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Abstract

An m × n matrix A with column supports {Si} is k-separable if the
disjunctions

⋃
i∈K Si are all distinct over all sets K of cardinality k. While

a simple counting bound shows that m > k log
2
n/k rows are required for

a separable matrix to exist, in fact it is necessary for m to be about a
factor of k more than this. In this paper, we consider a weaker definition
of ‘almost k-separability’, which requires that the disjunctions are ‘mostly
distinct’. We show using a random construction that these matrices exist
with m = O(k log n) rows, which is optimal for k = O(n1−β). Further,
by calculating explicit constants, we show how almost separable matrices
give new bounds on the rate of nonadaptive group testing.

1 Introduction

Let A ∈ {0, 1}m×n be an m× n binary matrix, and write Si for the support of
its ith column (that is, the locations of the 1s). Then A is said to be k-separable
if the sets

⋃

i∈K Si are all distinct over all sets K ∈ {1, 2, . . . , n} of cardinality k
(see Definition 1, to come).

Separable matrices were first introduced by Erdős and Moser in 1970 [9] and
have since been studied in different contexts, including coding theory, combina-
torics and, as we discuss later, group testing, where they play a very important
role.

Separable matrices are often studied through the slightly stronger concept
of disjunct matrices (see Definition 3). Disjunct matrices were first introduced
by Kautz and Singleton [11] and, just like separable matrices, they have been
extensively studied in coding theory, combinatorics and group testing [5, 7, 8,
10, 18].

A central question in the study of both separable and disjunct matrices is
the following: Given n and k, how large must m be for there to exist either
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an m × n k-separable or disjunct matrix? In this paper, we investigate the
asymptotics for separability as n → ∞, where k may grow with n.

A simple counting bound (Theorem 2) shows that m ≥ Ω(k log n/k) rows
are required. Disappointingly, when k = o(n) this bound is not tight, and we
require roughly a factor of k more than this, as in fact it has been shown [7, 5]
that m ≥ Ω(k2 log n/ log k) is needed. This lower bound is motivated by the
connection between disjunctness and separability, as we discuss in Section 2.
Notice that when k grows linearly with n, taking the identity matrix is order
optimal – for this reason, we consider only k = o(n) in this paper.

In order to meet the lower bound m ≥ Ω(k log n/k), we consider a relaxation
of the requirement of k-separability to almost k-separability. Roughly speaking,
a matrix is almost k-separable if the sets

⋃

i∈K Si are ‘usually’ distinct – see
Definition 4 for a formal definition.

Our main result shows that it is possible to achieve almost separability with
only O(k log n) rows (Theorem 7). When k = O(n1−β), for any β ∈ (0, 1], this is
order-optimal to the counting bound. However, we also aim to get best possible
constants for m - a goal motivated by the study of the rate of group testing
algorithms.

Group testing is an old and well-studied search problem, first considered by
Dorfman [6], where the goal is to recover a sparse subset of k defective elements
spread among n otherwise identical items. Instead of testing each item for de-
fectiveness individually, classic group testing algorithms test items in batches.
In the noiseless binary model we consider, tests can only reveal whether a given
set contains at least one defective (a positive test) or no defectives (a negative
test). The connection between separable matrices and nonadaptive group test-
ing is well-known, and we discuss it in Section 5. For the moment, we just
observe that a sequence of tests designed a priori (nonadaptive group testing)
has a natural binary-matrix representation: each length-n row represents a test,
with entries being 1 if the corresponding item is being included in the test.

A matrix being k-separable is equivalent to having zero probability of error
for nonadaptive group testing, while a matrix being almost k-separable is equiv-
alent to having a small probability of error. The ‘arbitrarily small probability
of error’ criterion we consider here is the same as that in Shannon’s theory of
channel coding.

With this comparison in mind, we consider the concept of rate of group
testing (Definition 10) for k = n1−β defective items in a population of size
n, which can be thought of as the amount of information conveyed by each
test. Using a separable matrix with m = Ω(k2 log n/ log k) rows leads to a
group testing rate of 0. However, using an almost separable matrix with m =
O(k log n) rows gives a strictly positive rate, with the rate depending on the
contant implied by the big-O. Hence, here we are interested in getting good
constants for m, not only in order-wise results.

In Theorem 11, we show that our results meet previous results for the limiting
regime where k is fixed as n → ∞, and improves over the previous best known
bounds for larger values of the sparsity parameter β ∈ [0, 1] in the k = n1−β

regime frequently considered in the group testing literature.
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2 Separable matrices

We begin by recalling the definition of a separable matrix.

Definition 1. Given an m × n binary matrix A = (aij) ∈ {0, 1}m×n, we shall
write Si := {j : aij = 1} for the support of column i and for K ⊆ {1, 2, . . . , n}
also write S(K) :=

⋃

i∈K Si for the support of a disjunction of columns.
The matrix A is called k-separable matrix if the for all sets K of size k, there

is no other set L also of size k with S(L) = S(K).

The case k = 0 is trivial, so we assume k ≥ 1 throughout. We shall also
assume k ≤ n/2, which will be no restriction in the limiting regimes we study.

