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Abstract

A class of simple graphs such as G is said to be odd-girth-closed if for any positive
integer g there exists a graph G ∈ G such that the odd-girth of G is greater than or
equal to g. An odd-girth-closed class of graphs G is said to be odd-pentagonal if there
exists a positive integer g∗ depending on G such that any graph G ∈ G whose odd-girth
is greater than g∗ admits a homomorphism to the five cycle (i.e. is C5 -colorable).

In this article, we show that finding the odd girth of generalized Petersen graphs
can be transformed to an integer programming problem, and using this we explicitly
compute the odd girth of such graphs, showing that the class is odd-girth-closed. Also,
motivated by showing that the class of generalized Petersen graphs is odd-pentagonal,
we study the circular chromatic number of such graphs.

Keywords: Generalized Petersen graphs, odd girth, circular coloring, integer pro-
gramming.

1 Introduction

Let us call a class of simple graphs G girth-closed (resp. odd-girth-closed) if for any positive
integer g there exists a graph G ∈ G such that the girth (resp. odd-girth) of G is greater
than or equal to g. A girth-closed (resp. odd-girth-closed) class of graphs G is said to
be pentagonal (resp. odd-pentagonal) if there exists a positive integer g∗ depending on G
such that any graph G ∈ G whose girth (resp. odd-girth) is greater than g∗ admits a
homomorphism to the five cycle (i.e. is C

5
-colorable). The following question of J. Nešetřil

has been the main motivation for a number of contributions in graph theory.

Problem 1. [16] Is the class of simple 3-regular graphs pentagonal?

Note that every simple 3-regular graph except K4 admits a homomorphism to K3 ' C3

by Brooks’ theorem. On the other hand, it is quite interesting to note that the answer
is negative if we ask the same question with the five cycle C

5
replaced by C

7
,C

9
or C

11

(see [3, 9, 12,14,20] for this and the background on other negative results).
A couple of relaxations of Problem 1 have already been considered in the literature. The

following relaxation has been attributed to L.Goddyn (see [9]) and to best of our knowledge
is still open.

∗Correspondence should be addressed to daneshgar@sharif.ir.
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Problem 2. Is it true that every cubic graph with sufficiently large girth has circular
chromatic number strictly less than 3?

Also, M. Ghebleh introduced the following relaxation of Problem 1 and answered it
negatively by constructing the class of spiderweb graphs whose circular chromatic numbers
are equal to 3 (see [9] for more on spiderweb graphs).

Problem 3. [9] Is the class of simple 3-regular graphs odd-pentagonal?

Although, to answer Problem 1 negatively it is sufficient to introduce a subclass of simple
3-regular graphs which is not pentagonal, it is still interesting to study pentagonal subclasses
of 3-regular graphs, even if the problem has a negative answer, since this study will definitely
reveal structural properties that can influence the graph homomorphism problem.

Clearly, to analyze the above mentioned problems one has to have a good understanding
about the cycle structure of the graphs, where it seems that the answers are strongly related
to the number theoretic properties of the cycle lengths of the graphs being studied.

This article may be classified into the positive part of the above scenario which is related
to the study of pentagonal and odd-pentagonal subclasses of 3-regular graphs on the one
hand, and the study of subclasses of 3-regular graphs with circular chromatic number less
than 3 on the other1. Also, note that other variants of the positive scenario have already
been studied either using stronger average degree conditions or topological conditions on
the sparse graphs. For instance, we have

Theorem A. [1] The class of simple graphs as G for which every subgraph of G has average
degree less than 12/5, is pentagonal (actually with g∗ = 3).

Also, using results of [2] we deduce that,

Theorem B. [2] The class of planar graphs, projective planar graphs, graphs that can be
embedded on the torus or Klein bottle are pentagonal.

Along the same lines we also have,

Theorem C. [8] For every fixed simple graph H the class of H-minor free graphs is pen-
tagonal.

Our major motivation to study the cycle structure of generalized Petersen graphs was, of
course, related to our belief that the class of generalized Petersen graphs is odd-pentagonal.
Needless to say, some results and techniques used in the sequel are related to the specific
properties of generalized Petersen graphs and may be of independent interest.

In the rest of this section we go through a couple of preliminary definitions and concepts
and after that we will explain the main results of this article. In subsequent sections, first,
in Section 2 we explicitly compute the odd-girth of generalized Petersen graphs and it will
follow that the class is odd-girth closed (while it is not girth-closed). Then we will use the
data to study the circular chromatic number of these graphs in Section 3 and will find partial
evidence for a positive answer to our motivating question.

