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Abstract Given a random variable O ∈ R and a set of experts E, we describe
a method for finding a subset of experts S ⊆ E whose aggregated opinion best
predicts the outcome of O. Therefore, the problem can be regarded as a team
formation for performing a prediction task. We show that in case of aggregat-
ing experts’ opinions by simple averaging, finding the best team (the team with
the lowest total error during past k rounds) can be modeled with an integer
quadratic programming and we prove its NP-hardness whereas its relaxation
is solvable in polynomial time. At the end, we do an experimental comparison
between different rounding and greedy heuristics on artificial datasets which
are generated based on calibration and informativeness of exprets’ information
and show that our suggested tabu search works effectively.

Keywords Team Selection · Information Aggregation · Opinion Pooling ·
Quadratic Programming · NP-Hard

1 Introduction

Predicting the outcome of a random variable is an essential part of many de-
cision making processes (Sprenger et al., 2012). For instance, companies have
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to forecast future customer demands or changes in market regulations to do
a better planning for their production (Attarzadeh and Ow, 2011). In some
cases, lack of sufficient information (like statistical data) compels companies
to seek advice from experts (Hammitt and Zhang, 2013; Chen et al., 2005).
In order to make better informed decisions, it is logical to integrate opinions
of several experts because it leads to more accurate predictions (Graefe et al.,
2014).

In this work, we consider a situation in which a set of experts are available,
each with certain level of expertise. The goal is to predict the outcome of
a continuous variable O using their opinions. For each prediction task, we
gather experts’ opinions and aggregate them by simple linear opinion pooling.
As proven before, the arithmetic average of experts opinions is an efficient
and robust aggregation method (Chen et al., 2005, 2006). We have prediction
profile of each of these experts for k previous prediction tasks. The goal is
to find a subset of experts with the best performance, i.e. a subset whose
aggregated opinion has the least error regarding the actual outcome of O.

Accordingly, our method could be applied in a situation where the amount
of effort required to complete a specific task in a software project needs to be
predicted for effective planning and scheduling. As the relevant statistical data
(data on efforts made for completing same tasks in different projects) might
not be enough for a newly established company to base their predictions on, it
would be justifiable to ask employees about the effort required to do the task.
Suppose that efforts for doing similar tasks in previous projects of the company
have been predicted by the workers. Here, our method can be applied to find
a subset of workers whose aggregated opinion yield a good estimation of the
effort which is crucial for successful control of software projects (Jørgensen,
2007; Malhotra and Jain, 2011).

To formalize the problem, define E = {e1, · · · en} to be the set of experts.
The ei’s prediction and the actual value of O in the t-th round are respectively
profiled by yit and xd. In order to compare prediction ability of different subsets
such as S and S′, we use the Sum of Squared Errors (SSE) measure over the
past k rounds:

f(S) =

k
∑

t=1

(
∑

ei∈S yit

|S| − xd

)2

(1)

In the Team Selection problem, our goal is to find a subset S with minimum
f(S). In this paper, we first consider the relaxed version of this problem where
we just want to assign weights to experts and choose them fractionally. We
show that this problem can be easily converted to a simple quadratic program-
ming and therefore is polynomially solvable. Then, we show that the integer
quadratic programming representing the Team Selection problem is NP-Hard
(Sec. 2). To solve this problem, we propose an augmented algorithm of the
Tabu-Search used for solving the clique problem (Sec. 3). Then we suggest
some other heuristics for tackling the problem and compare their precision
experimentally on different artificial datasets with that of Tabu-Search and
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show that the Tabu-Search can give a solution to the Team Selection problem
with a negligible error. In the rest of this section, some of the related works
are discussed.