The following counting bound is described by Chen and Hwang as “simple-
minded” [5].

Theorem 2. Let M(n, k) be the smallest m such that an m × n k-separable
matrix exists. Then

M(n, k) ≥ log2

(

n

k

)

.

Proof. Clearly

|{S(K) : |K| = k}| ≤ |P({1, 2, . . . ,m})| = 2m,

where P denotes the power set. Hence for A to be k-separable we require
2m ≥

(

n
k

)

, and taking logarithms gives the result.

Using the lower bound of

(n

k

)k

≤
(

n

k

)

≤
(en

k

)k

(1)

(which we shall use many times in this paper), we see that a k-separable matrix
must have at least m ≥ k log2 n/k = Ω(k log n/k) rows.

As we anticipated, separable matrices are tightly related to another class of
matrices, namely that of disjunct matrices.

Definition 3. With the notation of Definition 1, A is k-disjunct if for all sets
K of cardinality |K| = k, there does not exist i 6∈ K such that Si ⊆ S(K).

In the language of set systems, a matrix A being k-seperable is equivalent
to the family {Si}ni=1 being k-union-free, and A being k-disjunct is equivalent
to {Si}ni=1 being k-cover-free.

It’s easy to see that k-disjunctness implies k-separability (see, for example,
[11], [7, Section 7.2], or the special case ǫ = 0 of Lemma 6 below). On the
other hand, Chen and Hwang [5, Theorem 2] have shown that it is possible to
construct a k-disjunct matrix from a 2k-separable matrix by adding at most
one row to it, which means that disjunct and separable matrices share the same
order-wise asymptotics. Dyachkov and Rykov have quantified these asymptotics
by showing that m ≥ Ω(k2 log n/ log k) rows are necessary for a matrix to be k-
disjunct [8] – similar results appear elsewhere [18] [10] [7, Theorem 7.2.14]. This
means that it is not possible to create a k-separable matrix with m = O(k log n)
rows.
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As disjunctness is a stronger (and, in some ways, simpler) property than
separability, efforts to derive upper bounds on m for separable matrices have
often proceeded via the construction of disjunct matrices. In their seminal paper
[11], Kautz and Singleton give a probabilistic existence theorem for k-disjunct
matrices with m = O(k2 log n) rows. In the group testing literature there exist
explicit constructions of testing schemes with O(k2 log n) rows, see for example
Porat and Rothschild [17].

3 Almost separable matrices

Since separable matrices cannot meet the counting bound, it would be of interest
if a matrix could be close to being separable using only O(k log n) rows. Such a
matrix would be order-optimal.

With this in mind, we define the concept of an almost separable matrix in a
similar manner to Defintion 1.

Definition 4. With the notation of Definition 1, A ∈ {0, 1}m×n is ǫ-almost
k-separable if for at most ǫ

(

n
k

)

sets K of size k does there exist another set L of
size k with S(L) = S(K).

An analogous definition is present in for example [22], where almost separable
matrices are called weakly separating designs. Note that setting ǫ = 0 gives the
definition of a separable matrix.

The main result of this paper is to show the existence of ǫ-almost k-separable
matrices with m = O(k log n) rows (see Theorem 7 below). We also examine
the implicit constants for the case when k = n1−β grows polynomially in n.

Malyutov [14] effectively showed that ǫ-almost k-separable matrices exist
with m = (k + o(1)) log2 n rows in the regime where k is fixed as n → ∞. This
is a special case of a more general result Malyutov proved using an information
theoretic argument – this and similar work is reviewed in [15]. Sebő showed
effectively the same result [19], again for fixed k, by analysing a concrete bound
on the probability that there are two different sets of size k whose disjunctions
coincide – we follow a similar route here later. The same result for k fixed and
n → ∞ was rediscovered by Zhigljavsky [22, Theorem 5.5]. Although technically
different from Sebő’s argument, Zhigljavsky’s proof is morally similar: given two
sets K and L of k columns each, Zhigljavsky counts how many rows it is possible
to construct that would produce the same value for both S(K) and S(L). He
calls this number a Rényi coefficient and only considers designs with fixed- or
bounded-size tests.

Our result improves on these by allowing k to vary arbitrarily with n, subject
to k = o(n). In our discussion of group testing in Section 5 we show how, in
some regimes, this work also improves on recent results on nonadaptive group
testing giving bounds of the form m = O(k log n).

The definition of a disjunct matrix (Defintion 3) can similarly be weakened
to give an almost disjunct matrix. (This definition also appears in [16] and,
previously, in [12].)

Definition 5. With the notation of Definition 1, A is ǫ-almost k-disjunct if for
at most ǫ

(

n
k

)

sets K of size k does there exist a column i 6∈ K with Si ⊆ S(K).

4



Note again that ǫ = 0 corresponds to a disjunct matrix. Unsurprisingly,
almost disjunctness implies almost separability.

Lemma 6. Let A be an ǫ-almost k-disjunct matrix. Then A is ǫ-almost k-
separable (with the same ǫ and k).

