in state C' which have received v’s message selecting
the same channel, v enters state I. Otherwise, v enters state B. After each phase,
nodes that received at least 12logn messages in the last phase transit to state
A in the adjusting timeslot.

Adjusting State A: In each adjusting timeslot, nodes in state A transmit
on channel F' + 1 and then change its state to state C' in the subsequent phase.

Broadcast State B: Each node in state B transmits on channel F' + 1 with
probability m for wF log® n timeslots, where ¢; is a constant defined in
Algorithm 1 and w is a large enough constant ensuring high probability results.

With probability 1 — m, each node listens on channel F' + 1.

5.2 Analysis

We show below the correctness and the efficiency of Algorithm 1. Specifically,
our algorithm can accomplish information exchange in O (% + Flog? n) timeslots
with high probability. It is also proved that any information exchange algorithm
needs Q(%) timeslots even if collision detection is assumed. This lower bound
shows the asymptotic optimality of the proposed algorithm for large k.

We use C, A, B to denote the set of nodes in the corresponding states, and
Pc and Pp to denote the sum of transmission probabilities of nodes in state C
and B, respectively.

We start the proof by first showing that the probability adjusting strategy in
Algorithm 1 ensures that Po can be upper bounded for a sufficiently long time
which is crucial for bounding the time the nodes spend in state C.

Lemma 3. In the first O(n?) rounds of the algorithm’s execution, with proba-
bility 1 — O(n™1), Po < F/2.

Proof. Assume that ¢ is the first round such that the lemma does not hold. Since
the transmission probability may only be increased in adjusting timeslots, ¢ must
be the first round of a certain phase. Let this phase be phase i. By the initial
transmission probability setting for nodes in state C, ¢ > 1. In the adjusting
timeslot before phase i, the transmission probability can be at most doubled.
The transmission probability is in the interval (%, g] during phase ¢ — 1. Next
we lower bound the number of messages which a node in C can receive on the
first F' channels during phase 7 — 1.

In each round of phase i — 1, a node v selects a channel from the first F

channels uniformly at random with a total probability 1/2. In a round j during
phase ¢ — 1, assume that v chooses channel k. Denote P, as the probability that
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Algorithm 1 Unrestricted Information Exchange

Initially, ¢; = 3072;1 = ¢; logn;p. = %; count = 1;phase = 1; MsgNum =0
State C

1: if count =1+ 1 then

2:  listen on Channel F' + 1;

3: count = 1;phase = phase + 1;M sgNum = 0
4: if there is not any transmission then
5: pe = min{2p., %}
6: end if
7: else
8:  uniformly at random pick ¢ € [0, 1]
9: if ¢ €[0,1/2] then
10: uniformly at random select a channel from {1,2,..., F'}
11: if count is odd then
12: transmits with probability p. on the selected channel
13: if received a message then
14: MsgNum = MsgNum + 1
15: end if
16: else
17: transmit on the selected channel
18: if successfully sends a message in the last timeslot then
19: if detects a collision then
20: state = 1
21: else
22: state = B;count = 1; MsgNum =0
23: end if
24: end if
25: if count =1 and MsgNum > 12logn then
26: state = A
27: end if
28: end if
29:  else
30: listen on Channel F' + 1
31: end if
32: count = count + 1
33: end if
State A

34: transmit on Channel F' + 1;

35: state = C; count = 1; phase = phase + 1; MsgNum = 0
State B

36: for wF log? n timeslots do

37:  transmits with probability 1/4¢;F logn

38: end for
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v receives a message in round j. Then

P.= 1_pc Z Pc - H (1_pc 2_1F)

uGC\{'u} weC\{u,v}

2 Z De * 2F )Ewgc De- %

uEC’\{v} (1)

1 1 F. 1

> = ch oF 1 I; 2

ueC

1
>
64

In other words, in each round of phase i — 1, with constant probability, v
will receive a message. In expectation, v can receive 24logn messages. By the
Chernoff bound in Lemma 2, during phase ¢ — 1, v can receive at least 12logn
messages with probability 1 — n~3. Then in the adjusting timeslot after phase
i — 1, v joins state A and transmits on channel F' + 1. All nodes in C' does
not change the transmission probability in the subsequent phase. So in round ¢,
P < g with probability 1 —n ™2, which contradicts the assumption on t. None
of the first O(n?) rounds are the first violating one with probability 1 —O(n™1).

