Skip to main content
Log in

New analysis and computational study for the planar connected dominating set problem

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

The connected dominating set (CDS) problem is a well studied NP-hard problem with many important applications. Dorn et al. (Algorithmica 58:790–810 2010) introduce a branch-decomposition based algorithm design technique for NP-hard problems in planar graphs and give an algorithm (DPBF algorithm) which solves the planar CDS problem in \(O(2^{9.822\sqrt{n}}n+n^3)\) time and \(O(2^{8.11\sqrt{n}}n+n^3)\) time, with a conventional method and fast matrix multiplication in the dynamic programming step of the algorithm, respectively. We show that DPBF algorithm solves the planar CDS problem in \(O(2^{9.8\sqrt{n}}n+n^3)\) time with a conventional method and in \(O(2^{8.08\sqrt{n}}n+n^3)\) time with a fast matrix multiplication. For a graph \(G\), let \({\hbox {bw}}(G)\) be the branchwidth of \(G\) and \(\gamma _c(G)\) be the connected dominating number of \(G\). We prove \({\hbox {bw}}(G)\le 2\sqrt{10\gamma _c(G)}+32\). From this result, the planar CDS problem admits an \(O(2^{23.54\sqrt{\gamma _c(G)}}\gamma _c(G)+n^3)\) time fixed-parameter algorithm. We report computational study results on the practical performance of DPBF algorithm, which show that the size of instances can be solved by the algorithm mainly depends on the branchwidth of the instances, coinciding with the theoretical analysis. For graphs with small or moderate branchwidth, the CDS problem instances with size up to a few thousands edges can be solved in a practical time and memory space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alber J, Fellows MR, Niedermeier R (2004) Polynomial time data reduction for dominating set. J ACM 51(3):363–384

    Article  MathSciNet  MATH  Google Scholar 

  • Alber J, Dorn F, Niedermeier R (2005) Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs. Discrete Appl Math 145(2):219–231

    Article  MathSciNet  MATH  Google Scholar 

  • Alber J, Betzler N, Niedermeier R (2006) Experiments on data reduction for optimal domination in networks. J Ann Oper Res 146(1):105–117

    Article  MathSciNet  MATH  Google Scholar 

  • Alber J, Dorn F, Niedermeier R Experiments on optimally solving NP-complete problems on planar graphs. Manuscript, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4973&rep=rep1&type=pdf

  • Awick U (2002) All pairs shortest paths using bridging sets and rectangular matrix multiplication. J ACM 49:289–317

    Article  MathSciNet  Google Scholar 

  • Bian Z, Gu Q (2008) Computing branch decompositions of large planar graphs. In: Proceeding of the 7th International Workshop on Experimental Algorithms (WEA 2008). LNCS, vol 5038, pp. 87–100

  • Bian Z, Gu Q, Marzban M, Tamaki H, Yoshitake Y (2008) Empirical study on branchwidth and branch decomposition of planar graphs. In: Proceedings of the 9th SIAM Workshop on Algorithm Engineering and Experiments (ALENEX’08), pp. 152–165

  • Blum J, Ding M, Thaeler A, Cheng X (2005) Connected dominating set in sensor networks and MANETs. In: Du DZ, Pardalos P (eds) Handbooks of Combinatorial Optimization, (Supplementary vol B), Kluwer Academic Publishers, pp. 329–369

  • Bodlaender HL, Cygan M, Kratsch S, Nederlof J (2013) Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. In: Proceedings of the 2013 International Colloquium on Automata, Language and Programming (ICALP2013). LNCS, vol 7965, pp. 196–207

  • Bodlaender HL, van Leeuwen EJ, van Rooij JMM, Vatshelle M (2010) Faster algorithms on branch and clique decompositions. In: Proceedings of the 2010 International Symposium on Mathematical Foundations of Computer Science (MFCS2010). LNCS, vol 6281, pp. 174–185

  • Cheng X, Ding M, Du H, Jia X (2006) Virtual backbone construction in multihop Ad Hoc wireless networks. Wirel Commun Mob Comput 6(2):183–190

    Article  Google Scholar 

  • Cygan M, Nederlof J, Pilipczuk Ma, Pilipczuk Mi, van Rooij JMM, Wojtaszczyk JO (2010) Solving connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of the 2011 Annual Symposium on Foundations of Computer Science (FOCS2011), pp. 150–159