Proof. We prove the contrapositive. Suppose A is not ǫ-almost k-separable.
Then there are more than ǫ

(

n
k

)

sets of size k breaking separability. Let K be
one of these sets, so there is another set L of size k with S(K) = S(L). Letting
i ∈ K \ L, we have Si ⊆ S(K), breaking disjunctness. Hence there are more
than ǫ

(

n
k

)

sets breaking disjunctness, and A is not ǫ-almost k-disjunct.

Mazumdar [16] shows that there exist almost k-disjunct matrices with m =
O(k3/2

√
log n) rows in the regime k ∼ nδ, δ > 0, which is the same as that

we consider for group testing. Mazumdar’s construction is similar to those of
Kautz and Singleton [11] and Porat and Rothschild [17]. In particular, [11] shows
how to build fully disjunct matrices with O(k2 log2k logn n) rows by mapping the
symbols of a q-ary Reed-Solomon code to unit-weight binary vectors of length
q, while [17] improves on this scheme by replacing the RS code with a linear q-
ary code achieving the Gilbert-Varshamov bound. This produces fully disjunct
matrices with O(k2 log n) rows. This improves on the Ω(k2 log n/ log k) required
for full disjunctness or separability, while being less good than the O(k log n)
we achieve for almost separability here.

Our main result is then the following.

Theorem 7. For any sequence k = k(n) = o(n) and ǫ > 0, there exist an
ǫ-almost k-separable matrix with m = O(k log n) rows.

More precisely, for α ∈ [ln 2, 1], define

M1(n, k, α) =
1

− ln(1− 2e−α + 2e−2α)
k ln

n

k
,

M2(n, k, α) =
1

− ln(1− 2e−α + 2e−α(1+1/k))
lnnk, (2)

M(n, k) = min
α∈[ln 2,1]

max {M1(n, k, α),M2(n, k, α)} .

Then for any ǫ, δ > 0, for n sufficiently large, and m > (1 + δ)M(n, k), there
exists and m× n ǫ-almost k-separable matrix.

Consider the special case α = ln 2. It is possible to see that M2 dominates,
and hence that there exist almost separable matrices with m = (1+ δ)k log2 nk
rows. Note that this is sufficient to show the m = O(k log n) result – and comes
with a slightly easier proof than the general case (see below). This bound also
meets the Malyutov–Sebő result of m ∼ k log2 n for k constant. However, it is
possible to get slightly better constants for most k = k(n) by allowing different
values of α. In particular, M2 with α = 1 gives the best result in many regimes.

In Section 5 we discuss the constants in more detail in the regime k = n1−β

for β ∈ (0, 1). (The reader may wish to skip ahead to Figure 1, to get a feeling
for this result.)

Our proof gives a randomised construction where the matrix is chosen to
have entries sampled from IID Bernoulli random variables; we discuss this in
the next section.
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4 Proof of main result

We proceed to prove Theorem 7 as follows. Fix n and k. We will choose A

to be an m × n matrix (where m will be determined later) with each entry
independently 1 with probability p and 0 with probability q = 1 − p, for some
p also to be chosen later. We aim to show that there is a choice of m and p so
that, with positive probability, A is ǫ-almost k-separable, and hence that such
a matrix exists.

The following bound will be important, and is fairly well known – see for
example Sebő [19], who analyses its asymptotics for fixed k as n → ∞.

Lemma 8. Let A be a randomly chosen matrix in {0, 1}m×n with each entry
independently 1 with probability p. For any set K of size k ≤ n/2, then

P(∃ L with |L| = k, S(L) = S(K)) ≤
k−1
∑

b=0

(

k

b

)(

n− k

k − b

)

(

1− 2qk + 2q2k−b
)m

.

(3)

Proof. Say that an overlap occurs if there exists L with |L| = k and S(L) =
S(K). Take two distinct sets K,L, both of size k, that have b = |K∩L| elements
in common. Then a row j of A could distinguish between K and L in two ways:
either we have j ∈ S(K) while j /∈ S(L), or the other way round: j ∈ S(L)
while j /∈ S(K).

If the entries of the row aj are IID Bernoulli(p), these two events each occur
with probability qk(1 − qk−b) = qk − q2k−b. Hence, row j fails to distinguish
between K and L with probability 1− 2qk(1− qk−b) = 1− 2qk + 2q2k−b.

Since the rows of A are IID, the whole matrix fails to distinguish between K
and L with probability (1− 2qk + 2qk−b)m.

The result then follows by a union bound over L, noting that the number of
sets of size k sharing b elements with K is precisely

(

k
b

)(

n−k
k−b

)

.

The main work in this paper is a careful asymptotic analysis of the overlap
probability (3), showing for which m it can be made arbitrarily small.

Lemma 9. For every sequence k = k(n) = o(n), ε, δ > 0, there exists n0 so
that if n > n0 and m > (1 + δ)M(n, k), with M(n, k) as in Theorem 7, then
P(overlap) < ε.

