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Abstract

A caterpillar graph is a tree which on removal of all its pendant vertices leaves
a chordless path. The chordless path is called the backbone of the graph. The
edges from the backbone to the pendant vertices are called the hairs of the
caterpillar graph. Ortiz and Villanueva (C.Ortiz and M.Villanueva, Discrete
Applied Mathematics, 160(3): 259-266, 2012) describe an algorithm, linear in
the size of the output, for finding a family of maximal independent sets in a
caterpillar graph.

In this paper, we propose an algorithm, again linear in the output size, for
a generalised caterpillar graph, where at each vertex of the backbone, there can
be any number of hairs of length one and at most one hair of length two.

Keywords: Maximal Independent Set; MIS; Caterpillar Graphs; Gener-
alised Caterpillar Graphs; Generating all MIS; Algorithm

1 Introduction

A caterpillar graph C(Pk) (See Figure 1) is a tree which on removal of all its
pendant vertices (vertices hi and lj in the figure) results in a chordless path
Pk = {v1, v2, ..., vk} of k vertices. The path Pk is called the backbone of the
caterpillar graph C(Pk) and the edges from the backbone to the pendant vertices
(edges (vi, hi) and (vj , lj) in Figure 1) are called its hairs. In C(Pk) all hairs are
of length one. Harary and Schwenk [3], introduced Caterpillar graphs by saying:

“Caterpillar is a tree which metamorphoses into a path when its cocoon of
endpoints is removed”.

∗Presently with Microsoft, India
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Figure 1: An example for a caterpillar graph

In chemical graph theory, caterpillar graphs are useful in studying topologi-
cal properties of benzenoid hydrocarbons[2]. In fact, Basil and Sherif [2]observe
that

“It is amazing that nearly all graphs that played an important role in what
is now called “chemical graph theory” may be related to caterpillar trees.”

Ortiz and Villanueva [4] describe an algorithm for enumerating a family
of maximal independent sets in caterpillar graphs. The algorithm takes time
linear in the size of the output, i.e., is linear in the sum of sizes of all maximal
independent sets. They also propose CC2(Pk), a generalisation in which hairs
have length exactly two.

In this paper, we consider a still more generalised version of caterpillar graphs
(See Figure 2). In this generalised version, we allow a backbone vertex vi to
have up to one hair of length two and any number of hairs of length one; in
particular vi may have no hairs at all. If Pk = {v1, ..., vk}, a chordless path of
length k is the backbone, then we denote the generalised caterpillar graph by
C1,2(Pk).

A complete caterpillar graph CC(Pk) is a (usual) caterpillar graph such that
there is at least one hair at each of its backbone vertices. The graph of Figure
1 is not complete as vertex v4 does not have any hair. The contraction graph
Gk of a (usual) caterpillar graph C(Pk) is the graph obtained by contracting,
for each backbone vertex vi of the C(Pk), all the pendant vertices incident at
vi to a single vertex [4].

An independent set or a stable set is a set of vertices in a graph such that no
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Figure 2: An example for a generalised caterpillar graph

two vertices in the set are adjacent. That is, it is a set I of vertices of a graph
G such that if I contains two vertices, say a and b, then ab is not an edge of G.
The size or cardinality of an independent set I is the number of vertices in the
set I. An independent set I will be called a maximal independent set if every
vertex v is either in I or is adjacent to a vertex in I.

Valiant [6] shows that the problem of counting the number of maximal inde-
pendent sets is #P -complete for general graphs. Tsukiyama et al. [5] show that
we can enumerate a family of maximal independent sets of a general connected
graph in O(nmm(G)) time; here n is the number of vertices, m is the number of
edges and m(G) is the number of maximal independent sets of a graph G. Ortiz
and Villanueva [4] show that m(C(Pk)), the number of maximal independent
sets of a (usual) caterpillar graph C(Pk) is the same as m(Gk), the number of
maximal independent sets of its contraction graph, Gk. They give an algorithm
to find a family of maximal independent sets of a caterpillar graph in time poly-
nomial in the number of maximal independent sets. In this paper, we obtain a
similar result for generalised caterpillar graphs.

Vertices of generalised caterpillar graph can be partitioned into stages. Ver-
tex vi together with vertices in hairs incident at vi will be said to be at stage i.
Formally, if we delete vertex vi from C1,2(Pk), the graph may split into several
components. The vertices in components which do not contain either vertex
vi−1 or vi+1 will be at stage i (along with vertex vi).