  • Demaine ED, Hajiaghayi M (2005) Bidimensionality: new connections between FPT algorithms and PTAS. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 590–601

  • Demaine ED, Fomin FV, Hajiaghayi M, Thilikos DM (2005) Fixed parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans Algorithms 1:33–48

    Article  MathSciNet  MATH  Google Scholar 

  • Demaine ED, Hajiaghayi M (2008) Bidimensionality theory and its algorithmic applications. Comput J 51(3):292–302

    Article  Google Scholar 

  • Dorn F (2006) Dynamic programming and fast matrix multiplication. In: Proceeding of the 14th Annual European Symposium on Algorithms (ESA2006). LNCS, vol 4168, pp. 280–291

  • Dorn F, Fomin FV, Thilikos DM (2008) Subexponential parameterized algorithms. Comput Sci Rev 2(1):29–39

    Article  MATH  Google Scholar 

  • Dorn F, Penninkx E, Bodlaender HL, Fomin FV (2010) Efficient exact algorithms on planar graphs: exploiting sphere cut branch decompositions. Algorithmica 58:790–810

    Article  MathSciNet  MATH  Google Scholar 

  • Dorn F, Fomin FV, Thilikos DM (2012) Catalan structures and dynamic programming in h-minor-free graphs. J Comput Syst Sci 78(5):1606–1622

    Article  MathSciNet  MATH  Google Scholar 

  • Downey RG, Fellows MR (1992) Fixed parameter tractability and completeness. Congr Numerantium 87:161–187

    MathSciNet  MATH  Google Scholar 

  • Downey RG, Fellows MR (2013) Fundamentals of parameterized complexity. Texts in computer science. Springer, Berlin

    Book  MATH  Google Scholar 

  • Duchet P, Meyniel H (1982) On Hadwiger’s number and stability number. Ann Discrete Math 13:71–74

    MathSciNet  MATH  Google Scholar 

  • Fafianie S, Bodlaender HL, Nederlof J (2013) Speeding up dynamic proramming with representative sets—an experimental evaluation of algorithms for Steiner tree on tree decompositions. In: Proceedings of the 2013 International Symposium on Parameterized and Exact Computation (IPEC2013). LNCS, vol 8246, pp. 321–334

  • Fernau H, Juedes D (2004) A geometric approach to parameterized algorithms for domination problems on planar graphs. In: Proceedings of the 2004 International Symposium on Mathematical Foundations of Computer Science (MFCS2004). LNCS, vol 3153, pp. 488–499

  • Fomin FV, Thilikos DM (2006) Dominating sets in planar graphs: branch-width and exponential speed-up. SIAM J Comput 36(2):281–309

    Article  MathSciNet  MATH  Google Scholar 

  • Fomin FV, Thilikos DM (2006) New upper bounds on the decomposability of planar graphs. J Graph Theory 51(1):53–81

    Article  MathSciNet  MATH  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability, a guide to the theory of NP-completeness. Freeman, New York

    MATH  Google Scholar 

  • Gu Q, Tamaki H (2008) Optimal branch-decomposition of planar graphs in \({O}(n^3)\) time. ACM Trans Algorithms 4(3):30:1–30:13

    Article  MathSciNet  Google Scholar 

  • Gu Q, Tamaki H (2011) Constant-factor approximations of branch-decomposition and largest grid minor of planar graphs in \({O}(n^{1+\epsilon })\) time. Theor Comput Sci 412(32):4100–4109

    Article  MathSciNet  MATH  Google Scholar 

  • Guha S, Khuller S (1998) Approximation algorithms for connected dominating sets. Algorithmica 20:374–387

    Article  MathSciNet  MATH  Google Scholar 

  • Gu Q, Imani N (2010) Connectivity is not a limit for kernelization: planar connected dominating set. In: Proceeding of the 9th Latin American Theoretical Informatics Symposium (Latin 2010). LNCS, vol 6034, pp. 26–37