Proof. We first prove that it suffices to have m > (1 + δ)M2(n, k, ln 2), with
M2(n, k, ln 2) = (1+ o(1))k log2 nk. This is simpler to prove than the full result
and illustrates the main techniques.

Here, we take p = 1 − 2−1/k, as does Sebő [19], so that q = 2−1/k. This is
a special case of the general value of p used in the appendix, p = 1− e−α/k, by
taking α = ln 2. Note that, in group testing parlance, this is the value of p that
gives a 50 : 50 chance of a test being positive. The bound (3) then becomes

P(overlap) ≤
k−1
∑

b=0

(

k

b

)(

n− k

k − b

)(

1

2
2b/k

)m

.

6



It will be convenient to write c = k − b for the number of nonoverlapping
items, to get

P(overlap) ≤
k
∑

c=1

(

k

k − c

)(

n− k

c

)(

1

2
2(k−c)/k

)m

=
k
∑

c=1

(

k

c

)(

n− k

c

)

2−cm/k.

When m > (1+ δ)k log2 nk, then the terms in the above sum are decreasing
since
(

k
c+1

)(

n−k
c+1

)

2−(c+1)m/k

(

k
c

)(

n−k
c

)

2−cm/k
=

(k − c)(n− k − c)2−m/k

(c+ 1)2

≤ c2 − nc+ k(n− k)

nk(c2 + 2c+ 1)
(since 2−m/k ≤ 1/nk)

≤ 1

4
,

for n > 2k and k ≥ 2. Thus, the probability of an overlap can be estimated by
the largest term with

P(overlap) ≤ k(n− k)2−m/k
k
∑

c=1

(

1

4

)c−1

≤ kn2−(1+δ) log
2
nk 4

3

= nk(nk)−1−δ 4

3

≤ 2(nk)−δ,

which, for fixed δ > 0, can be made arbitrarily small for n sufficiently large.
Further, since log2 nk ≤ 2 log2 n, we see that m > (1 + δ)k log2 nk =

O(k log n).
We can get the more general result that it suffices to havem > (1+δ)M(n, k),

withM(n, k) as in (2), by instead taking p = 1−e−α/k, and then optimising over
α. The analysis is very similar to that above, but somewhat more longwinded.
The interested reader is directed to the appendix for the details.

Proving our main result is now straightforward.

Proof of Theorem 7. Choose the matrix A at random as above, with m and n
chosen as in Lemma 9 so that the overlap probability is at most ǫ/2.

Write X for the number of sets K of size k that experience an overlap. It is
clear A will be ǫ-almost k-separable provided that X ≤ ǫ

(

n
k

)

.
Then we have

P

(

X > ǫ

(

n

k

))

≤ 1

ǫ
(

n
k

)EX,

by the Markov inequality. But this expectation is, by Lemma 9

EX =
∑

|K|=k

P(K has an overlap) =

(

n

k

)

P(overlap) ≤
(

n

k

)

ǫ

2
.
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Hence, our random A is ǫ-almost k-separable with probability at least 1/2, so
such matrices must exist.

5 Rates for nonadaptive group testing

In this section, we show how the use of almost separable matrices can give new
results on the rate of nonadaptive group testing.

As we outlined in the introduction, in a nonadaptive group testing procedure
we aim to find a subset K of k defective items within a population of n identical
items. We use m pooled tests. Recall that the outcome of a test j is positive
if one or more of the defective items is in the test pool, and negative if none of
them are. We summarise our testing procedure by a matrix A = (aij), where
aij = 1 denotes that item i is in the pool for test j, and aij = 0 denotes that
it is not. Recalling the notation of Definition 1, the set of positive tests for a
defective set K is precisely S(K).

The aim is, given the outcomes S(K) and the matrix A, to identify the
defective set K. Clearly if there is no other L with S(K) = S(L), then we can
find K (at least theoretically: for study of practical algorithms for this, see, for
example, [1, 4, 20, 13, 21]). Conversely, if there is an L with S(K) = S(L), then
our error probability is at least 1/2.

A comprehensive survey of combinatorial group testing is given in [7]. Like-
wise, the study of nondeterministic testing schemes is addressed in the field of
probabilistic group testing – see for example [22] and references therein. The
derivation of both non-constructive results and practical algorithms has been
addressed in different contexts, including combinatorial [7, 14, 16, 19], proba-
bilistic [1, 22] and information-theoretic [2, 3, 15, 17, 20] scenarios.

The connection between separable matrices and nonadaptive group testing
is well explored. In particular, if there are known to be exactly k defective
items, then a testing matrix will allow us to find the defective set with certainty
if and only if it is k-separable. The advantages of using what we call almost
separability for group testing in the fixed-k regime have also been discussed in
[22].

While separable matrices allow detection with zero probability of error, the
study of group testing within the scope of information theory and the need for
efficient algorithms generated an interest in nonadaptive group testing with low
– but not necessarily zero – probability of error, a situation which has gained
considerable attention [1, 4, 20, 14, 13, 2, 21]. Here the probability of error is
defined as an average over all possible defective sets of size k; that is,

P(error) =
1
(

n
k

)

∑

|K|=k

P(error | K) .