1.1 Related works

Various approaches for forecasting have been studied extensively. They can
all be categorized into statistical and non-statistical methods. Statistical ap-
proaches require sufficient historical data to extract value patterns, whereas
non-statistical approaches are based on experts judgments and their aggre-
gation (Chen et al., 2005, 2006). Methods for experts judgments aggregation
include information markets, opinion pooling, Bayesian and behavioral ap-
proaches (Chen et al., 2005; Clemen and Winkler, 2007). For information mar-
kets, scoring and compensation rules have been introduced to induce truthful
forecasts and ensure participation of experts (Othman and Sandholm, 2010;
Boutilier, 2012; Chen and Kash, 2011; Hora, 2007; Zhang et al., 2012). More-
over, decision rules are used to exploit aggregated judgments to make a de-
cision (Boutilier, 2012; Chen and Kash, 2011). Opinion pooling and Bayesian
approaches are mathematical methods for aggregating judgments to obtain ac-
curate probability assessment for an event (Clemen and Winkler, 2007; Hora,
2007; Genest and Zidek, 1986; Dani et al., 2012; Jacobs, 1995; French, 2011;
Morris, 1974; Michaeli and Simon, 2008). Bayesian approach has been widely
used in aggregating probability distributions with or without taking the de-
pendence between experts into account (Morris, 1974; Kallen and Cooke, 2002;
Mostaghimi, 1996, 1997).

Expert opinion has been widely used in many fields. For safety assessment
of a nuclear sector, one should rely on opinions of experts as statistical data
on catastrophic events are often rare. Much the same goes for prediction of the
force level and military intentions of other countries (Cooke, 1991). Therefore,
one of the primary applications of expert judgment is in risk analysis such
as estimation of the seismic or flood risk (Clemen and Winkler, 2007, 1999;
Reggiani and Weerts, 2008; Cooke, 1991).

Selecting a subset of experts who provide us with information about the
outcome of an event can be regarded as forming a team of advisors. Re-
cently, team formation, as a more general concept has received much atten-
tion. For instance, Lappas et al, took into account the cost of communication
among individuals and presented two approaches for forming a team with min-
imum communication cost yet capable of dealing with a defined task, based
on two different communication cost functions (Lappas et al., 2009). As an-
other example, Chhabra et al, proposed a greedy approximation to find an
optimal matching between people and some interrelated tasks by taking into
account the social network structure as an indicator of synergies between mem-
bers (Chhabra et al., 2013). Kargar et al, also, suggested approximation algo-
rithms for finding a team with minimum communication and personnel costs
(Kargar et al., 2013).
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2 NP-Hardness

In order to explore computational complexity of the Team Selection problem,
consider the following quadratic programming:

minimize g(w) =
k
∑

t=1

(

n
∑

i=1

wiyit − xt

)2

subject to

n
∑

i=1

wi = 1

∀i, wi ∈ {0, 1
m
}

(2)

Here, w = (w1, w2, · · ·wn) is the variable vector andm is the number of experts
to be selected. By solving this problem for m = 1, 2, · · ·n, one can solve the
Team Selection problem.

The relaxed version of the problem 2, where ∀i, 0 ≤ wi ≤ 1, can be inter-
preted as weight assignment to each expert to indicate how much we should
weigh his opinion. Thus, we refer to this problem as the Weight Assignment
problem. In this section, we first show that the Weight Assignment problem is
polynomially solvable by a simple quadratic programming, while its original
version (the Team Selection problem) is equivalent to an NP-Hard problem.

Define zit = yit − xt for all 1 ≤ i ≤ n and 1 ≤ t ≤ k. zit is the error of the
i-th expert’s forecast in the t-th round. So yit = zit + xt, we have

g(w) =
k
∑

t=1

(

(
n
∑

i=1

wi(zit + xt))− xt

)2

=

k
∑

t=1

(

(

n
∑

i=1

wizit) + (

n
∑

i=1

wixt)− xt

)2

=

k
∑

t=1

(

n
∑

i=1

wizit

)2

.

(3)

The term inside the summation can be expanded as

(

n
∑

i=1

wizit

)2

=

n
∑

i=1

n
∑

j=1

wizitzjtwj . (4)
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Replacing (4) in (3) we get

g(w) =

k
∑

t=1

n
∑

i=1

n
∑

j=1

wizitzjtwj

=

n
∑

i=1

n
∑

j=1

k
∑

t=1

wizitzjtwj

=
n
∑

i=1

n
∑

j=1

wi(
k
∑

t=1

zitzjt)wj

=
1

2

n
∑

i=1

n
∑

j=1

wi(2

k
∑

t=1

zitzjt)wj .