  • Gu Q, Xu G (2014) Near-linear time constant-factor approximation algorithm for branch-decomposition of planar graphs. In: Proceeding of the 40th International Workshop on Graph-Theoretic Concepts in Computer Science (WG2014). LNCS, vol 8747, pp. 238–249

  • Haynes TW, Hedetniemi ST, Slater PJ (eds) (1998a) Domination in graphs. In: Monographs and textbooks in pure and applied mathematics, vol 209. Marcel Dekker, New York

  • Haynes TW, Hedetniemi ST, Slater PJ (eds) (1998b) Fundamentals of domination in graphs. In: Monographs and textbooks in pure and applied mathematics, vol 208. Marcel Dekker, New York

  • Hicks IV (2005a) Planar branch decompositions I: the ratcatcher. INFORMS J Comput 17(4):402–412

    Article  MathSciNet  MATH  Google Scholar 

  • Hicks IV (2005b) Planar branch decompositions II: the cycle method. INFORMS J Comput 17(4):413–421

    Article  MathSciNet  MATH  Google Scholar 

  • Kammer F, Tholey T (2012) Approximate tree decompositions of planar graphs in linear time. In: Proceedings of the 2012 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA2012), pp. 683–698

  • Li Xiang-Yang (2003) Algorithmic, geometric and graphs issues in wireless networks. J Wirel Commun Mob Comput 6(2):119–140

    Article  Google Scholar 

  • Library of Efficient Data Types and Algorithms, Version 5.2 (2008). http://www.algorithmic-solutions.com/enleda.htm

  • Liu H, Wan P, Yi C, Jia X, Makki S, Pissinou N (2005) Maximal lifetime scheduling in sensor surveillance networks. In: Proceeding of IEEE INFOCOM 2005

  • Lokshtanov D, Mnich M, Saurabh S (2009) Linear kernel for planar connected dominating set. In: Proceeding of the 6th Annual Conference on Theory and Applications of Models of Computation (TAMC 2009). LNCS, vol 5532, pp. 281–290

  • Marzban M, Gu Q, Jia X (2009) Computational study on planar dominating set problem. Theor Comput Sci 410(52):5455–5466

    Article  MathSciNet  MATH  Google Scholar 

  • Marzban M, Gu Q, Jia X (2010) Computational study for planar connected dominating set problem. Proceeding of the 4th International Conference on Combinatorial Optimization and Applications (COCOA 2010). LNCS, vol 6509, pp. 107–116

  • Public Implementation of a Graph Algorithm Library and Editor (2008). http://pigale.sourceforge.net/

  • Reinelt G (1991) TSPLIB-A traveling salesman library. ORSA J Comput 3:376–384

    Article  MATH  Google Scholar 

  • Robertson N, Seymour PD (1983) Graph minors I. Excluding a forest. J Comb Theory Ser B 35:39–61

    Article  MathSciNet  MATH  Google Scholar 

  • Robertson N, Seymour PD (1986) Graph minors II. Algorithmic aspects of tree-width. J Algorithms 7:309–322

    Article  MathSciNet  MATH  Google Scholar 

  • Robertson N, Seymour PD (1991) Graph minors X. Obstructions to tree decomposition. J Comb Theory Ser B 52:153–190

    Article  MathSciNet  MATH  Google Scholar 

  • Seymour PD, Thomas R (1994) Call routing and the ratcatcher. Combinatorica 14(2):217–241

    Article  MathSciNet  MATH  Google Scholar 

  • The LEDA User Manual, Algorithmic Solutions, Version 4.2.1 (2008). http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html

  • van Rooij JMM, Bodlaender HL, Rossmanith P (2009) Dynamic programming on tree decomposition using generalised fast subset convolution. In: Proceedings of the 2009 Annual European Symposium on Algorithms (ESA2009). LNCS, vol 5757, pp. 566–577

Download references

Acknowledgments

The authors thank anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian-Ping Gu.

Additional information

A preliminary version of this paper appeared in the Proceeding of the 2010 International Conference on Combinatorial Optimization and Applications (COCOA 2010) Marzban et al. (2010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzban, M., Gu, QP. & Jia, X. New analysis and computational study for the planar connected dominating set problem. J Comb Optim 32, 198–225 (2016). https://doi.org/10.1007/s10878-015-9871-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-015-9871-0

Keywords

Navigation