Skip to main content
Log in

How patient compliance impacts the recommendations for colorectal cancer screening

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is one of the most common cancers and the second leading cause of cancer death in the U.S. As a measure of prevention, timely screening is necessary for patients as it can spell the difference between life and death. Fecal occult blood tests (FOBTs) is used for the average-risk patient. Colonoscopy is used for the high-risk and the average-risk patient whose outcome of FOBTs is positive. While colonoscopy is considered to be the most accurate test for detecting colorectal cancer, its side-effects have serious consequences that could result in intestinal perforation and even death. As a result, some patients do not follow the physicians’ advices. It is therefore important to design a good screening schedule that balances the risk of CRC and the side-effects of colonoscopy, and at the same time to take the patient’s personal characteristics and compliance into account. We formulate a finite-horizon, partially observable Markov decision process model to optimize the CRC screening program for both average and high-risk patients. Our model incorporates information of prior screening history, patient compliance and more personal risk factors. We find that the patients with low compliance rate should be recommended to undergo colonoscopy more frequently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • American Cancer Society (2013) Colorectal cancer facts and figures 2011–2013. American Cancer Society, Atlanta

  • American Cancer Society (2014) Cancer facts and figures 2014. American Cancer Society, Atlanta

  • Anderson M, Pasha T, Leighton J (2000) Endoscopic perforation of the colon: lessons from a 10-year study. Am J Gastroenterol 95(12):3418–3422

    Article  Google Scholar 

  • Chhatwal J, Alagoz O, Burnside E (2010) Optimal breast biopsy decision-making based on mammographic features and demographic factors. Op Res 58(6):1577–1591

    Article  MATH  MathSciNet  Google Scholar 

  • Eagle J (1984) The optimal search for a moving target when the search path is constrained. Op Res 32(5):1107–1115

    Article  MATH  MathSciNet  Google Scholar 

  • Erenay F, Alagoz O, Said A (2014) Optimizing colonoscopy screening for colorectal cancer screening and surveillance. Manuf Serv Op Manag 16(3):381–400

    Google Scholar 

  • Felsen C, Piasecki A, Ferrante J, Ohman-Strickland P, Crabtree B (2011) Colorectal cancer screening among primary care patients. J Commun Health 36(4):605–611

    Article  Google Scholar 

  • Goulionis J, Vozikis A (2009) Medical decision making for patients with parkinson disease under average cost criterion. Australia and New Zealand Health Policy, Australia and New Zealand

    Google Scholar 

  • Goulionis J, Vozikis A, Benos VK, Nikolakis D (2010) On the decision rules of cost-effective treatment for patients with diabetic foot syndrome. Clinicoecon Outcomes Res 2:121–126

    Article  Google Scholar 

  • Gunes E, Chick S, Aksin O (2004) Analyze the effect of operational factors such as capacity, quality, and number of facilities on breast cancers creening outcomes. Health Care Manag Sci 7(4):291–303

    Article  Google Scholar 

  • Gupta D (2007) Surgical suites operations management. Prod Op Manag 16(6):689–700

    Article  Google Scholar 

  • Gupta D, Wang L (2008) Revenue management for a primary care clinic in the presence of patient choice. Op Res 56(3):576–592

    Article  MATH  MathSciNet  Google Scholar 

  • Hu C, Lovejoy W, Shafer S (1975) Comparision of some suboptimal control policies in medical drug therapy. Op Res 44(5):696–709

    Article  Google Scholar 

  • Hudson S, Ferrante J, Ohmahn-Strickland P, Hahn K, Shaw E, Hemler J, Crabtree B (2012) Physician recommendation and patient adherence for colorectal cancer screening. J Am Board Fam Med 25(6):781–791

    Article  Google Scholar 

  • Inadomi J, S Vijan NJ, Fagerlin A, Thomas J, Lin Y, Munoz R, Lau C, Somsouk M, EI-Nachef N, Hayward R (2012) Adherence to colorectal cancer screening: a randomized clinical trial of competing strategies. Arch Intern Med 172(7):575–582