1.1 Preliminaries

In this article, for two integers m ≤ n, the notation m|n indicates that m divides n, the
greatest common divisor is denoted by gcd(m,n) and also, we define

[m,n]
def
= {m,m+ 1, · · · , n}.

1See [9] and references therein for other related results and the background. Also see [18] for a similar
approach.
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The size of any finite set A is denoted by |A|.
Hereafter, we only consider finite simple graphs as G = (V (G), E(G)), where V (G) is

the vertex set and E(G) is the edge set. An edge with end vertices u and v is denoted by
uv. Moreover, for any graph G, the odd girth g

odd
(G) is the length of the shortest odd cycle

of G. The complete graph on n vertices and the cycle of length n are denoted by K
n

and
C
n
, respectively (up to isomorphism).
Throughout the article, a homomorphism f : G −→ H from a graph G to a graph H is

a map f : V (G) −→ V (H) such that uv ∈ E(G) implies f(u)f(v) ∈ E(H). If there exists
a homomorphism from G to H then we may simply write G −→ H. (For more on graph
homomorphisms and their central role in graph theory see [13].)

Let k and d be positive integers such that n ≥ 2d. Then the circular complete graph Kn
d

is the graph with the vertex set {0, 1, · · · , n− 1} in which i is connected to j if and only if
d ≤ |i− j| ≤ n− d. A graph G is said to be (n, d)-colourable if G admits a homomorphism
to Kn

d
. The circular chromatic number χc(G) of a graph G is the minimum of those ratios

n
d for which gcd(n, d) = 1 and G admits a homomorphism to Kn

d
(see [19, 23, 24] for more

on circular chromatic number and its properties). Also, note that C
2k+1

' K
2k+1
k

, and

consequently

χc(C2k+1
) = 2 +

1

k
.

For a graph G the graph G
1
d is defined as the graph obtained from G by replacing each

edge by a path of length d (i.e. subdividing each edge by d − 1 vertices). The rth power
of a graph G, denoted by Gr, is a graph on the vertex set V (G), in which two vertices are
connected by an edge if there exist an r-walk between them in G. Also, the fractional power
of a graph is defined as

G
r
d

def
=
(

G
1
d

)r
.

Note that for simple graphs, G −→ H implies that Gr −→ Hr for any positive integer r > 0.
Hence, Problem 1 is closely related to the study of the chromatic number of the third power
of sparse 3-regular simple graphs (see [5, 10,11]).

The Petersen graph is an icon in graph theory. The generalized Petersen graphs are
introduced in [4] and given the name along with a standard notation by M. Watkins in [21].
The generalized Petersen graph, Pet(n, k), is defined as follows.

Definition 1. In Watkins’ notation the generalized Petersen graph Pet(n, k) for positive
integers n and k, where 2 < 2k ≤ n, is a graph on 2n vertices, defined as follows,

V (Pet(n, k))
def
= {u

0
, u

1
, . . . , u

n−1
} ∪ {v

0
, v

1
, . . . , v

n−1
},

E(Pet(n, k))
def
=

(
n−1⋃
i=0

{u
i
u
i+1
}

)
∪

(
n−1⋃
i=0

{u
i
v
i
}

)
∪

(
n−1⋃
i=0

{v
i
v
i+k
}

)
,

where + stands for addition modulo n (see Figure 1). J

Some basic properties of generalized Petersen graphs are as follows (e.g. see [6]).

• Except Pet(2k, k), all generalized Petersen graphs are 3-regular.

• Pet(n, k) is bipartite if and only if n is even and k is odd, otherwise Pet(n, k) is
3-chromatic.

• Pet(n, k) is isomorphic to Pet(n,m), if and only if either m 6n≡ ±k or mk
n≡ ±1 [17].

• Pet(n, k) is vertex transitive if and only if (n, k) = (10, 2) or k2
n≡ ±1 [7].
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Figure 1: Watkins’ notation for generalized Petersen graph Pet(n, k).

• Pet(n, k) is edge-transitive (see [7]) if and only if

(n, k) ∈ {(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5)}.

• Pet(n, k) is a Cayley graph (see [15]) if and only if k2
n≡ 1.

• Every generalized Petersen graph is a unit distance graph [25] (a graph formed from
a collection of points in the Euclidean plane by connecting two points by an edge
whenever the distance between the two points is exactly one).

• Some specially named generalized Petersen graphs are the Petersen graph Pet(5, 2), the
Dürer graph Pet(6, 2), the Möbius-Kantor graph Pet(8, 3), the dodecahedron Pet(10, 2),
the Desargues graph Pet(10, 3) and the Nauru graph Pet(12, 5).