Let x1, x2, ..., xmi be the pendant vertices in hairs of length one at stage i
of C1,2(Pk). If any of these vertices is in a maximal independent set S, then vi
cannot be in the independent set S. Conversely, if vi is not in S, then we have
to put all these vertices in the maximal independent set S. Thus, any pendant
vertex belonging to a hair of length one at stage i is contained in a maximal
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independent set S, if and only if all pendant vertices at stage i are contained in
S.

Hence, the number of maximal independent sets of C1,2(Pk) is independent
of the number of hairs of length one at each stage (provided there is at least
one such hair). Hence from now on, we assume that C1,2(Pk) has at most one
hair of length one at each stage i (wherever there is at least one such hair) and
we denote this hair by vihi. We will denote the hair of length two at stage i by
vilimi, wherever it exists.

2 Structure of Maximal Independent Sets in gen-
eralised Caterpillar Graphs

If S is any maximal independent set of C1,2(Pk), let Si be the subset of S
containing only vertices at stage i. Clearly, S = S1 ∪ S2 ∪ ...Sk. In a caterpillar
graph, the only vertices from two different stages, adjacent to each other are
the vertices vi and vi+1 (or vi−1 and vi).

In case, if a hair of length one is present at stage i (hair of length two may
or may not be there), then either hi or vi (but not both) will be present in any
maximal independent set. Hence, in this case, exactly one of hi or vi will be in
the set Si.

Similarly, if a hair of length two is present at stage i (hair of length one may
or may not be present), then either mi or li (but not both) will be present in
any maximal independent set. Hence, in this case, exactly one of mi or li will
be present in Si.

Also observe that as vi and li are adjacent, both of them cannot be present
in any independent set.

In general, either both hairs of length one and two, or only one or neither
may be present at stage i. In all there are exactly three possibilities.

Case 1 (vi ∈ Si): If vi ∈ Si, then if a hair of length two is present then li 6∈ Si

and hence mi ∈ Si. Moreover, even if we have hair of length one, then as vi and
hi are adjacent, hi 6∈ Si, thus

Si = {vi,mi} if hair of length two is present
Si = {vi} otherwise

Case 2 (li ∈ Si): If li ∈ Si, then vi 6∈ Si and mi 6∈ Si. If a hair of length one
is present at stage i, then as vi 6∈ Si, hi ∈ Si, thus, in this case
Si = {hi, li} if hair of length one is present
Si = {li} otherwise

Case 3 (vi, li 6∈ Si) If length one hair is present, then as vi 6∈ Si we must have
hi ∈ Si. If length two hair is present then as li 6∈ Si, mi ∈ Si. Hence, in this
case,
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Si = {hi,mi} if hairs of length one and two are both present
Si = {hi} if only hair of length one is present
Si = {mi} if only hair of length two is present
Si = Φ otherwise

Thus, in each of these cases, all vertices at stage i, except possibly vi, will
either be in the independent set Si or will be adjacent to a vertex in Si. If
vi ∈ Si, the set Si will be a maximal independent set of the subgraph at stage
i.

Thus, we have the following lemma:
Lemma 1: S = S1 ∪S2 ∪ ...Sk is a Maximal Independent Set of generalised

caterpillar graph C1,2(Pk) if and only if following conditions hold:
(1) for each vi which is not adjacent to a vertex in Si, either vi−1 ∈ Si−1 or
vi+1 ∈ Si+1.
(2) both vi−1 ∈ Si−1 and vi ∈ Si should not simultaneously hold.

Proof: As each Si is an independent set, and as each vertex of Si except
possibly vi is either in Si, or has a neighbour in Si, the set S will be a maximal
independent set iff either each vi ∈ S or each vi has a neighbour in S. Vertex
vi ∈ S iff vi ∈ Si.

If vi 6∈ Si, then vi has a neighbour in S iff one of the following conditions
hold
(1) either vi has a neighbour in Si, or
(2) vi−1 ∈ S or
(3) vi+1 ∈ S.

For the set S to be independent, clearly the second condition must hold.
The lemma thus follows. []

3 Finding Maximal Independent Sets in gener-
alised Caterpillar Graphs

Let us assume that S = S1∪S2∪ ...Sk is a maximal independent set of C1,2(Pk).
Then, for i ≤ k, we classify the set Si depending upon the “status” of vertex vi.

Type 1: If vi ∈ Si, then we will say Si is of Type 1.
Type 2: If vi 6∈ Si, but some neighbour of vi is in Si, then we will say Si is of
Type 2. In this case either hi ∈ Si or li ∈ Si.
Type 3: If no neighbour of vi is in Si, but vi−1 ∈ Si−1, then we will say Si is
of Type 3.
Type 4: If vi−1 6∈ Si−1, vi 6∈ Si and no neighbour of vi is in Si, then we will
say that Si is of Type 4. In this case, for the set S to be maximal, vi+1 ∈ Si+1.

