Skip to main content
Log in

The \(k\)-separator problem: polyhedra, complexity and approximation results

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Given a vertex-weighted undirected graph \(G=(V,E,w)\) and a positive integer \(k\), we consider the \(k\)-separator problem: it consists in finding a minimum-weight subset of vertices whose removal leads to a graph where the size of each connected component is less than or equal to \(k\). We show that this problem can be solved in polynomial time for some graph classes including bounded treewidth, \(m K_2\)-free, \((G_1, G_2, G_3, P_6)\)-free, interval-filament, asteroidal triple-free, weakly chordal, interval and circular-arc graphs. Polyhedral results with respect to the convex hull of the incidence vectors of \(k\)-separators are reported. Approximation algorithms are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnborg S, Lagergren J, Seese D (1991) Easy problems for tree-decomposable graphs. J Algorithms 12:308–340

    Article  MATH  MathSciNet  Google Scholar 

  • Balas E (1998) Disjunctive programming: properties of the convex hull of feasible points. Discret Appl Math 89:1–44

    Article  Google Scholar 

  • Balas E, de Souza C (2005) The vertex separator problem: a polyhedral investigation. Math Program 103:583–608

    Article  MATH  MathSciNet  Google Scholar 

  • Balas E, Yu C (1989) On graphs with polynomially solvable maximum-weight clique problem. Networks 19:247–253

    Article  MATH  MathSciNet  Google Scholar 

  • Ben-Ameur W, Mohamed-Sidi M-A., Neto J (2013) The k-separator problem. In: Proceedings of COCOON 2013, Springer LNCS 7936, pp 337–348

  • Bodlaender HL (1993) A linear time algorithm for finding tree-decompositions of small treewidth. In: Proceedings of STOC’93, pp 226–234

  • Boliac R, Cameron K, Lozin V (2004) On computing the dissociation number and the induced matching number of bipartite graphs. Ars Combin 72:241253

    MathSciNet  Google Scholar 

  • Borie RB (1995) Generation of polynomial-time algorithms for some optimization problems on tree-decomposable graphs. Algorithmica 14:123–137

    Article  MATH  MathSciNet  Google Scholar 

  • Borndörfer R, Ferreira CE, Martin A (1998) Decomposing matrices into blocks. SIAM J Optim 9:236–269

    Article  MATH  Google Scholar 

  • Broersma H, Kloks T, Kratsch D, Müller H (1999) Independent sets in asteroidal triple-free graphs. SIAM J Discret Math 12:276–287

    Article  MATH  Google Scholar 

  • Cameron K, Hell P (2006) Independent packings in structured graphs. Math Program Ser B 105:201–213

    Article  MATH  MathSciNet  Google Scholar 

  • Dinur I, Safra S (2005) On the hardness of approximating minimum vertex cover. Ann Math 162:439–485

    Article  MATH  MathSciNet  Google Scholar 

  • Gavril F (2000) Maximum weight independent sets and cliques in intersection graphs of filaments. Inf Process Lett 73:181–188

    Article  MathSciNet  Google Scholar 

  • Goldschmidt O, Hochbaum D (1997) K-edge subgraphs problems. Discree Appl Math 74:159–169

    Article  MATH  MathSciNet  Google Scholar 

  • Habib M, McConnell R, Paul C, Viennot L (2000) Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition, and consecutive ones testing. Theor Comput Sci 234:59–84

    Article  MATH  MathSciNet  Google Scholar 

  • Hastad J (1999) Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Math 182:105–142

    Article  MATH  MathSciNet  Google Scholar 

  • Hayard RB (1985) Weakly triangulated graphs. J Combin Theory Ser B 39:200–209

    Article  MathSciNet  Google Scholar 

  • Khot S, Regev O (2008) Vertex cover might be hard to approximate to within \(2- \epsilon \). J Comput Syst Sci 74:335–349

    Article  MATH  MathSciNet  Google Scholar 

  • Kloks T (1994) Treewidth: computations and approximations, vol 842. Lecture Notes in Computer Science, Springer, Berlin

  • Korte B, Vygen J (2005) Combinatorial optimization: theory and algorithms. Springer, New York

    Google Scholar 

  • Lozin V, Milanic M (2008) A polynomial algorithm to find an independent set of maximum weight in a fork-free graph. J Discret Algorithms 6:595–604

    Article  MATH  MathSciNet  Google Scholar 

  • Lozin V, Rautenbach D (2003) Some results on graphs without long induced paths. Inform Process Lett 88:167–171

    Article  MATH  MathSciNet  Google Scholar 

  • Minty G (1980) On maximal independent sets of vertices in claw-free graphs. J Combin Theory Ser B 28:284–304

    Article  MATH  MathSciNet  Google Scholar 

  • Oosten M, Rutten J, Spiksma F (2007) Disconnecting graphs by removing vertices: a polyhedral approach. Stat Neerl 61:35–60

    Article  MATH  Google Scholar 

  • Orlovich Y, Dolgui A, Finke G, Gordon V, Werner F (2011) The complexity of dissociation set problems in graphs. Discret Appl Math 159:1352–1366

    Article  MATH  MathSciNet  Google Scholar 

  • Papadimitriou CH, Yannakakis M (1982) The complexity of restricted spanning tree problems. J Assoc Comput Mach 29:285309

    MathSciNet  Google Scholar 

  • Sbihi N (1980) Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile. Discret Math 29:53–76

    Article  MATH  MathSciNet  Google Scholar 

  • Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency. Springer, Berlin

    Google Scholar 

  • Shmoys D (1997) Cut problems and their application to divide-and-conquer. In: Dorit SH (ed) Approximation algorithms for NP-hard problems. PWS, Boston, pp 192–235

    Google Scholar 

  • Spinrad JP, Sritharan R (1995) Algorithms for weakly triangulated graphs. Discret Appl Math 59:181–191

    Article  MATH  MathSciNet  Google Scholar 

  • Telle JA, Proskurowski A (1997) Algorithms for vertex partitioning problems on partial k-trees. SIAM J Discret Math 10:529–550

    Article  MATH  MathSciNet  Google Scholar 

  • Williamson D (2002) The primal-dual method for approximation algorithms. Math Program Ser B 91:447–478

    Article  MATH  Google Scholar 

  • Yannakakis M (1981) Node-deletion problems on bipartite graphs. SIAM J Comput 10:310–327

    Article  MATH  MathSciNet  Google Scholar 

  • Zuckerman D (2007) Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput 3:103–138

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Ameur, W., Mohamed-Sidi, MA. & Neto, J. The \(k\)-separator problem: polyhedra, complexity and approximation results. J Comb Optim 29, 276–307 (2015). https://doi.org/10.1007/s10878-014-9753-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-014-9753-x

Keywords

Navigation