    Article  Google Scholar 

  • Klabunde C, Lanier D, Breslau E, Zapka J, Fletcher R, Ransohoff D, Winawer S (2007) Improving colorectal cancer screening in primary care practice: innovative strategies and future directions. J Gen Intern Med 22(8):1195–1205

    Article  Google Scholar 

  • Leshno M, Halpern Z, Arber N (2003) Cost-effectiveness of colorectal cancer screening in the average risk population. Health Care Manag Sci 6(3):165–174

    Article  Google Scholar 

  • Li J, Zheng ZC, Chou MC, Dong M (2014) Optimizing colorectal cancer screening policies using a combination of faecal occult blood test and colonoscopy. https://sites.google.com/site/zhengzhichao1985/research/CRC_Screening_2015_01_31.pdf?attredirects=0&d=1, working paper

  • Lisi D, Hassan C, Crespi M, Group AS (2010) Digestive and liver disease. Participation in colorectal cancer screening with FOBT and colonoscopy: an Italian, multicentre, randomized population study 42(5):371–376

    Google Scholar 

  • Patrick J (2012) A markov decision model for determining optimal outpatient scheduling. Health Care Manag Sci 15(2):91–102

    Article  MathSciNet  Google Scholar 

  • Zhang J, Denton B, Balasubramanian H (2012) Optiamization of prostate biopsy referral decisions. Manuf Serv Op Manag 14(4):529–547

    Google Scholar 

  • Zhao Z, Zhu X, Li X (2012) Scheduling outpatient appointment when considering the cancellation and no-shows. In: Proceedings of the 2013 industrial and systems engineering research conference, pp 3490–3499

  • Zhong L, Luo S, Wu L, Xu L, Yang J, Tang G (2014) A two-stage approach for surgery scheduling. J Comb Optim 27(3):545–556

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Specialized Research Fund for the Doctoral Program of Higher Education of China (20120073110029), Interdiscipline Foundation of Shanghai Jiao Tong University (No. 11JCZ02), National Natural Science Foundation of China (Nos. 71371123, 71131005), and Europe-China High Value Engineering Network (EC-HVEN Project Number 295130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Dong.

Appendices

Appendix A: proof of Markov property

We illustrate the Markov property and how the historic information correlate current belief state for the average-risk patient in the following: To make this explicit, we define \(h(t)\) as the total available information about the process at the end of control interval \(t\). We assume that the time variable \(t\) increases with increasing time. For the process as defined in this paper, there are two update processes (observations) during a control interval. One is after FOBT, the other is after colonoscopy. Let \(n(t+1)\) and \(o(t+1)\) denote the observation of FOBT and colonoscopy respectively, and \(a(t+1)\) denotes the control alternative. During control interval \(t+1\), we can write

$$\begin{aligned} h(t+)= & {} [o(t+1), a(t+1), h(t)]\\ h(t+1)= & {} [n(t+1), h(t+)] \end{aligned}$$

That is, \(h(t+1)\) represents our state of information prior to control interval \(t+1\) plus the additional information. \(h(t+)\) represents state of information prior to FOBT. The Fig. 3 depicts the decision sequence.

Fig. 3
figure 3

Decision sequence

By the definition of the information state vector,

$$\begin{aligned} b_{t+}(j)=Pr(s(t+)=j|h(t)). \end{aligned}$$

From Bayes’ rule, we obtain

$$\begin{aligned} b_{t+}(j)= & {} Pr(s(t+) = j, o(t)=\theta | a(t), h(t))/Pr(o(t)=\theta |a(t),h(t))\nonumber \\= & {} \sum _{i}Pr(s(t) = i|a(t),h(t))Pr(s(t+)=j|s(t)=i,a(t),h(t))\nonumber \\&Pr(o(t)=\theta |s(t+)=j,s(t)=i,a(t),h(t))/Pr(o(t)=\theta |a(t),h(t))\nonumber \\= & {} \sum _{i}b_{t}(j)p^{a}_{ij}R^{a}_{i\theta }/\sum _{ij}b_{t}(i) p^{a}_{ij}R^{a}_{i\theta } \end{aligned}$$
(2)

where \(s(t+)\) and \(s(t)\) are discrete-valued random variable equal to the internal state of the process at time \(t+\) and \(t\) respectively. Equation (1) indicates that \(b_{t+}\) only depend on \(b_{t}\), \(a\), \(o\). That is, \(b_{t}\) summarizes all the information gained prior to control interval \(t\) and represents a sufficient statistic for the complete past history of the process \(h(t)\).