O

For nodes in state C, we call a phase an increasing one if the transmission
probability is doubled after that, and otherwise an unchanging phase. In the
following lemma, we present a sufficient condition for a phase to be increasing,
with which we can start bounding the time for nodes in state C.

Lemma 4. For a phase during which Po <
probability at least 1 —n =2

128, it is an increasing phase with

Proof. Assume that phase i satisfies the condition. We only need to show that
there is not any node joining state A after phase i, i.e., each node in C re-
ceives less than 12logn messages during phase i. Consequently, after phase i,
the transmission probability of nodes in C' is doubled, which completes the proof.

In each round of phase i, the probability of a node v in state C receiving a
message is

1 1 1
(1=pc) Z pc'* H (1=pe- 2F><PC ﬁgﬁ (2)
ueC\{v} weC\{u,v}

Then during phase i, node v can receive 6 log n messages in expectation. Using
the Chernoff bound in Lemma 2, the number of messages v received is less than
12logn with probability 1 —n~3. Each node receives less than 12logn messages
during phase 3 with probability 1 —n 2. In other words, with probability 1—n"2,
there will not be a node joining state A after phase i, and nodes in C' will double
the transmission probability. ad
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We next bound the time that nodes spend in state C'. Let 71 be the first phase
at the beginning of which Po > 128 Let is be the first phase at the beginning
of which |C| < 3¢ F'logn. We divide the execution of the algorithm for nodes in
state C' into two stages by is. Stage 1 consists of phases from the beginning to
phase io — 1 and Stage 2 consists of the rest.

Lemma 5. With probability 1 — O(n~"), Stage 1 takes at most O(% + log? n)
rounds.

Proof. Let j; = min{i; — 1,42 — 1}. Then we can prove the following result.
Claim. With probability 1 — O(n™1), j; € O(logn).

Proof. By the definition of j;, in each round of a phase j with j < j1, Po < 128
and there are at least 3¢;F'logn nodes in C. Then by Lemma 4, a phase j with
j < j1is an increasing phase with probability 1—n"2. In other words, after phase
j, the transmission probability of nodes in state C' is doubled. Furthermore, since
at the beginning of phase j, |C| > 3¢;F logn, and at most ¢;F logn nodes in C
change their states in phase j, Po can be decreased at most by a factor of %
Denote P¢ as the sum of transmission probability of nodes in C' at the beginning
of a phase i. Then, after phase j, Péﬂ > %Pé -2 = %Pé. Thus, with probability
1 — O(n™1), after at most O(logn) phases, either the number of nodes in C
decreases to less than 3¢;F'logn, or Po will exceed 128, which completes the
proof. a

If i3 < 4y, the lemma has been proved by the above claim. We assume that
i1 < i3. We divide Stage 1 into two substages by i;. Substage 1 consists of
phases from the beginning to phase i; — 1 and Substage 2 consists of the rest
phases in Stage 1. By the above claim, Substage 1 contains at most O(log2 n)
timeslots with probability 1 — O(n~!). So we only need to bound the time for
Substage 2. Before that, we prove a crucial claim which shows a lower bound for
P, as follows.

Claim. In the first O(n) phases of Substage 2, with probability 1 — O(n=2),
Pe z 288

Proof. Assume that in Substage 2, phase j is the first one during which there is
a round such that Po < 288 By the definition of iy, it is easy to See that in each
phase of Substage 2, Po can be decreased by at most a factor of by which it
is easy to get that j > i1, since in each round of phase i1, Po > 192
also get that in each round of phase j —1, Po < 128 Phase j — 1 is an increasing
phase with probability 1 — n~2 by Lemma 4. Note that P > 288 in each round
of phase j — 1, since phase j 1s the first one violating the lower bound on Pc.
Thus, with probability 1 —n~¢, in any round of phase j, Pc > 2- 288 % > %,
which contradicts the assumptlon of phase j. With probability 1 — O(n~!), any
one of the first O(n) phases in Substage 2 is not the first one violating the lower
bound on Pc. O