The last stage Sk cannot be of Type 4, as in that case neither vk ∈ S nor
vk−1 ∈ S. And hence, as vk does not have a neighbour in Sk, vk will not have
any neighbour in S (there is no vertex vk+1), violating maximality. Further, as
S1 is the first independent set, S1 cannot be of Type 3 (there is no vertex v0).
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We store the types of hairs present at stage i in an array T . The entry
T [i] = 0 if there are no hairs at stage i
T [i] = 1 if there are only length one hairs at stage i
T [i] = 2 if there is only length two hair at stage i
T [i] = 3 if stage i has both types of hairs

Then the table below summarises the discussion above and gives the list of
all Si’s of each type.

T [i] Si of type 1 Si of type 2 Si of type 3 Si of type 4

0 {vi} none φ φ
1 {vi} {hi} none none
2 {vi,mi} {li} {mi} {mi}
3 {vi,mi} {hi, li},{hi,mi} none none

Table 1: The possible instances of Si and their types depending on the hairs
present

Theorem 1: S = S1∪S2∪...Sk is a maximal independent set of a generalised
caterpillar graph C1,2(Pk) if and only if for 1 ≤ i ≤ k− 1, (Si, Si+1) is of one of
the following forms, and Sk is not of the type 4.
(1) (type 1, type 2)
(2) (type 1, type 3)
(3) (type 2, type x), where x is 1,2 or 4
(4) (type 3, type x), where x is 1,2 or 4
(5) (type 4, type 1)

Proof: Let us prove the ‘only if’ part first. Let us assume that S is a
maximal independent set of C1,2(Pk). We have one of the following three cases,
depending on the type of Si.
(1) If Si is of Type 1, then as vi ∈ Si, Si+1 cannot be of Type 4. As vi ∈ Si,
vi+1 /∈ Si+1, hence Si+1 cannot be of Type 1. If vi+1 has a neighbour in Si+1,
then Si+1 will be of Type 2, otherwise of Type 3.
(2) If Si is of Type 4, then as we saw earlier, vi+1 ∈ Si+1, and hence Si+1 will
be of Type 1.
(3) If Si is of Type 2 or of Type 3, then as vi /∈ Si, Si+1 cannot be of Type 3. If
vi+1 ∈ Si+1, then Si+1 will be of Type 1. If a neighbour of vi+1 is in Si+1, then
Si+1 will be of Type 2. If vi+1 6∈ Si+1, and if it does not have any neighbour in
Si+1, then Si+1 will be of Type 4.

To prove the ‘if’ part, we need to prove that for 1 ≤ i ≤ k, if (Si, Si+1)
is in one of the forms listed (and Sk is not of Type 4), then S is a maximal
independent set. As each vertex at stage i, except possibly vi, is either in Si or
is adjacent to a vertex in Si, we only need to show that
(a) Both vi ∈ Si and vi+1 ∈ Si+1 cannot simultaneously hold.
(b) If vi 6∈ Si, then vi has a neighbour in S.

If vi ∈ Si, then Si will be of Type 1, and if vi+1 ∈ Si+1, then Si+1 will also
be of Type 1. As we do not have the form (Type 1,Type 1), the first condition
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holds.
If vi 6∈ Si, then Si will not be of Type 1. If Si is of Type 2, then vi will

have a neighbour in Si, and hence in S. If Si is of Type 3, then as the only
permissible form for (Si−1, Si) is (Type 1,Type 3). Thus, Si−1 has to be of Type
1, and vi−1 ∈ Si−1; or vi will have a neighbour vi−1 in Si−1, and hence in S.

Finally, if Si is of Type 4, then as the only permissible form is (Type 4, Type
1). Thus, Si+1 has to be of Type 1 and vi+1 ∈ Si+1 (for i 6= k) and so vi+1

will have a neighbour in Si+1, or in S. Hence, S will be both independent and
maximal. []

4 Finding Family of Maximal Independent Sets

From Theorem 1, if (Si, Si+1) is of one of the forms listed, then S = S1 ∪
S2 ∪ ...Sk will be a maximal independent set. Thus, to find a family of all
maximal independent sets, we need to find all such valid sequences. For this,
we construct a directed k-level graph Lk such that any maximal independent
set in the generalised caterpillar graph corresponds to a source-sink (source to
sink) path in Lk.

