A solution to an open problem on lower against number in graphs

Babak Samadi
Department of Mathematics
Arak University
Arak, IRI
samadibabak62@gmail.com

Abstract

In [1 the problem of finding a sharp lower bound on lower against number of a general graph is mentioned as an open question. We solve the problem by establishing a tight lower bound on lower against number of a general graph in terms of order and maximum degree.

Keywords: Lower against number, maximal negative function.

1 Introduction

Throughout this paper, let G be a finite connected graph with vertex set $V=V(G)$ and edge set $E=E(G)$. We use [2] for terminology and notations which are not defined here. The open neighborhood of a vertex v is denoted by $N(v)$, and the closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. For a subset $S \subseteq V(G), N(S)=\cup_{v \in S} N(v)$. A graph G is called r-regular if $\operatorname{deg}(v)=r$ for every $v \in V(G)$, and nearly r-regular if $\operatorname{deg}(v) \in\{r-1, r\}$ for every $v \in V(G)$.
Let $S \subseteq V$. For a real-valued function $f: V \rightarrow R$ we define $f(S)=$ $\sum_{v \in S} f(v)$. Also, $f(V)$ is the weight of f. A function $f: V \rightarrow\{-1,1\}$ is called negative if $f(N[v]) \leq 1$, for every $v \in V(G)$. The maximum of values of $f(V(G))$, taken over all negative functions f, is called the against number $\beta_{N}(G)$. The author in [1] exhibited a real-world application of it to social networks. (This concept was introduced by Zelinka [3] as signed 2-independence number).
A negative function f of a graph G is maximal if there exist no negative function g such that $g \neq f$ and $g(v) \geq f(v)$ for every $v \in V(G)$. The
minimum of values of $f(V(G))$, taken over all maximal negative functions f, is called the lower against number and is denoted by $\beta_{N}^{*}(G)$.
In [1], Wang proved the following lower bounds on $\beta_{N}^{*}(G)$ for regular and nearly regular graphs.

Theorem 1.1. Let G is an r-regular graph of order n. Then, $\beta_{N}^{*}(G) \geq$ $\left(r+2-r^{2}\right) n /\left(r+2+r^{2}\right)$ for r even, and $\beta_{N}^{*}(G) \geq(1-r) n /(1+r)$ for r odd. This bound is best possible.
Theorem 1.2. For any nearly r-regular graph G of order $n, \beta_{N}^{*}(G) \geq$ $(1-r) n /(1+r)$. Furthermore, this bound is sharp.

Also, the author posed the following question as an open problem: What is a sharp lower bound on $\beta_{N}^{*}(G)$ for a general graph G ?
Recently, Zhao in [4] proved that if G is a graph of order n with minimum degree δ and maximum degree Δ, then

$$
\left.\beta_{N}^{*}(G) \geq\left(\delta+2+\delta \Delta-2 \Delta^{2}\right) n\right) /\left(\delta+2-\delta \Delta+2 \Delta^{2}\right)
$$

for δ even, and

$$
\beta_{N}^{*}(G) \geq\left(\delta+1-\Delta+\delta \Delta-2 \Delta^{2}\right) n /\left(\delta+1+\Delta-\delta \Delta+2 \Delta^{2}\right)
$$

for δ odd. Moreover he showed that these bounds are sharp.
In this paper, in answer to the question, we give a sharp lower bound on the lower against number of a general graph just in terms of order and maximum degree that is tighter that ones in [4]. Also, we conclude Theorem 1.1 and Theorem 1.2 as immediate results of our main theorem.

2 A lower bound on $\beta_{N}^{*}(G)$

We need the following lemma.
Lemma 2.1. [1] A negative function f of a graph G is maximal if and only if for every $v \in V(G)$ with $f(v)=-1$, there exists at least one vertex $u \in N[v]$ such that $f(N[v])=0$ or 1 .

We are now in a position to present the main result of this paper.
Theorem 2.2. Let G be a graph of order n with maximun degree Δ. Then

$$
\beta_{N}^{*}(G) \geq\left\{\begin{array}{cl}
\left(\frac{1-\Delta}{1+\Delta}\right) n & \Delta \geq \delta+1 \\
\text { or } \delta=\Delta \equiv 1(\bmod 2) \\
\left(\frac{\Delta+2-\Delta^{2}}{\Delta+2+\Delta^{2}}\right) n & \text { otherwise }
\end{array}\right.
$$

and these bounds are sharp.