Baldassini, Johnson and Aldridge [3] introduced a concept of the rate of
group testing to quantify how well a group testing design works. (An earlier
definition of rate for the fixed k regime had been introduced by Malyutov [15].)
The rate is the ratio of the number of tests to the counting bound log2

(

n
k

)

. If
we interpret the counting bound as a binary labelling of all possible defective
sets of size k, the rate can be considered as the number of bits learned per test
by the group testing procedure.

8



Definition 10. Consider a group testing problem with n items of which k are
defective. A design with m tests is said to have rate R = m/ log2

(

n
k

)

.
Given a sequence of group testing problems for n items of which k = k(n)

are defective, a rate R is said to be achievable for a design A if, for any ǫ > 0,
the design finds the defective set with error probability at most ǫ with rate at
least R for n sufficiently large.

We follow Baldassini et al. [3, 1] and study achievable rates in regimes where
k = k(n) = n1−β for different values of the sparsity parameter β ∈ (0, 1].

Note from the above that using a k-separable matrix with m ≥ Ω(k2 log n/
log k) tests gives rate 0 for all values of β < 1.

As far as we are aware, the best known rate for nonadaptive group testing
until now is achieved by the DD algorithm of Aldridge, Baldassini and Johnson
[1], which has a lower bound on the maximum achievable rate of

RDD(β) =
1

e ln 2
min

{

β

1− β
, 1

}

≈ 0.53min

{

β

1− β
, 1

}

, (4)

together with the Malytuov–Sebő result that R = 1 can be achieved in the
fixed-k regime.

Baldassini, Johnson and Aldridge [3] also showed that for adaptive group
testing, the generalized binary splitting algorithm of Hwang [7] gives a rate of
1 (the best possible) for all β ∈ (0, 1].

From Theorem 7, we know that using an ǫ-almost k-separating matrix will
find the defective set with error probability at most ǫ, since the sets K without
overlaps can by definition be recovered with certainty. Hence, the number of
rows of the almost separating matrix gives bounds on the rate. Therefore, using
our above results, we have the following:

Theorem 11. For β ∈ (0, 1] and k = n1−β, the maximum achievable rate of
nonadaptive group testing with n items of which k are defective is bounded below
by

R ≥ 1

ln 2
max

α∈[ln 2,1]
min

{

2αe−α β

2− β
,− ln

(

1− 2e−α + 2e−2α
)

}

. (5)

Figure 1 illustrates the result of Theorem 11. Note that our result improves
over the best known result for β > 2/3, and meets the Malyutov–Sebő point as
β → 1.

Proof. Following directly from Theorem 7 and the definition of rate, we have

R ≥ 1

ln 2
max

α∈[ln 2,1]
min

{

− ln
(

1− 2e−α + 2e−α(1+1/k)
)

k
β

2− β
,

− ln
(

1− 2e−α + 2e−2α
)

}

,

noting that, when k = n1−β ,

k log2 nk =
2− β

β
k log2

n

k
.

9



Figure 1: Bounds on rates of group testing, showing the DD bound (4) of
Baldassini et al, and our new result Theorem 11.

When β = 1, the second term is the minimum. When β < 1, since we have
that k → ∞, we can take limits in the first minimand. We have

− ln
(

1− 2e−α + 2e−α(1+1/k)
)

k

= − ln
(

1− 2e−α + 2e−αe−α/k
)

k

= − ln

(

1− 2e−α + 2e−α

(

1− α

k
+ o

(

1

k

)))

k

= − ln

(

1− 2e−αα

k
+ o

(

1

k

))

k

=

(

2e−αα

k
+ o

(

1

k

))

k

→ 2αe−α.

The result follows.

Note that our ‘simpler’ result with α = ln 2 gives a bound almost as good
the general case, namely

R(ln 2) =
β

2− β
.

In particular, this choice of α = ln 2 is optimal at β = 1.
Note also that for all but the sparsest cases, we get the bound by taking

α = 1. Specifically, for β ≤ β0, where

β0 =
−2 ln(1− 2e−1 + 2e−2)

2e−1 − ln(1− 2e−1 + 2e−2)
≈ 0.92,

10



optimal α
α = 1
α = ln 2
Corollary 12
counting bound
Malyutov–Sebő

1

0.95

0.90

0.85

0.9 0.95 1β*

Sparsity parameter β

Rate

Figure 2: Bounds on rates of group testing for large β, showing Theorem 11 for
different values of α and the approximation of Corollary 12.

the best value of the bound is

R(1) =
1

ln 2
min

{

2e−1 β

2− β
,− ln

(

1− 2e−1 + 2e−2
)

}

=
1

ln 2
2e−1 β

2− β

≈ 1.06
β

2− β
.

For β ∈ (β0, 1), the optimal rate is given as the maximum in (5), and the
optimal α is that which achieves the maximum. It’s easy to see for β ≥ β0 that
the maximum over α is achieved when the two terms in the minimum are equal,
and this is simple to solve numerically. However, here we also provide some
closed form approximations to this which could be useful.