$$\begin{aligned} b_{t}(j)= & {} Pr(s(t)=j|h(t))\nonumber \\= & {} Pr(s(t)=j|n(t+1),h(t+))\nonumber \\= & {} \sum _{i}Pr(s(t)=j|s(t+)=i,n(t\!+\!1),h(t+))Pr(s(t+)\!=\!i|n(t+1),h(t\!+\!))\nonumber \\= & {} \sum _{i}p^{n}_{ij}b_{t+}(i) \end{aligned}$$
(3)

From Eqs. 2 and 3, the result is obtained.

Similarly, we can also obtain the Markov property for high-risk patients.

(note: \(p^{a}_{ij}\) represents the transition probability from state \(i\) to state \(j\), given that action \(a\) is chosen; \(R^{a}_{i\theta }\) represents observation probability of \(o=\theta \) when the action chosen is \(a\) and the true health state is \(i\). \(p^{n}_{ij}\) represents the transition probability from state \(i\) to state \(j\), given that the number of positive outcome of FOBTs is \(n\))

Appendix B: proofs of results in section 3

Proof of Theorem 1

Recall that

$$\begin{aligned}&W_{t}^{*}\left( b,\beta \right) \nonumber \\&\quad = \underset{a_{t}\in A}{\max }\beta \sum _{i\in S}b\left( i\right) \biggl \{\biggl [\sum _{o\in \left\{ T,TP\right\} }R_{t}^{a_{t}}\left( o\mid i\right) \left[ r_{t}(i,a_{t},o)+W_{t+1}^{*}(\bar{\sigma }_{t}[b,a,o]),\beta \right] \biggl ]\\&\qquad + \, R_{t}^{a_{t}}\left( TC\mid i\right) H_{t}\biggr \}\\&\qquad + \, (1-\beta )\sum _{i\in S}b\left( i\right) \biggl \{\biggl [R_{t}^{W}\left( T\mid i\right) \left[ r_{t}(i,W,T)+W_{t+1}^{*} (\bar{\sigma }_{t}[b,W,T]),\beta \right] \biggl ]\biggr \} \end{aligned}$$

We prove Theorem 1 by induction. By our boundary assumptions,

$$\begin{aligned} W_{T}^{*}\left( b_{T},\beta \right) =\sum _{i\in S^{b}}b_{T}\left( i\right) r_{T}\left( i\right) . \end{aligned}$$

Assume that \(W_{t+1}^{*}(b,\beta )\) is a piecewise linear and convex function, i.e.,

$$\begin{aligned} W_{t+1}^{*}(b,\beta )=\max _{k}\sum _{i\in S^{b}}b(i)\bar{\alpha }_{t+1}^{k}(i), \end{aligned}$$

where \(\bar{\alpha }_{t+1}^{k}(i)\) are some constants. We next show that \(W_{t}^{*}(b,\beta )\) is a piecewise linear and convex function.

The \(W_{t}(b,a_{t},\beta )\) means the total quality-adjusted life years from time \(t\) to last decision period for a high-risk patient whose belief state is \(b\), compliance rate is \(\beta \) and action is \(a_{t}\) at time \(t\).

$$\begin{aligned}&W_{t}(b,a_{t},\beta )\nonumber \\&\quad = \beta \sum _{i\in S^{b}}\Biggl [b(i)\biggl \{\sum _{o\in \left\{ T,TP\right\} }R_{t}^{a_{t}}(o\mid i)\biggl [r_{t}(i,a_{t},o)\\&\qquad + \, W_{t+1}^{*}(\bar{\sigma }[b,a_{t},o],\beta )\biggl ]+R_{t}^{a_{t}}(TC\mid i)H_{t}\biggr \}\Biggl ]\\&\qquad +(1-\beta \, )\sum _{i\in S^{b}}\Biggl [b(i)R_{t}^{W}(T\mid i)\biggl [r_{t}(i,W,T)+W_{t+1}^{*}(\bar{\sigma }[b,W,T],\beta )\biggl ]\Biggl ] \end{aligned}$$