We can

With the above claim, we are ready to bound the time for Substage 2.
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Claim. With probability 1 — O(n™1), iy — iy € O(Flogn)

Proof. By Lemma 3 and the above claim, in any round of the first O(n) phases
in Substage 2 (if Substage 2 contains so many phases), Pc € [%, g} with
probability 1 — O(n~!). With this bound in hand, we next show that in each
phase of Substage 2, the number of nodes in C is decreased by 2(F logn).

In a round r of a phase j with ¢; < j < min{i; + O(n), iz — 1}, the expected

number of nodes in C transiting to state B or [ is

N Z 5 Dc H 1*72%)

UEC weC\{v}

1 1 Pe.
> Z 5pc . (E)Zwec 2F
veC (3)

1
ZZZPC

velC
F

>_-
— 1152

During phase j, the number of nodes in C' is decreased by at least F'logn.
Using the Chernoff bound, the decreasing number is at least Q(Flog n) with
probability 1 —n~2. With probability 1 —n~!, after at most O( Flog n) phases in
Substage 2, the number of nodes in state C decreabes to be less than 3¢ Flogn,
ie,iy—iy € O(ﬁgn). This result is obtained based on Lemma 3 and the above
claim. Considering the error probability of these two results and by the union
bound, the claim is proved. a

Since each phase contains ©(logn) timeslots, the lemma is proved by above
claims. a

In the following Lemma, we bound the time needed for Stage 2.

Lemma 6. With probability 1 —O(n~1), Stage 2 takes O(F logn+log® n) times-
lots.

Proof. At the beginning of Stage 2, it is easy to see that there are at most
4¢;F'logn nodes in C. During each unchanging phase of Stage 2, 2(logn) nodes
in C transit to state B or I. So there are at most O(F') unchanging phases. After
O(F +logn) phases, each node in C' will have constant transmission probability
1/2. In each round of the subsequent phase, by noting that Lemma 3 still holds,
the probability of a node v in state C' sending a message successfully on the
selected channel is %pc HuEC\{v}(l - %pc) > %. During this phase, with prob-
ability 1 —n~!, each node in C' will transmit a message successfully and then
joins state B or I. Combining everything, with probability 1 — O(n~1), Stage 2
takes O(F logn + log® n) timeslots. O

By Lemma 5 and Lemma 6, we have upper bounded the time needed for
nodes in state C'. To bound the running time of the algorithm, we still need to
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bound the execution time for nodes in state B. We first give an upper bound on
the number of nodes in state B.

Lemma 7. There are at most 4c;F'logn nodes joining state B with probability
1-0(n™1).

Proof. The lemma is proved by showing that there are not nodes joining state
B in Stage 1. Noting that there are at most 4¢;F logn nodes in C in Stage 2,
the lemma is proved.

By the algorithm, a node enters state B only if in a round, it is the only node
selecting a channel from {1,..., F'}. In a round of Stage 1, since there are more
than 2¢;F'logn nodes in C, there is at least 2¢; logn nodes in C' selecting each
channel in expectation. Then for a channel j, using the Chernoff bound, it is easy
to show that with probability 1 —n 3, there are at least two nodes on j. This is
true for all channels with probability 1 —n~2, which means that with probability
1 — n~2, there is not a node joining state B in this round. By Lemma 5, with
probability 1 — O(n~1), Stage 1 has at most O(% + log® n) rounds. Thus, with
probability 1 —O(n™1), in each round of Stage 1, there are not nodes in state C
joining state B, which completes the proof. a

Lemma 8. With probability 1 — O(n™1), each node in state B can successfully
send its message to all other modes on channel F + 1 in O(Flog2 n) timeslots.