Corollary 12. For 2 ln 2
1+ln 2 < β < 1 and k = n1−β, the maximum achievable rate

of nonadaptive group testing with n items, of which k are defective, is bounded
from below by

R ≥ 1− 1

ln 2
ln

(

1 +

(

2(1− β) ln 2

β(1− ln 2)

)2
)

This is illustrated in Figure 2. From this, we see that the bound of Corollary
12 is very good for β ≈ 1, but that when β is not much above β0, then the bound
of simply α = 1 is better. Hence, setting

β1 =
2 ln 2

1− 2e−1 + ln 2 + 2e−1 ln 2
≈ 0.94,

11



and taking β0 as above, we get the following bound:

Corollary 13. For β ∈ (0, 1) and k = n1−β, the maximum achievable rate
of nonadaptive group testing with n items, of which k are defective, is bounded
from below by

R ≥ 1

ln 2



























2e−1 β

2− β
if β ≤ β0

− ln(1− 2e−1 + 2e−2) if β0 < β ≤ β1,

ln 2− ln

(

1 +

(

2(1− β) ln 2

β(1− ln 2)

)2
)

if β > β1

The proofs of these statements can be found in Appendix B.

6 Conclusions and further work

We have explored the asymptotics of almost separability and we have shown
that almost separable matrices exist with O(k log n) rows. Furthermore, we
have proved that the use of almost separable matrice can improve the lower
bounds on the rate of nonadaptive group testing in the very sparse regime.

Several interesting questions, however, remain still open, and provide scope
for future research. Most notably, while we have given new achievable rates, the
maximum rate of nonadative group testing is still unknown. In particular, we
know of no upper bounds beyond the trivial counting bound.

As discussed in Section 2, Chen and Hwang [5] have proved that disjunct
and separable matrices share the same asymptotics by showing how to construct
a k-disjunct matrix out of a 2k-separable matrices by adding at most one row to
it. Unlike its inverse (disjunctness implying separability), this statement doesn’t
naturally carry through to the case of almost separability/disjunctness.

Another problem is to extend the existing results to other regimes than the
k = n1−β for β ∈ (0, 1] considered here. Of particular interest is the case where
k = cn grows like a constant proportion of n, as in recent work by Wadayama
[21]. Note that the counting bound now gives a lower bound of m = O(n),
while, for coupon-collector reasons, the IID random approach here inevitably
leads to the suboptimal m = Ω(n log n).

A Asymptotic analysis of the overlap probabil-

ity

We now show the full result of Lemma 9.
We use the same random construction as the special case described in Section

4, but now take p = 1 − e−α/k, so q = e−α/k, where α is a parameter to be
chosen later (simply taking α = ln 2 as in Section 4 gives p = 1−2−1/k). Within
the group testing literature, different values of p have also been considered. For
example, the value p = 1/k (which gives an average of one defective per test)
has been considered before by many authors [1, 4, 2, 22], while Sejdinovic and
Johnson [20] consider the more general α/k for noisy group testing. The same
value can be obtained asymptotically in this context, as p ∼ α/k if k → ∞ as
n → ∞.

12



Proof of Lemma 9. We wish to find values of m such that P(overlap) can be
made arbitrarily small. It will be convenient to write

s = 1− 2qk = 1− 2e−α, t = 2q2k = 2e−2α, u =
1

q
= eα/k,

allowing us to rewrite the bound (3) as

P(overlap) ≤
k−1
∑

b=0

(

k

b

)(

n− k

k − b

)

(

s+ tub
)m

.

As before, it will be more convenient to deal with c = b− k, which gives

P(overlap) ≤
k
∑

c=1

(

k

c

)(

n− k

c

)

(

s+ tuk−c
)m

. (6)

Now, we expand out (s+tub)m in (6) using the binomial theorem and reverse
the order of summation to get

P(overlap) ≤
k
∑

c=1

(

k

c

)(

n− k

c

) m
∑

j=0

(

m

j

)

sm−jtju(k−c)j

=

m
∑

j=0

(

m

j

)

sm−jtj
k
∑

c=1

(

k

c

)(

n− k

c

)

u(k−c)j

=

m
∑

j=0

(

m

j

)

sm−jtjujk
k
∑

c=1

(

k

c

)(

n− k

c

)

qcj (7)

Consider the inner sum of (7). It is possible to approximate it by its largest
term, which will depend on the value of j. To start with, the following bound
holds:

(

k

c

)(

n− k

c

)

qcj ≤
(

e2knqj

c2

)c

. (8)

Note that for any a, the function (a/x2)x attains its maximum at x =
√
a/e;

and further is increasing for x <
√
a/e and decreasing for x >

√
a/e. In (8), the

maximum corresponds to c =
√

knqj . Now, 1 <
√

knqj < k when

1

− ln q
ln

n

k
< j < − 1

− ln q
lnnk,

or, since q = e−α/k,
1

α
k ln

n

k
< j <

1

α
k lnnk.

Then, in light of the above, we will split between the three cases: first, j ≤
k/α lnn/k; second, k/α lnn/k < j < k/α lnnk; and third, j ≥ k/α lnnk.