Proof. If $\delta=\Delta \equiv 0(\bmod 2)$, then desired result follows by Theorem 1.1. Hence in what follows we may assume that $\Delta \geq \delta+1$ or $\delta=\Delta \equiv 1(\bmod 2)$. Let f be a maximal negative function of G with weight $f(V(G))=\beta_{N}^{*}(G)$ and $M=\{v \in V \mid f(v)=-1\}$ and $P=\{v \in V \mid f(v)=1\}$. Also, $m=|M|$ and $p=|P|$. For notational convenience, we set $l=\left\lfloor\frac{\Delta}{2}\right\rfloor+1$ and $k=\left\lfloor\frac{\delta}{2}\right\rfloor+1$. We define $A_{i}=\{v \in M| | N(v) \cap P \mid=i\}$ and $a_{i}=\left|A_{i}\right|$, for all $0 \leq i \leq l$. Let $v \in M$. Since f is a negative function, then v has at most l neighbors in P. Therefore, P is the disjoint union, for $0 \leq i \leq l$, of the sets A_{i}. Now we get

$$
\begin{equation*}
n=p+m=p+\sum_{i=0}^{l} a_{i} . \tag{1}
\end{equation*}
$$

On the other hand, if $[M, P]$ is the set of edges having one end point in M and the other in P, then

$$
\begin{equation*}
|[M, P]|=\sum_{i=1}^{l} i a_{i} \leq p \Delta \tag{2}
\end{equation*}
$$

Case 1. If $A_{0}=\phi$. By inequalities (1) and (2), we have

$$
n=p+\sum_{i=1}^{l} a_{i} \leq p+\sum_{i=1}^{l} i a_{i} \leq p+p \Delta
$$

Therefore, $p=\left(n+\beta_{N}^{*}(G)\right) / 2 \geq \frac{n}{1+\Delta}$, which implies the desired lower bound.
Case 2. If $A_{0} \neq \phi$. Let $v \in A_{0}$. Obviously, $f(N[v]) \leq-2$. Now Lemma 1 implies that there exists a vertex $u \in N[v]$ such that $f(N[u])=0$ or 1 . This shows that the set $Q=\left\{v \in N\left(A_{0}\right) \mid f(N[v])=0\right.$ or 1$\}$ is nonempty. Let $v \in \cup \cup_{i=0}^{k-1} A_{i}$. Then

$$
\begin{aligned}
f(N[v]) & =|N[v] \cap P|-|N[v] \cap(V \backslash P)|=2|N[v] \cap P|-|N[v]| \\
& \leq 2(k-1)-\operatorname{deg}(v)-1 \leq-1 .
\end{aligned}
$$

Therefore v does not belong to Q. Hence, $Q \subseteq \cup_{i=k}^{l} A_{i}$. Suppose that $u \in Q \cap A_{i}$, for $k \leq i \leq l$. We claim that $\left|N(u) \cap A_{o}\right| \leq i-1$. Suppose to the contrary that $\left|N(u) \cap A_{o}\right| \geq i$. Then

$$
\begin{aligned}
0 \text { or } 1=f(N[u]) & =-1+|N(u) \cap P|-|N(u) \cap M| \\
& \leq-1+i-\left|N(u) \cap A_{0}\right| \leq-1
\end{aligned}
$$

a contradiction. Thus $Q \cap A_{i}$ has at most $(i-1)\left|Q \cap A_{i}\right|$ neighbors in A_{0}. Since f is a maximal negative function, for every vertex $v \in A_{0}$ there
exists a vertex $u \in Q$ such that $u \neq v$, which implies $u \in Q \cap A_{i}$, for some $k \leq i \leq l$. Hence $A_{0} \subseteq \cup_{i=k}^{l} N\left(Q \cap A_{i}\right)$. Now we deduce that

$$
a_{0}=\left|A_{0}\right| \leq \sum_{i=k}^{l}\left|N\left(Q \cap A_{i}\right) \cap A_{0}\right| \leq \sum_{i=k}^{l}\left|Q \cap A_{i}\right|(i-1) \leq \sum_{i=k}^{l}(i-1) a_{i}
$$

By (1), we have

$$
n=p+a_{0}+\sum_{i=1}^{l} a_{i} \leq p+\sum_{i=k}^{l}(i-1) a_{i}+\sum_{i=1}^{k-1} a_{i}+\sum_{i=k}^{l} a_{i} .
$$

Thus

$$
n \leq p+\sum_{i=1}^{l} i a_{i} \leq p+p \Delta
$$

Therefore $p=\left(n+\beta_{N}^{*}(G)\right) / 2 \geq \frac{n}{\Delta+1}$, as desired.
Since Theorem 1.2 (also Theorem 1.1) is a special case of this theorem, we see that this lower bound is sharp.

Comparing Theorem 2.2 with its corresponding result in 4] we can see that the lower bounds in Theorem 2.2 are tighter that their corresponding ones in [4]. Moreover, Theorem 1.1 and Theorem 1.2 are immediate results of Theorem 2.2 when $\delta=\Delta=r$.

References

[1] C. Wang, Voting against in regular and nearly regular graphs, Applicable Analysis and Discrete Mathematics, 4 (2010), 207-218.
[2] D. B. West, Introduction to graph theory (Second Edition), Prentice Hall, USA, 2001.
[3] B. Zelinka, On signed 2-independence number of graphs, manuscript.
[4] W. Zhao, Lower against number in graphs, International Journal of Pure and Applied Mathematics, 77 (2012), 149-155.