Similar with proofs of Li et al., by expanding the \(W_{t+1}^{*}(\bar{\sigma }[b,a_{t},o],\beta )\), we can obtain the following result:

$$\begin{aligned}&W_{t}(b,a_{t},\beta ) \nonumber \\&\quad = \sum _{i\in S^{b}}b(i)\Biggl \{\beta \Biggr [\sum _{o\in \left\{ T,TP\right\} }R_{t}^{a_{t}}(o\mid i)\biggl [r_{t}(i,a_{t},o)\\ \nonumber \\&\qquad + \, \sum _{i'\in S^{b}}\bar{P}_{t}(i'\mid i,a_{t},o)\bar{\alpha }_{t+1}^{\bar{l}(b,a_{t},o,\beta )}(i')\biggr ]+R_{t}^{a_{t}}(TC\mid i)H_{t}\Biggl ]\\ \nonumber \\&\qquad + \, (1-\beta )\Biggr [R_{t}^{W}(T\mid i)\biggr [r_{t}(i,W,T)+\sum _{i'\in S^{b}}\bar{P}_{t}(i'\mid i,W,T)\bar{\alpha }_{t+1}^{\bar{l}(b,W,T,\beta )}(i')\biggl ]\Biggl ]\Biggl \} \end{aligned}$$

where

$$\begin{aligned} \bar{l}(b,a_{t},o,\beta )=\arg \max _{k}\left\{ \sum _{i\in S_{b}}b(i)R_{t}^{a_{t}}(o\mid i)\sum _{i'\in S^{b}}\bar{P}_{t}(i'\mid i,a_{t},o)\bar{\alpha }_{t+1}^{k}(i')\right\} . \end{aligned}$$

Then,

$$\begin{aligned} W_{t}^{*}(b,\beta )= & {} \max _{a_{t}\in A}\sum _{i\in S^{b}}b(i)\Biggl \{\beta \Biggl [\sum _{o\in \left\{ T,TP\right\} }R_{t}^{a_{t}}(o\mid i)\biggl [r_{t}(i,a_{t},o)\\&\quad + \sum _{i'\in S^{b}}\bar{P}_{t}(i'\mid i,a_{t},o)\bar{\alpha }_{t+1}^{\bar{l}(b,a_{t},o,\beta )}(i')\biggr ]+ R_{t}^{a_{t}}(TC\mid i)H_{t}\Biggr ]\\&\quad + \, (1-\beta )\Biggr [R_{t}^{W}(T\mid i)\biggr [r_{t}(i,W,T)+\sum _{i'\in S^{b}}\bar{P}_{t}(i'\mid i,W,T)\bar{\alpha }_{t+1}^{\bar{l}(b,W,T,\beta )}(i')\biggl ]\Biggl ]\Biggl \}\\= & {} \max _{a_{t}\in A}\sum _{i\in S^{b}}b(i)\bar{\alpha }_{t}^{\bar{l}(b,a_{t},\beta )}(i)\\= & {} \sum _{i\in S^{b}}b(i)\bar{\alpha }_{t}^{\bar{l}(b,\beta )}(i) \end{aligned}$$

where

$$\begin{aligned}&\bar{\alpha }_{t}^{\bar{l}(b,a_{t},\beta )}(i) \nonumber \\&\quad = \beta \Biggl [\sum _{o\in \left\{ T,TP\right\} }R_{t}^{a_{t}}(o\mid i)\biggl [r_{t}(i,a_{t},o)+\sum _{i'\in S^{b}}\bar{P}_{t}(i'\mid i,a_{t},o)\bar{\alpha }_{t+1}^{\bar{l}(b,a_{t},o,\beta )}(i')\biggr ]\\ \nonumber \\&\qquad + \, R_{t}^{a_{t}}(TC\mid i)H_{t}\Biggl ]\\ \nonumber \\&\qquad + \, (1-\beta _{t})\Biggl [R_{t}^{W}(T\mid i)\biggr [r_{t}(i,W,T)+\sum _{i'\in S^{b}}\bar{P}_{t}(i'\mid i,W,T)\bar{\alpha }_{t+1}^{\bar{l}(b,W,T,\beta )}(i')\biggl ]\Biggl ] \end{aligned}$$