(5)

So the weight assignment problem can be stated as a quadratic program-
ming

minimize
1

2
wTQw

subject to 1Tw = 1,

w ≥ 0

(6)

where 1 is the all-one vector and Q is defined as

qij = 2

k
∑

t=1

zitzjt.

Clearly, Q is symmetric and hence the above quadratic programming is valid.
We should show that Q is positive-semidefinite i.e. for every non-zero vector
u we have uTQu ≥ 0. Assume that

∑n

i=1 ui = c. Define u′ = 1
c
u. We have

∑n

i=1 u
′
i = 1, thus with respect to the definition of Q in (5) and (6), we have

g(u′) = 1
2u

′TQu′. So uTQu = (cu′)TQ(cu′) = c2u′TQu′ = 2c2g(u′) which is
clearly non-negative (because g(.) is a quadratic error function).

We know that a quadratic programming with positive-semidefinite matrix
can be solved in polynomial time and hence the weight assignment problem is
polynomially solvable.

The main result of this section is to show the NP-Hardness of the Team
Selection problem.

Theorem 1 The Team Selection problem is NP-Hard.

Proof First consider the proposed QP (6) for the Weight Assignment prob-
lem. Adding constraints ∀i, wi ∈ {0, 1

m
} to this QP will lead to the following

mathematical programming which is equivalent to the Team Selection problem
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(when it is solved for m = 1, 2, · · · , n).

minimize
1

2
wTQw

subject to 1Tw = 1

∀i, wi ∈ {0, 1
m
}

(7)

where

qij = 2

k
∑

t=1

zitzjt.

Non-zero weight assigned to an expert means he is a member of the result-
ing solution. We show that this mathematical programming cannot be solved
in polynomial time, unless P = NP . In order to prove its NP-hardness, we
shall reduce the maximum independent set problem in d-regular graphs to
this problem. Given a graph G, assume that V (G) = {v1, v2, ..., vn} is the set
of vertices of G, E(G) is the set of its edges and degG(vi) denotes the vi’s
degree in G. In the maximum independent set problem, the goal is to find an
empty subgraph with maximum number of vertices. We will show that every
instance of the independent set problem can be transformed to an instance of
the following mathematical problem which can then be reduced to the Team
Selection problem:

minimize
1

2
xTA′x

subject to 1Tx = m

∀i, xi ∈ {0, 1}

(8)

where A′ = A+D, A is the adjacency matrix of G and D is a diagonal matrix
with Di,i = degG(vi).

After solving the mathematical programming (8), all the vertices with xi =
1 make a subgraph S. Let i(S) for S ⊆ V (G) denotes the number of G’s edges
which reside in S. That is to say,

i(S) = |{e = (x, y) ∈ E(G)|x, y ∈ S}|.

First notice that

xTA′x =

n
∑

i=1

n
∑

j=1

xixjA
′
ij =

n
∑

i=1

n
∑

j=1

xixjAij +

n
∑

i=1

x2
iDii.

It is easy to show that

n
∑

i=1

n
∑

j=1

xixjAij = 2i(S),
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and
n
∑

i=1

x2
iDii = dm

Thus

xTA′x = 2i(S) + dm.

Minimizing xTA′x with constraint
∑n

i=1 xi = m leads to a m-vertex sub-
graph with minimum number of edges. To reduce the maximum independent
set problem to the mathematical program (8), it is sufficient to solve (8) for
all 1 ≤ m ≤ n and report the maximum m for which the solution is equal to
dm.