Proof. In each timeslot except for the adjusting timeslot, for a node v in B,

the probability that v is the only transmitting node on channel F' 4+ 1 is at

1 1 1 2 e
least mnueB\{v}(l - 4chlogn) > Toariogn- After wFlog”n timeslots,

by noting the listening probability of each node on channel F' 4+ 1 being at
least 1/2, the probability that a node u can receive the message from v is at

least 1 — (1 — 5 - m>wFlog2n > 1—n"3if wis a large enough constant.
The probability that all nodes can receive the message v sends with probability
1 —n~2. Then by Lemma 7, with probability 1 — O(n~!), each node in state B

can send its message to all other nodes. a

Theorem 1. The information exchange can be accomplished after executing Al-
gorithm 1 for O(%+}'log2 n) timeslots with probability 1—O(n~1). Furthermore,
any information exchange algorithm takes at least Q(%) timeslots.

Proof. The running time of Algorithm 1 can be obtained by Lemmas 5, 6 and
8.

By the algorithm, each node in state C' becomes inactive only if it transmits
its message to at least one other node in state C. Nodes in state C will finally join
state B if they do not become inactive, and each node in state B can broadcast
its message to all nodes with probability 1 — O(n~!) by Lemma 8. So each
information item can be disseminated to all nodes with probability 1 — O(n™1!)
during the algorithm’s execution.

The lower bound is obtained by noting that each active node needs to trans-
mit its message to at least one other node and in each timeslot, at most F nodes
can send their messages successfully.
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6 Restricted Information Exchange Algorithm

In this section, we propose a randomized distributed algorithm for restricted
information exchange, where each message can carry only one information item.
Again, we define F' = F — 1 and denote the F' channels as {1,2,--- , F'}. The
F + 1-th channel is used as a special broadcasting channel.
Without loss of generality, we assume F' < logn. Otherwise, we only use the
first logn + 1 channels and ignore the others. For simplicity, we assume that
logn is an integer and F' divides logn.

6.1 Algorithm

Our algorithm uses the first ' channels to reduce the number of collisions
on channel F' + 1. In particular, nodes first try to broadcast their messages on
a channel selected from the first F' channels. Only those that successfully sent
messages on the selected channels will broadcast on channel F' 4+ 1. By doing
S0, in any timeslot, the number of nodes simultaneously transmitting on channel
F 41 is reduced to an acceptable level, such that there is a high probability that
one of these nodes can send its message to all the other nodes. The details are
given in Algorithm 2.

In the algorithm, nodes may be in two states: the active state A and the
inactive state I. Initially, nodes possessing a message to broadcast enter the
active state A, and the others stay in state I. After transmitting the message
successfully, an active node will change its state to I. Nodes in state I do nothing
except listening on channel F' + 1 for receiving messages.

The algorithm’s execution is divided into phases. Each phase consists of
| = alogn rounds, and each round has two timeslots, where « is a large enough
constant for ensuring high probability results. The first slot C' is used for com-
petition (competing for the chance to broadcast on channel F' + 1), and the
second slot B for broadcasting. Nodes having sent their messages successfully on
selected channels in slot C will transmit their messages in the subsequent slot B
on channel F + 1. In slot C of each round, each node in state A chooses one of
the first F' channels according to an exponential probability distribution. After
choosing a channel, nodes listen with constant probability p; = % and broad-
casts with probability 1 — p;. Nodes that have successfully transmitted (with
no collision) on selected channels in slot C' switch status to broadcast. In the
subsequent slot B, all nodes with status broadcast broadcast their messages on
channel F' + 1. At the same time, all other nodes listen on channel F' + 1. Thus,
we guarantee that the message can be received by all nodes if there is exactly one
node transmitting. Once a node successfully sends its message to all other nodes
(with no collision), it changes its state to I; otherwise, it switches its status back
to listen and goes on executing the algorithm. ‘

The initial probability of choosing channel i is set as % for1 <i¢ < F.
After each phase, the selection probability is adjusted based on the number of
successfully transmitting nodes on channel F' + 1 in the phase. If there are less
than 12logn messages having been successfully transmitted on channel F + 1,
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Algorithm 2 Restricted Information Exchange

State: A - active, I - inactive
Slot: C - competition, B - broadcast

1:

9:
10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

l=alogn;ca =
N, = 0; count = 0; MsgNum = 0; status = listen; slot = C
if have a message to broadcast then