For the first case, j ≤ k/α lnn/k, the maximum of (8) is attained at c = k,
giving the bound

(

e2knqj

k2

)k

= e2k
(n

k

)k

qjk.

13



Summing over this range for j yields

k/α lnn/k
∑

j=0

(

m

j

)

sm−jtjujkke2k
(n

k

)k

qjk = ke2k
(n

k

)k
k/α lnn/k
∑

j=0

(

m

j

)

sm−jtj

≤ ke2k
(n

k

)k m
∑

j=0

(

m

j

)

sm−jtj

= ke2k
(n

k

)k

(s+ t)m

= k exp
(

2k + k ln
n

k
+m log(s+ t)

)

.

Provided that

m > (1 + δ)
1

− ln(s+ t)
k ln

n

k

= (1 + δ)
1

− ln(1− 2e−α + 2e−2α)
k ln

n

k

= (1 + δ)M1(n, k, α), (9)

for some δ > 0, then this can be made arbitrarily small for n sufficiently large.
For the second case, k/α lnn/k < j < k/α lnnk, the maximum is attained

at c =
√

knqj , giving the bound

(

e2knqj

knqj

)

√
knqj

= exp(2
√

knqj) ≤ exp(2
√

knqk/α lnn/k)

= exp

(

2

√

kn
(n

k

)k/α ln q
)

= exp

(

2

√

kn
k

n

)

= exp(2k).

Then we have that

k/α lnnk
∑

j=k/α lnn/k

(

m

j

)

sm−jtjujk
k
∑

c=1

(

k

c

)(

n− k

c

)

qjc

≤
k/α lnnk
∑

j=k/α lnn/k

(

m

j

)

sm−j(tuk)jke2k

= ke2kP

(

1

α
k ln

n

k
< X ≤ 1

α
k lnnk

)

,

where we called X ∼ Bin(m, tuk), and we have used that s = 1− tuk. Then as
long as

EX = mtuk > (1 + δ)
1

α
k lnnk, (10)
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we have by the Azuma–Hoeffding inequality that

ke2kP

(

1

α
k ln

n

k
< X ≤ 1

α
k lnnk

)

≤ ke2kP

(

X ≤ 1

α
lnnk

)

≤ ke2k exp

(

− 2

m

(

mtuk − 1

α
k lnnk

)2
)

= k exp

(

2k − 2m

(

tuk − k lnnk

αm

)2
)

.

Given (10), this can be made arbitrarily small for n sufficiently large. We can
rewrite (10) as

m > (1 + δ)
1

αtuk
k lnnk = (1 + δ)

eα

2α
k lnnk = (1 + δ)M2(n, k, α). (11)

Now for the final case, when j ≥ k/α lnnk. Note that for j ≥ k/α lnnk,

qj ≤ qk/α lnnk = e− lnnk =
1

nk
,

hence nkqj ≤ 1. Then, splitting up c = 1, c = 2, and c ≥ 3, and noting that
e2/9 < 1, we have

k
∑

c=1

(

e2knqj

c2

)c

≤ e2knqj

(

1 +
e2knqj

24
+

k
∑

c=3

1

c2

(

e2knqj

c2

)c−1
)

≤ e2knqj

(

1 +
e2

16
+

1

9

∞
∑

c=3

(

e2

9

)c−1
)

≤ 5e2knqj .

Thus,

m
∑

j=α lnnk

(

m

j

)

sm−jtjujk
k
∑

c=1

(

e2knqj

c2

)c

≤
m
∑

j=α lnnk

(

m

j

)

sm−jtjujk5e2knqj

≤ 5e2kn

m
∑

j=0

(

m

j

)

sm−j(tuk−1)j

= 5e2kn(s+ tuk−1)m

= 5 exp
(

lnnk +m ln(s+ tuk−1)
)

To make this small requires

m > (1 + δ)
1

− ln(s+ tuk−1)
lnnk. (12)

In order to compare the condition in (12) to (9) and (11), note that for any
x, y ∈ (0, 1),

− ln(1− x(1− e−y)) ≤ xy.
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The above inequality can be seen, for example, since for each y, the function
fy(x) = xy+ ln(1− x(1− e−y)) is concave for x ∈ [0, 1] with fy(0) = 0 = fy(1).
Thus, since s+ tuk−1 = 1− 2e−α(1− e−α/k), then

−1

ln(s+ tuk−1)
=

−1

ln(1− 2e−α(1− e−α/k))
≥ k

2e−αα
.

Thus, condition (12) is always stronger than (9) and one can see that when k
tends to infinity, the two conditions are asymptotically equal.

Hence from (9), (11), and (12) our requirements are

m > (1 + δ)M1(n, k, α) m > (1 + δ)M2(n, k, α).

From the above, we can optimise this result over α. Noting thatM1 is minimised
at α = ln 2 and M2 is minimised at α = 1, it is sufficient to just consider
α ∈ [ln 2, 1].

This proves Lemma 9.

B Explicit bounds on rate

Here we give the proofs of Corollaries 12 and 13.