Finally, we reduce the problem (8) to the mathematical programming (7).
It is enough to choose zis in such a way that Q = A′. Recall that

qij = 2

k
∑

d=1

zitzjt = 2Zi.Zj

where Zi is a k-element vector composed of zids. For equality of matrices, we
need qij = A′

ij . In other words, we should have

Zi.Zj =











degG(vi)
2 if i = j,

1
2 if vivj ∈ E(G),

0 otherwise

(9)

To do this, first set k = |E(G)| (thus Zi has a coordinate for each edge of
G). We set Zi’s l’th coordinate to 1√

2
if vi is connected to the l’th edge and

otherwise we set it to 0. To check that this assignment satisfies (9), one can
see that when i = j, exactly degG(vi) coordinates of Zi are equal to 1√

2
and

others are zero. So we have

Zi.Zi = degG(vi)×
1√
2
× 1√

2
=

degG(i)

2
.

When vi and vj are endpoints of an edge (say, the l-th edge), the l-th coordinate
of both Zi and Zj equals to 1√

2
and they have no other common non-zero

coordinate. So we have

Zi.Zj =
1√
2
× 1√

2
=

1

2
.

Finally, when vi and vj are not connected, Zi and Zj have no common non-zero
coordinate and clearly

Zi.Zj = 0.
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3 Tabu Search

In the previous section, we showed that the Team Selection problem is NP-
Hard while its relaxed version, the Weight Assignment problem, is solvable in
polynomial time. In this section, we propose a tabu search algorithm to solve
the Team Selection problem.

Tabu Search has proved high performance in finding sets with specific char-
acteristics. Different variations of this method have been used for approximat-
ing the best solution for similar problems like the Maximum Clique, Maximum
Independent Set, Graph Coloring and Minimum Vertex Cover (Wu and Hao,
2013, 2012a,b). We choose the algorithm introduced in (Wu and Hao, 2013)
for solving the Maximum Clique problem as a basis and transform it to an
algorithm for the Team Selection problem.

Tabu Search starts from an initial solution and iteratively replaces it with
one of its neighbors in order to get closer to the optimal solution. In each
iteration, a local search is done for finding a group whose collective prediction
has the least error. If there is no such neighbor, current solution is regarded as
a local minimum. To escape from local minimums, Tabu Search allows the least
worse neighbor to be selected. Wu & Hao use Probabilistic Move Selection Rule
(PMSR) when no improving solution is found in neighborhood. This strategy
helps to move to other neighbors when the quality of the local minimum is
much less than that of the optimal solution (Wu and Hao, 2013). We use a
similar strategy in our proposed algorithm. For preventing previous solutions
from being revisited, Tabu Search uses a tabu list which records the duration
of each element being kept from moving into or out of current solution.

Algorithm 1, shows the pseudo code of our proposed tabu search. The first
line shows the initialization of the first set (team), which then goes through
improvements in the main loop. As the initial set can play an important role
in Tabu Search performance (Wu and Hao, 2013), we suggest the initial set
to be equal to the set of m experts who are given the largest weights in
an optimum solution for the Weight Assignment problem (this is shown by
MaxWeightsAssignedTo(E,m)).

In each iteration of the loop, the amount of improvement gained by each
possible swap is calculated simply by subtracting SSE of the team resulting
from swapping two experts (one in the current set with another out of it)
from the SSE of the current team. If the best possible swap results in a better
solution (lower SSE), then the current set is updated with the new solution.
Otherwise, a random set is selected as the current solution with probability P .
In another word, P is the probability of escaping from a local minimum. Like
various kinds of Tabu Search, we use tabu list to prevent producing repeated
sets. Therefore, after substituting a member with another expert out of the
current set, tabu list is updated with regard to tabu tenure values calculated
for both selected experts. This implies that for some time these experts are
not allowed to move in or out of the current set in next iterations.