2logn
F

state = A
else

state = 1
end if

while state # I do
count = count + 1
if slot = C then
uniformly at random pick: ¢ € [0,1)
Q = max{i : ¢ > 217 . 2F/2DNo /(4p)}
if @ >0 and Q < F then
Listens on channel Q with probability p; or broadcast on channel @) other-
wise
end if
if broadcasts and detects no collision then
status = broadcast
end if
slot = B
end if
if slot = B then
if status = broadcast then
broadcasts the message on Channel F' + 1
if detects no collision then

state = 1
end if
status = listen

else
listens on Channel F' + 1
if received a message then
MsgNum = MsgNum + 1
end if
slot = C
end if
end if
if count = [ then
if MsgNum < 12logn then
Np =min{N, + 1,ca}
end if
count =0
end if
end while
Listen on channel F' + 1
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the selection probability for each channel increases by a multiplicative factor 2%;
otherwise, the selection probability stays unchanged. Similar to Algorithm 1, we
say a phase is increasing if the increasing condition for selection probability is

satisfied, and unchanging otherwise. Then after c4 = 21"% increasing phases,
the selection probability for channels F, FF—1, F —2,--- ,11is i, %7 1173’ cee QF%,

respectively. Then the selection probability will not be changed any more. Note
that there are k messages in total which will be broadcast on channel F' + 1, so

at most O(E}Cn) increasing phases will occur.

6.2 Analysis
In the following we prove the correctness and efficiency of Algorithm 2.

Theorem 2. With probability 1—O(n~1), Algorithm 2 can solve the information
exchange problem in O(k + @ +logn) timeslots.

Without confusion, we also use A to denote the set of nodes in state A. For
a channel m with 1 < m < F, we denote the probability that a node u chooses
m as P,(m), and let P, = > ., P.(m) be the sum of the probability of active
nodes choosing channel m.

We call a round successful if there is exactly one node switching status to
broadcast (successfully transmitting on the selected channel) in slot C. Note
that only nodes with status broadcast can broadcast in slot B, so the successful
round also means there is exactly one node broadcasting in slot B. We give a
sufficient condition for the occurrence of a successful round.

Lemma 9. If Pp € [%,QF_2] in a round r, then r is successful with constant
probability.

Proof. By the setting of the channel selection probability, it holds that Pr =
2Pp_1 = 22Pp_5 = --- = 2871 P, Then we have P,, ¢ [2"~27F 2m=2] Thus,
there exists a channel A such that Py € [4,1). Let A} be the event that only
node ¢ transmits on channel X\. Then

Pr(Ay) = (1 -p)P(\) [T 0= =B

JeA\{3}
>1-p)PN) ] 00 -p)PN)]
JEA\{4}
> (1—p) P (N4~ PP = ¢ (4)

The last inequality is by Lemma 1. Let Ay be the event that in round r, there
is only one node transmitting on channel A. By the independence of channel
selection of nodes, we have

Pr(Ay) =) Pr(4))
i€EA
> Cl=(1-p)Pa P e (1)
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Similarly we define Aﬁn and A,, for each channel m with 1 < m < F and
each active node i. By above, we have bounded the probability that there is
only one node transmitting on channel A. So in order to compute the probability

that round r is successful, we need to upper bound .  Pr(A4,,). At first, we
me[F]\X

bound Pr(A,)) as follows.

Pr(AL) =1 -p)Pi(m) ] -0 -p)Pi(m)]
JjeA\{i}

_ (1 —p1)P;(m) |
S 1-( —lpl)Pi(m) H[l — (1 =p)P;(m)]

JjEA

(1 —p1)P;(m) e~ (1=p1) P,
1= (1—=p)Pi(m)

1—
L (m)e 17 )
l

IN

With the above upper bound on Pr(A%,), we bound Pr(A4,,) as follows.

1-—p

> Pme_(l_pl)Pm = Oy (6)

Pr(4y) = Y Pr(4}) <

Note that the function ze™® < e~! for > 0 and by the set value of p;, we
can get that Pr(A,,) < 1. Now we are ready to bound D man Pr(Am).