A k-level graph G = (V,E, φ) with k ≤ n is a graph with an assignment of
levels φ : V → {1, 2, ..., k} that partitions the vertex set into k pairwise disjoint
subsets, V1, V2, ..., Vk such that V = V1∪V2∪ ...Vk. Further, if (uv) is an edge in
G, then u and v are not in the same level [1]. In our level graph Lk, the edges
are only from level i to level i+ 1.

We will denote the set of vertices of Lk by U . The k levels in Lk are numbered
from 1 to k; level i in Lk corresponding to stage i in C1,2(Pk). Roughly speaking,
at each level i, the vertices in Lk will correspond to one possible instance of Si.
The total number of vertices present at any level i of the level graph, will depend
on the types of hairs present at stage i. We will see that the number of vertices
at each level will be at most five.

We will use two labels “type” and “index” on vertices of Lk. Type of a
(new) vertex will correspond to the type of corresponding Si. Index will be one
in all but one case. From Table 1, observe that, in all but one case, for any
value of T [i], there is at most one instance of Si. If T [i] = 3, then there are two
instances of Si. We use the label “index” to distinguish these cases.

In more detail, we add vertices at level i as follows. First, for each i, we first
add a vertex pi and set type(pi) = 1 and index(pi) = 1. This will correspond
to the case when vi ∈ Si.

Depending upon type of hairs present at vi, we add other vertices at level i
as follows:
Only Length one hairs (T [i] == 1): Add a vertex si and set type(si) = 2
and index(si) = 1. This will correspond to the case when Si is of type 2, and
Si = {hi}.
Only Length two hairs (T [i] == 2): In this case, also, we first add a vertex
si and set type(si) = 2 and index(si) = 1. This will correspond to the case
when Si is of type 2, and Si = {li}. Further, we also
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(a) for i ≥ 2, we add a vertex ti and set type(ti) = 3 and index(ti) = 1.
(b) and for i ≤ k−1, we add a vertex ui and set type(ui) = 4 and index(ui) = 1.

These cases correspond to the case when Si is of type 3 or of type 4. In
these cases, Si = {mi}.
Both Length one and two hairs (T [i] == 3): Add two vertices qi and ri
and set type(qi) = type(ri) = 2; index(qi) = 1 and index(ri) = 2.

This corresponds to the case when Si is of type 2. Here Si can be either
{hi, li} or {hi,mi}, thus we need two vertices, one for each case. We also use
the label “index” to distinguish these two cases.
No Hairs (T [i] == 0): In this case
(a) for i ≥ 2, we add a vertex ti and set type(ti) = 3 and index(ti) = 1.
(b) and for i ≤ k−1, we add a vertex ui and set type(ui) = 4 and index(ui) = 1.

These cases correspond to the case when Si is of type 3 or of type 4. In
these cases, Si = Φ.

This is summarised in Table 2 below:

vertex type index Value of T [i] set Si

pi 1 1 0, 1, 2 or 3 vi ∈ Si

si 2 1 1 or 2 Si = {hi} or Si = {li}
qi 2 1 3 Si = {hi, li}
ri 2 2 3 Si = {hi,mi}
ti 3 1 0 or 2 Si = {mi} or Si = Φ
ui 4 1 0 or 2 Si = {mi} or Si = Φ

Table 2: The vertices at level i in Lk and the corresponding Si

Next we add following edges. We add an edge from a vertex a in level i to a
vertex b in the next level i+ 1, if (type(a), type(b)) is one of the following (listed
in Theorem 1):

(1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (3, 1), (3, 2), (3, 4) or (4, 1)
Formally, we add the following edges from a vertex a of level i to a vertex b

of level i+ 1, for 1 ≤ i ≤ k − 1:
(a) For each vertex a of type 1, we add an edge (a, b) in Lk, if vertex b is either
of type 2 or of type 3.
(b) For each vertex a of type 2 or type 3, we add an edge (a, b), if vertex b is of
type 1, type 2, or of type 4 (i.e., b is not of type 3).
(c) For each vertex a of type 4 we add an edge (a, b), if vertex b is of type 1.

All vertices at Level 1 will be treated as sources and all vertices at level k
as sinks, and hence any path from level 1 to level k in Lk will be a source-sink
path.

As these edges correspond exactly to valid (Si, Si+1) pairs of Theorem 1,
hence again from Theorem 1, it follows that any source-sink path in Lk will
correspond to a valid set of sequence S1, S2, ..., Sk and conversely.

8



Thus, if we find all source-sink paths in Lk, we can find all the maximal
independent sets in C1,2(Pk). This can be done by using a generalised depth
first procedure (DFS), similar to the one used by [4].