There are two terminating conditions for this algorithm. For one, the main
loop terminates by not finding any better set after maxIter successive itera-
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Algorithm 1 Tabu Search For Team Selection Problem

Require: A Set of experts (E), Expert’s sequence of past predictions, integer MaxIter

(Maximum number of successive tries which fail to find better solution), m (size of the
team)

Ensure: A team with minimum SSE if found
1: S←MaxWeightsAssignedTo(E,m)
2: lowerBoundOfSSE ← g(w) { w contains weights assigned to E }
3: i← 0 { number of iterations }
4: bestSet← S { Records the best solution found so far }
5: while i < MaxIter do

6: S′ ← S ∪ {v} \ {u} with minimum SSE among all u, v pairs not in tabu list
7: if f(S′) < f(S) then

8: S ← S′

9: else

10: S← S′with probability 1− P

11: or a random neighbor with probability P

12: Update the tabu list { List of all u, v pairs which are tried in iterations}
13: if f(S) = lowerBoundOfSSE then

14: return S

15: if f(S) < f(bestSet) then

16: bestSet← S

17: i← 0
18: else

19: i← i+ 1

20: return bestSet

tions. For another, when the current solution is equal to the solution of the
Weight Assignment problem, the algorithm stops the search process. That is
to say, there is no other set with less SSE.

4 Comparision

In this section, inspired from algorithms proposed for similar problems, we
suggest different heuristics for the Team Selection problem and compare their
efficiency with the tabu search proposed in Section 3.

4.1 Heuristics

Random Rounding: Random rounding defines a threshold (T ) and selects
experts with weights above the threshold with probability P and the others
with probability 1−P . This process will continue until m experts are selected.
Our experiments show that higher amounts of T yields better results.

Max-Weights: This rounding algorithm takes the m experts with largest
weights as members of the team.

Min-Effect: In each round, this algorithm tries to find a member who has the
minimum effect on the SSE of E. According to the equation (3), the effect of
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each person on the SSE function can be calculated as the following:



2wi

∑

j 6=i

wj

k
∑

d=1

zidzjd



− w2
i

k
∑

d=1

z2id, (10)

which is equal to sum of the terms including zi.
Best Pairs: Despite the fact that experts with high prediction error are not
desirable, aggregated opinions of two or more of them may have an acceptable
error. This is due to the bracketing concept (Graefe et al., 2014). Thus, in this
algorithm we allow pairs whose aggregated opinion has the minimum absolute
error to be selected. The algorithm computes sum of the absolute errors of the
aggregated opinions of all pairs over past k rounds, then report ⌊m

2 ⌋ of pairs
with smallest calculated values. For odd values of m, last person would be the
one among remained experts with minimum sum of absolute errors.
Remove Least Weights: This algorithm runs the Weight-Assignment prob-
lem’s algorithm iteratively and removes one with the least weight in each
iteration. The process continues until m experts are remained.
Minimum Error: One simple strategy of members selection is to find experts
with minimum sum of absolute errors during past k rounds. For simplicity, we
call this approach ”Minimum Error”.

4.2 Comparison of Algorithms

In this section, we evaluate the tabu search and other heuristics for solving
the Team Selection problem. We consider four different simulation scenarios
with 15 experts, each with known distribution for their predictions and tested
the algorithms for team sizes from 2 to 10. These scenarios are based on
two measures for evaluating quality of expert’s distribution (calibration and
informativeness introduced by Hammitt & Zhang in (Hammitt and Zhang,
2013)) and are described as follows:

– Normal1: In this case, random variable O and experts’ beliefs have nor-
mal distribution with µ = 10, thus, experts’ information are calibrated.
Standard deviation of each expert’s distribution is randomly selected from
[1, 2].

– Normal2: This case models calibrated but less informative experts. There-
fore, like the previous case, all distributions are normal with µ = 10, but
this time, standard deviations of experts’ predictions are between 1 and 7
(σi is randomly selected from [1, 7]).

– Normal3: In the third case, we simulate a situation in which some of
the experts are not calibrated. For doing this, experts’ beliefs have normal
distribution with random means that are selected uniformly from [8, 12].
Like Normal1, standard deviations are chosen randomly between 1 and 2.