Proof of Corollary 12. The bound on R follows from Theorem 11 by a careful
choice of α in terms of β.

In order to simplify some of the expressions that follow, define y = y(α) =
1 − 2e−α and t = 1 − β

2−β . Then, for α ∈ [ln 2, 1] we have y ∈ [0, 1 − 2/e] and
as β tends to 1, t tends to 0. Further, the expressions in Theorem 11 can be
simplified as

− ln(1− 2e−α + 2e−2α) = − ln

(

1

2
(1 + y2)

)

= ln 2− ln(1 + y2)

and

2αe−α β

2− β
= (1−y)

(

− ln

(

(1− y)

2

))

(1−t) = (1−y) (ln 2− ln(1− y)) (1−t).

Thus, the result of Theorem 11 can be restated as

R ≥ 1

ln 2
min

y∈[0,1−2/e]

{

ln 2− ln(1 + y2), (1− t)(1− y) (ln 2− ln(1− y))
}

(13)

The desired result then follows from equation (13) by choosing

y =
ln 2

1− ln 2
· t

1− t
. (14)

Note that, by the definition of t, t
1−t =

2(1−β)
β .

What remains is to show that for y given by equation (14),

ln 2− ln(1 + y2) ≤ (1− y)(1− t) (ln 2− ln(1− y)) . (15)
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For y given by equation (14), the right-hand side of equation (15) is

(1− y)(1− t) (ln 2− ln(1− y))

= (1− y)(1− t)(ln 2 + y)− (1− y)(1− t)(y + ln(1− y))

= (1− t) ln 2 + y(1− t)(1− ln 2)− (1− t)y2

− (1− y)(1− t)(y + ln(1− y))

= (1− t) ln 2 + t ln 2− (1− t)y2

− (1− y)(1− t)(y + ln(1− y)) (by eq. (14))

= ln 2− (1− t)(y2 + (1− y)y + (1− y) ln(1− y))

= ln 2− (1− t)(y + (1− y) ln(1− y))

= ln 2−
(

ln 2

ln 2 + y(1− ln 2)

)

(y + (1− y) ln(1− y)) (by eq. (14)).

Thus, in order to show that the inequality in (15) holds, it suffices to show
that for all y ∈ [0, 1],

y + (1− y) ln(1− y) ≤
(

1 +
y(1− ln 2)

ln 2

)

ln(1 + y2) (16)

The inequality in (16) is shown by considering separately the cases y ≤ 1/2
and y > 1/2.

Consider first the case y ≤ 1/2. Using the fact that ln(1− y) < −y and

ln(1 + y2) ≥ y2 − y4/2 ≥ y2 − y3/4 = y2(1− y/4).

Then,
y + (1− y) ln(1− y) < y2

and for all y ∈ [0, 1/2],

1 ≤
(

1 + y
(1− ln 2)

ln 2

)

(

1− y

4

)

.

Thus, for y ≤ 1/2,

y + (1− y) ln(1− y) ≤ y2 ≤ y2
(

1 + y
(1− ln 2)

ln 2

)

(

1− y

4

)

≤
(

1 + y
(1− ln 2)

ln 2

)

ln(1 + y2).

Consider now the inequality from (16) in the case y ≥ 1/2. Note that for all
y ∈ [0, 1],

ln(1 + y2) ≥ ln 2− (1− y).

The above inequality can be seen to be true since it holds for y = 0 and y = 1
and ln(1 + y2) is concave. Thus, in order to prove the inequality in (16), it
suffices to show that for y ∈ [1/2, 1],

y + (1− y) ln(1− y) ≤
(

1 + y
(1− ln 2)

ln 2

)

(ln 2− (1− y)). (17)
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Again, the inequality in equation (17) can be seen to be true since it holds for
y = 1/2 and y = 1 and the function

(

1+y
(1− ln 2)

ln 2

)

(ln 2− (1− y))− y − (1− y) ln(1− y)

= ln 2 + y(1− ln 2)− 1 + y − y
(1− ln 2)

ln 2
+ y2

(1− ln 2)

ln 2
− y − (1− y) ln(1− y)

= (ln 2− 1) + y(1− ln 2)

(

1− 1

ln 2

)

+ y2
(1− ln 2)

ln 2
− (1− y) ln(1− y)

is concave for y ∈ [0, 1].

Next, is the proof of Corollary 13.

Proof of Corollary 13. For β < β1, the result follows from Theorem 11 by sub-
situting α = 1 and noting that the inequality

2β

e(2− β)
≤ − ln(1− 2/e + 2/e2)

holds exactly when β < β0.
For β ≥ β1, the result follows from Corollary 12 by noting that β1 > 2 ln 2

1+ln 2 .

In Corollaries 12 and 13, a better bound for the case β > β0 can be obtained
by substituting in Theorem 11, α chosen so that

1− 2e−α =
−β(1− ln 2) +

√

β2(1− ln 2)2 + 4(1− β)(4− 3β) ln 2

4− 3β
,

but the expression obtained does not seem simpler than statement of Theorem
11 itself.
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