and

$$\begin{aligned} \bar{l}(b,\beta )=\arg \max _{k}\sum _{i\in S_{b}}b(i)\alpha _{t}^{k}=\arg \max _{(\bar{l}(b,W,\beta ), \bar{l}(b,C,\beta ))}\sum _{i\in S_{b}}b(i)\bar{\alpha }_{t}^{\bar{l}(b,a_{t},\beta )}(i). \end{aligned}$$

Hence, the proof is done. \(\square \)

Proof of Theorem 2

Similar with Theorem 1, we also prove Theorem 2 by induction. By our boundary assumptions,

$$\begin{aligned} V_{T}^{*}\left( b_{T},\alpha \right) =\sum _{b_{T}\in S^{b}}b_{T}\left( i\right) r_{T}\left( i\right) . \end{aligned}$$

Assume that \(V_{t+1}^{*}(b,\alpha )\) is piecewise linear and convex, i.e.,

$$\begin{aligned} V_{t+1}^{*}(b,\alpha )=\max _{k}\sum _{i\in S^{b}}b(i)\alpha _{t+1}^{k}(i), \end{aligned}$$

where \(\alpha _{t+1}^{k}(i)\) are some constants. We next show that \(V_{t}^{*}(b,\alpha )\) is a piecewise linear and convex function. First, we establish that \(V_{t+,n}^{*}(b_{t}^{F},\alpha )\) is piecewise linear and convex. Let \(V_{t+,n}(b_{t}^{F},a_{t},\alpha )\) represents the total quality-adjusted life years from time \(t\) to last decision period for an average-risk patient whose belief state is \(b\), compliance rate is \(\alpha \) and action is \(a_{t}\) at time \(t\). From Theorem 1, we know that the \(W_{t}^{*}(b,\beta )\) is piecewise linear and convex. We apply the result in the formulation of \(V_{t+,n}^{*}(b_{t}^{F},a_{t},\alpha )\), and obtain

$$\begin{aligned}&V_{t+,n}(b_{t}^{F},a_{t},\alpha ) \nonumber \\&\quad = \alpha \sum _{i\in S^{b}}b_{t}^{F}(i)\biggl \{ R_{t}^{a_{t}}(T\mid i)\biggl [r_{t}(i,a_{t},T)+V_{t+1}^{*}\left( \sigma _{t}[b_{t}^{F},a_{t},T],\alpha \right) \biggl ]\nonumber \\&\qquad + \, R_{t}^{a_{t}}(TP\mid i)\biggl [r_{t}(i,a_{t},TP)+W_{t+1}^{*}\left( \bar{\sigma }_{t}[b_{t}^{F},a_{t},TP],\beta \right) \biggl ]+R_{t}^{a_{t}}(TC\mid i)H_{t}\biggl \}\nonumber \\&\qquad + \, (1-\alpha )\sum _{i\in S^{b}}b_{t}^{F}(i)\biggl \{ R_{t}^{W}(T\mid i)\biggl [r_{t}(i,W,T)+V_{t+1}^{*}\left( \sigma _{t}[b_{t}^{F},W,T],\alpha \right) \biggl ]\nonumber \\&\qquad + \, R_{t}^{W}(TC\mid i)H_{t}\biggl \}. \end{aligned}$$