We basically, put the start vertex in a stack and then for each neighbour
of the start vertex (as the new start vertex), we call the procedure recursively.
We stop when the start vertex for the current call is a sink vertex, and print
the entire stack; and also remove this vertex from the stack (backtrack to the
previous level).

The number of source-sink paths in Lk will be the number of maximal inde-
pendent sets in C1,2(Pk). We can easily obtain maximal independent sets from
the source-sink path. Let w1, w2, ..., wk be the vertices in a source sink path of
Lk. Then we reconstruct the Si corresponding to each Pi as follows (see Table 1):

If type(wi) == 1, then
if T [i] == 3 or T [i] == 2 then Si = {vi,mi}
else Si = {vi}

If type(wi) == 3 or type(wi) == 4, then
if T [i] == 2 then Si = {mi}
if T [i] == 0 then Si = Φ

If type(wi) == 2, then
if (T [i] == 1) then Si = {hi}
if (T [i] == 2) then Si = {li}
if T [i] = 3

if index(wi) == 1 then Si = {hi, li},
else if index(wi) == 2 then Si = {hi,mi}

A theorem similar to that of Ortiz and Villanueva [4], also holds for the
generalised caterpillar graph.

Theorem 2: We can enumerate all maximal independent sets of C1,2(Pk)
in O(km(C1,2(Pk))) time, where m(C1,2(Pk)) is the number of maximal inde-
pendent sets of C1,2(Pk).

Proof: For each source-sink path P of Lk, generalised depth first procedure
is called once for each vertex of P . Since any edge in Lk is between adjacent
levels, the number of vertices in the path is k + 1. Hence there are only O(k)
calls to the procedure. As each call takes O(1) time, except when we reached
a sink, in which case it takes O(k) time. But as we reach sink only once for a
path, the algorithm takes O(k) time, for each path found.

As there are m(C1,2(Pk)) such paths, the algorithm takes O(km(C1,2(Pk)))
time. []

As each maximal independent set has k vertices, the algorithm is essentially
linear in the output size.
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5 Example

Let us illustrate the algorithm for the graph given in Figure 2, we have the
following vertices of type 1 in it:
Level 1: p1, type(p1) = 1, index(p1) = 1
Level 2: p2, type(p2) = 1, index(p2) = 1
Level 3: p3, type(p3) = 1, index(p3) = 1
Level 4: p4, type(p4) = 1, index(p4) = 1

We have the following vertices of type 2:
Level 1: T [i] = 3. Two vertices q1 and r1, type(q1) = 2, index(q1) = 1,
type(r1) = 2, index(r1) = 2
Level 2: T [i] = 1. Vertex s2, type(s2) = 2, index(s2) = 1
Level 3: T [i] = 2. Vertex s3, type(s3) = 2, index(s3) = 1
Level 4: T [i] = 0. No vertex.

We have the following vertices of type 3 in it:
Level 1: T [i] = 3. None
Level 2: T [i] = 1. None
Level 3: T [i] = 2. Vertex t3, type(t3) = 3, index(t3) = 1
Level 4: T [i] = 0. Vertex t4, type(t4) = 3, index(t4) = 1

The following are vertices of type 4.
Level 1: T [i] = 3. None
Level 2: T [i] = 1. None
Level 3: T [i] = 2. Vertex u3, type(u3) = 4, index(u3) = 1
Level 4: T [i] = 0. None as this is the last level

The edges in the example are as shown in Figure 3.

Figure 3: Construction of Lk from C1,2(Pk)

Each source-sink path corresponds to a maximal independent set. For ex-
ample, the path p1−s2−u3−p4 in Lk corresponds to the maximal independent
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set {v1,m1, h2,m3, v4} in C1,2(Pk). Similarly, the path r1 − s2 − p3 − t4 in Lk

corresponds to the maximal independent set {h1,m1, h2, v3,m3} in C1,2(Pk).

Conclusions

We discuss the problem of finding a family of maximal independent sets in a
generalised caterpillar graph. We show that this problem can also be reduced
to the problem of finding all source-sink paths in a level graph. The proposed
algorithm takes time linear in the output size (total number of vertices in all
maximal independent sets).

Further, we believe, that this algorithm can be extended for another general-
isation of caterpillar graph, where each vertex of backbone has bounded number
of hairs of length more than one. It may also be possible to generalise the al-
gorithm for some other generalisations of caterpillar graphs, possibly having a
different set of hairs. We may have to identify the new set of possible Si’s at
each stage i and classifying them into possibly some other different “types”.
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