Let A’ = min{\ + 5, F'}. Note that P,,+; = 2P,,, we can get the following
relations on {C), }.

O Pm

L —2e T < L ym > N
Cn,
Cr m

mol o Ll <3 Ym <A
O 2 5

m

With the above geometric relations, we can bound > C,, by %C’,\ and
m<A
> Cpm by Cy, then >~ Pr(A,,) can be upper bounded by a constant.
m>\ me[F\A

G
Z PT(Am) S Z Om+ Z Om,+ Z Cm

me[FI\ m<A m>\ m=A+1
3 a
< 50)\ +Cyv + Z Cm
m=X\+1
15
< ==
< @
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With the results in Inequality (5) and Inequality (7), the probability that r
can be lower bounded is as follows.

Pr(x is successful) > Pr(Ay) [[ (1-Pr(4y))

me[FI\A
- > Pr(An)
> Pr(Ay)4 meiri
1 1
> Z1&4—1“’*“5) € (1) (8)
which concludes the proof. a

We call a round which satisfies the condition in Lemma 9 a bounded one. In
the following lemma, we show that all messages will be broadcast successfully
on channel F' + 1 after at most O(k 4 logn) bounded rounds.

Lemma 10. All messages can be broadcast successfully on channel F + 1 in
O(k +logn) bounded rounds with probability 1 — O(n=1).

Proof. Let X; indicate whether the i-th bounded round is successful and denote

by X = Y X; the number of successful rounds in the first » bounded rounds.
i=1

By Lemrlna 9, each bounded round succeeds with constant probability. Then
E[X] =Y._E[X;] > r-2(1). Let » = B(k + logn), where 3 is a constant.
Then using a standard Chernoff argument, if 3 is large enough, with probability
1—0(n™1), it is easy to show that X > k, i.e., at least k nodes can successfully
broadcast their messages on channel F' + 1, which means that all active nodes
successfully broadcast their messages. a

Before proving the final result, we need to know when the condition in
Lemma 9 can be satisfied. We first show that the upper bound on Pr holds
for a long enough time after the algorithm starts.

Lemma 11. With probability 1—O(n~1), in the first O(n?) rounds, Pr < 282,

Proof. The proof is similar to that for Lemma 3. We assume that round ¢ of phase
j is the first one in which Pp exceeds 27 ~2. It is obvious that 4 is the first round
of phase j. By the adjusting strategy of selection probability, Pr € [%, 2F =21 in
phase j — 1.
By Lemma 9, each round of phase j—1 is successful with constant probability.
In expectation, there are at least 24logn nodes transmitting successfully on
channel F'+1 if « is large enough. Using the standard Chernoff Bound argument,
with probability 1—n~3, there will be at least 12log n successful transmissions on
channel F'+1 in phase j— 1. Thus, the selection probability will stay unchanged,
which means that in round ¢, Pr will not break the upper bound with probability
1—n~3. By the Union Bound argument, none of the first O(n?) rounds would be
the first violating one with probability 1 — O(n~!), which completes the proof.
O
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With all above lemmas, we prove Theorem 2.

Proof (Proof of Theorem 2). Note that there are at most % unchanging

phases; after O(-2~ + log") phases, the probability of an active node choosing

logn F
channel F' will become a constant i, i.e., Pr will be at least % if there still
exist some active nodes. Combining the result in Lemma 11, the condition in
Lemma 9 can be satisfied in the subsequent O(n?) rounds. By Lemma 9, with
probability 1 — O(n~1), information exchange can be completed in O(k + logn)
rounds thereafter. Combining everything, the theorem is proved. a

7 Conclusion

We presented two randomized distributed algorithms for information exchange
in single-hop multiple-channel radio networks, covering respectively the unre-
stricted case and the restricted case. The proposed algorithms are both asymp-
totically optimal when the number k of nodes having an information item ini-
tially is large. Furthermore, given the lower bound §2(k) for solving unrestricted
information exchange on a single channel, our first algorithm shows the superior-
ity of multiple channels in disseminating information. An important future work
is to adapt the proposed techniques to solve information exchange in multi-hop
multi-channel networks.
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