By expanding the \(V_{t+1}^{*}\left( \sigma _{t}[b_{t}^{F},a_{t},T],\alpha \right) \) and \(W_{t+1}^{*}\left( \bar{\sigma }_{t}[b_{t}^{F},a_{t},TP],\beta \right) \), we obtain the following result:

$$\begin{aligned}&V_{t+,n}(b_{t}^{F},a_{t},\alpha ) \nonumber \\&\quad = \sum _{i\in S^{b}}b_{t}^{F}(i)\Biggl \{\alpha \biggl [R_{t}^{a_{t}}(T\mid i)\biggl [r_{t}(i,a_{t},T)+\sum _{i'\in S^{b}}P_{t}(i'\mid i,a_{t},T)\alpha _{t+1}^{l(\sigma _{t}[b_{t}^{F},a_{t},T],a_{t},\alpha )}(i')\biggl ]\nonumber \\&\qquad + \, R_{t}^{a_{t}}(TP\mid i)\biggl [r_{t}(i,a_{t},TP)+\sum _{i''\in S^{b}}\bar{P}_{t}(i''\mid i,a_{t},TP)\bar{\alpha }_{t+1}^{\bar{l}(b_{t}^{F},a_{t},\beta )}(i'')\biggl ]+R_{t}^{a_{t}}(TC\mid i)H_{t}\biggr ]\nonumber \\&\qquad + \, (1-\alpha )R_{t}^{W}(T\mid i)\biggl [r_{t}(i,W,T)+\sum _{i'\in S^{b}}P_{t}(i'\mid i,W,T)\alpha _{t+1}^{l(\sigma _{t}[b_{t}^{F},W,T],W,\alpha )}(i')\biggr ]\Biggl \} \end{aligned}$$

where

$$\begin{aligned} l(\sigma _{t}[b_{t}^{F},a_{t},T],a_{t},\alpha )=\arg \max _{k}\bigl \{\sum _{j\in S^{b}}\sigma _{t}[b_{t}^{F},a_{t},T](j)\alpha _{t+1}^{k}(i')\bigr \}, \end{aligned}$$

and

$$\begin{aligned} \bar{l}(b_{t}^{F},a_{t},\beta )=\arg \max _{k}\bigl \{\sum _{j'\in S^{b}}b_{t}^{F}(j')R_{t}^{a_{t}}(TP\mid j')\sum _{i''\in S^{b}}\bar{P}_{t}(i''\mid j',a_{t},TP)\bar{\alpha }_{t+1}^{k}(i'')\bigr \}. \end{aligned}$$

Hence, \(V_{t+,n}^{*}(b_{t}^{F},\alpha )\) is a piecewise linear and convex function, i.e.,

$$\begin{aligned}&V_{t+,n}^{*}(b_{t}^{F},\alpha ) \nonumber \\&\quad = \max _{a_{t}\in A}\sum _{i\in S^{b}}b_{t}^{F}(i)\Biggl \{\alpha \biggl [R_{t}^{a_{t}}(T\mid i)\biggl [r_{t}(i,a_{t},T)+\sum _{i'\in S^{b}}P_{t}(i'\mid i,a_{t},T)\alpha _{t+1}^{l(\sigma _{t}[b_{t}^{F},a_{t},T],a_{t},\alpha )}(i')\biggl ] \nonumber \\&\qquad + \, R_{t}^{a_{t}}(TP\mid i)\biggl [r_{t}(i,a_{t},TP)+\sum _{i''\in S^{b}}\bar{P}_{t}(i''\mid i,a_{t},TP)\bar{\alpha }_{t+1}^{\bar{l}(b_{t}^{F},a_{t},\beta )}(i'')\biggl ]+R_{t}^{a_{t}}(TC\mid i)H_{t}\biggr ]\nonumber \\&\qquad + \, (1-\alpha )R_{t}^{W}(T\mid i)\biggl [r_{t}(i,W,T)+\sum _{i'\in S^{b}}P_{t}(i'\mid i,W,T)\alpha _{t+1}^{l(\sigma _{t}[b_{t}^{F},W,T],W,\alpha )}(i')\biggr ]\Biggl \}\nonumber \\&\quad = \max _{a_{t}\in A}\sum _{i\in S^{b}}b_{t}^{F}(i)\alpha _{t+}^{l_{+}(b_{t}^{F},a_{t},\alpha )}(i)\nonumber \\&\quad = \sum _{i\in S^{b}}b_{t}^{F}(i)\alpha _{t+}^{l_{+}(b_{t}^{F},\alpha )}(i) \end{aligned}$$