– Exp: For the final case, we simulate both the reality and the experts’
predictions with exponential distributions with µ = 10.
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2 3 4 5 6 7 8 9 10

25

30

35

40

45

50

55

60

65

70

Team Size

A
v
e

ra
g

e
 O

f 
S

S
E

 

 

 

BestTeam
RandomRounding
Max−Weights
Min−Effect
Tabu Ssearch
BestPairs
RemoveLW
Minimum Error

Fig. 2 Comparison of the algorithms and heuristics for the case Normal2



12 MohammadAmin Fazli et al.

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

Team Size

A
v
e

ra
g

e
 o

f 
S

S
E

 

 

BestTeam
RandomRounding
Max−Weights
Min−Effect
Tabu Ssearch
BestPairs
RemoveLW
Minimum Error

Fig. 3 Comparison of the algorithms and heuristics for the case Normal3
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As presented in Figures 3 to 6 and Table 1, Tabu Search produces far better
results in all cases. It can also be seen that the result of this algorithm is very
near to the best possible algorithm which tries all the feasible solutions and re-
turn the best one. This means that our suggested algorithm is less sensitive to
the distribution of the event O. Thus, Tabu Search is more reliable than other
proposed heuristics. Best Pairs’s efficiency for normal distributions is compa-
rable with Tabu search. Moreover, the average execution time of Best Pairs is
around 0.02 of Tabu Search (Table 2). Therefore, it would be an acceptable
method for quickly forming a team. However, in the case of exponential distri-
butions, Best Pairs performance for small teams is even worse than Min-Effect
which is due to the increase in diversity of the forecasts. Hence, the probability
of neutralization of an expert’s error by another, decreases.

Table 1 Average of difference between the SSE of the best team and the SSE of the
heuristics’ solutions for teams of size 2 to 10

Algorithm Normal1 Normal2 Normal3 Exponential

RandomRounding 10.348 128.937 17.702 1102.74
Max-Weights 2.153 38.329 4.831 121.021
Min-Effect 4.26 84.39 7.84 297.97
Tabu Search 0.145 2.186 0.18 14.833
BestPairs 1.788 8.507 2.26 178.273
RemoveLW 1.897 38.895 4.188 105.951

Table 2 Comparison of the heuristics’ average of the execution time for finding best team
of 8 experts amog 15 experts in case of Normal2

Name of Algorithm Average Exe.Time

BestTeam 27.3742
RemoveLW 0.0461
Tabu Ssearch 0.0345
Min-Effect 0.0036

Max-Weights 0.0035
RandomRounding 0.0013

BestPairs 0.0009

4.3 Other Experiments

The effect of the team size: As the number of hired experts determines the
cost incurred, we would like to know the effect of the team size on the accuracy
of the aggregated opinion of its members. Therefore, in our simulations we
capture the accuracy for different team sizes and depict the results in Figure
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5. This figure shows the optimal solution for different sizes of E. The results
show that increasing the number of experts first reduces but then increases
SSE again. Therefor, we can conclude that large values for m is neither cost
effective nor efficient.
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Fig. 6 Effect of the prediction profile size on the SSE of the best team for the next 3
prediction tasks

The effect of the prediction profile size: It is apparent that having more
information about the experts’ past predictions, improve the quality of the
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final result. The question here is how much would be enough. We observe that
for large values of the size of the experts’ prediction profile, the decrease in
SSE will finally stop. Therefore, the first point with minimum value would be
the optimal number of past records. The results of this experiment can be seen
in Figure 6.

5 Conclusion

In this paper, we addressed the Team Selection problem in which we wanted to
form a team of experts with minimum error for performing a prediction task.
To simplify the problem, we first studied the relaxed version of the problem
(the Weight Assignment problem) in which our goal was to find the best
weights for linear opinion pooling. We proved that this problem can be solved
with a simple quadratic programming in polynomial time. Then we proved that
the Team Selection problem is NP-hard. In the rest of the paper, we proposed
a tabu search algorithm for solving the problem. Our experiments show the
superior accuracy of this algorithm compared to other proposed algorithms.
It is also shown that the accuracy of this algorithm is comparable to the best
possible algorithm.
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