where

$$\begin{aligned}&\alpha _{t+}^{l_{+}(b_{t}^{F},a_{t},\alpha )}(i)\nonumber \\&\quad = \alpha \Biggl [R_{t}^{a_{t}}(T\mid i)\biggl [r_{t}(i,a_{t},T)+\sum _{i'\in S^{b}}P_{t}(i'\mid i,a_{t},T)\alpha _{t+1}^{l(\sigma _{t}[b_{t}^{F},a_{t},T],a_{t},\alpha )}(i')\biggl ]\nonumber \\&R_{t}^{a_{t}}(TP\mid i)\biggl [r_{t}(i,a_{t},TP)+\sum _{i''\in S^{b}}\bar{P}_{t}(i''\mid i,a_{t},TP)\bar{\alpha }_{t+1}^{\bar{l}([b_{t}^{F},a_{t},TP],\beta )}(i'')\biggl ]\nonumber \\&\qquad + \, R_{t}^{a_{t}}(TC\mid i)H_{t}\Biggr ]\nonumber \\&\qquad + \, (1-\alpha )R_{t}^{W}(T\mid i)\biggl [r_{t}(i,W,T)+\sum _{i'\in S^{b}}P_{t}(i'\mid i,W,T)\alpha _{t+1}^{l(\sigma _{t}[b_{t}^{F},W,T],W,\alpha )}(i')\biggr ] \end{aligned}$$

and

$$\begin{aligned} l_{+}(b_{t}^{F},\alpha )=\arg \max _{(l_{+}(b_{t}^{F},W,\alpha ), l_{+}(b_{t}^{F},C,\alpha ))}\sum _{i\in S^{b}}b_{t}^{F}(i)\alpha _{t+}^{l_{+}(b_{t}^{F},a_{t},\alpha )}(i). \end{aligned}$$

Then, we obtain

$$\begin{aligned} V_{t}^{*}(b,\alpha )= & {} \sum _{i\in S^{b}}b(i)\left( \sum _{n}R_{t}^{F}(n\mid i)V_{t+,n}^{*}(b_{t}^{F},\alpha )\right) \\= & {} \sum _{i\in S^{b}}b(i)\left( \sum _{n}R_{t}^{F}(n\mid i)\sum _{i'\in S^{b}}b_{t}^{F}(i')\alpha _{t+}^{l_{+}(b_{t}^{F},\alpha )}(i')\right) \\= & {} \sum _{i\in S^{b}}b(i)\left( \sum _{n}R_{t}^{F}(n\mid i)\sum _{i'\in S^{b}}\frac{b(i')R_{t}^{F}(n\mid i')}{\sum _{j\in S^{b}}b(j)R_{t}^{F}(n\mid j)}\alpha _{t+}^{l_{+}(b_{t}^{F},\alpha )}(i')\right) \\= & {} \sum _{n}\left( \left( \sum _{i\in S^{b}}b(i)R_{t}^{F}(n\mid i)\right) \sum _{i'\in S^{b}}\frac{b(i')R_{t}^{F}(n\mid i')}{\sum _{j\in S^{b}}b(j)R_{t}^{F}(n\mid j)}\alpha _{t+}^{l_{+}(b_{t}^{F},\alpha )}(i')\right) \\= & {} \sum _{i'\in S^{b}}b(i')\left( \sum _{n}R_{t}^{F}(n\mid i')\alpha _{t+}^{l_{+}(b_{t}^{F},\alpha )}(i')\right) . \end{aligned}$$

Let

$$\begin{aligned} \alpha _{t}^{l(b,\alpha )}(i')=\sum _{n}R_{t}^{F}(n\mid i')\alpha _{t+}^{l_{+}(b_{t}^{F},\alpha )}(i') , \end{aligned}$$

then

$$\begin{aligned} V_{t}^{*}(b,\alpha )=\sum _{i'\in S^{b}}b(i')\alpha _{t}^{l(b,\alpha )}(i'). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Dong, M., Ren, Y. et al. How patient compliance impacts the recommendations for colorectal cancer screening. J Comb Optim 30, 920–937 (2015). https://doi.org/10.1007/s10878-015-9849-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-015-9849-y

Keywords

Navigation