We know when generalized Petersen graphs are Hamiltonian and we also know about their
automorphism groups (the interested reader is referred to the exiting literature for more on
these graphs).

1.2 Main results

Our main results in this article can be divided into two categories. The first category is
concerned about the odd girth of generalized Petersen graphs, discussed in Section 2, and
the following theorem presents an explicit description of this parameter as our first main
result.

Theorem 1. Let O be the set of odd numbers, and define,

Ind(n, k) =


{t | t is odd, 0 ≤ t ≤ min{ 2k

gcd(n,k) , b
(k−1)2
n c+ 1}} k and n are odd,

{t | 0 < t ≤ min{ 2k
gcd(n,k) , b

(k−1)2
n c}} n

gcd(n,k) is odd and k is even,

{t | 0 < t ≤ min{ k
gcd(n,k) , b

(k−1)2
n c}} n

gcd(n,k) and k are even.

and

G def
=

⋃
t∈Ind(n,k)

{
tn+ (1− k)b tn

k
c+ 2, (1 + k)d tn

k
e − tn+ 2

}
.

Then we have

g
odd

(Pet(n, k)) = min

(({
n

gcd(n, k)
, k + 3

}
∪ G
)
∩O

)
.

4



Our main strategy to obtain the above formulation is based on the key observation that the
problem of finding the odd girth of Pet(n, k) can be reduced to finding the solutions of the
following integer program,

min u + v
+

+ v−

u + k(v+ − v−) = tn,
u + v+ + v− = 2r + 1,
r, u, v

+
, v− ≥ 0,

t ∈ Z.

(∗)

We will see that the optimization problem (∗) may have some trivial solutions. In this regard,
a solution (u, v

+
, v−) of (∗) is said to be a trivial solution if either u = 0 or v

+
+ v− = 0.

Evidently, other solutions are referred to as nontrivial solutions. Moreover, note that r and
t are uniquely determined by a solution (u, v+ , v−). Hence, sometimes, when there is no
ambiguity, we may talk about a solution (u, v+ , v−) or a solution (u, v+ , v− , r, t), when we
want to explicitly refer to parameters r and t. We may also say that (u, v

+
, v− , r, t) is feasible

if the parameters satisfy conditions of (∗). Note that (∗) has a solution if and only if its
feasible set is non-empty.

Using Theorem 1 we may discuss some asymptotic properties of the odd girth of gener-
alized Petersen graphs. In this regard we prove,

Theorem 2. The odd girth of a non-bipartite generalized Petersen graph, Pet(n, k), is either
equal to k + 3 or satisfies the following inequality

max
(n
k
, (min{gcd(n, k − 1), gcd(n, k + 1)}+ 2)

)
≤ g

odd
(Pet(n, k)) ≤ n

k
par(k) + k + 1,

where par(k) is the parity function which is equal to one when k is odd and is zero otherwise.

Note that by Theorem 2 the odd girth of Pet(n, k) tends to infinity either if both n
k and

k + 3 tend to infinity, or if min{gcd(n, k − 1), gcd(n, k + 1)} tends to infinity. However, the
converse may not be true.

For instance, for fixed and odd k, the odd girth of Pet(jk, k) tends to infinity, when j
is odd and tends to infinity. On the other hand, for a fixed even integer j, the odd girth
of Pet(jk, k) by Theorem 1 is equal to k + 3 and tends to infinity, when k is even and
tends to infinity. Note that in this case n

k is fixed. Both of these observations show that,
g
odd

(Pet(n, k)) may tend to infinity while one of the parameters n
k or k is fixed.

Moreover, note that for n = (k − 1)(k + 1) + 1, if k tends to infinity, the odd girth
g
odd

(Pet(n, k)) tends to infinity since both k and n
k tend to infinity, while in this case

min{gcd(n, k − 1), gcd(n, k + 1)} = 1 is fixed.
It is easy to verify that in Watkins’ notation u0u1v1vk+1

u
k+1

u
k
v
k
v0u0 is a closed walk

in Pet(n, k), implying that the girth of generalized Petersen graphs are always less than or
equal to 8. On the other hand, by Theorem 2 generalized Petersen graphs are odd-girth
closed.

Corollary 1. The class of generalized Petersen graphs are odd-girth closed but not girth-
closed.

The second category of our results is concerned with circular chromatic number of gener-
alized Petersen graphs, discussed in Section 3. The key observation in this regard is the fact
that the information we already extract about the odd cycles of Pet(n, k) will help to prove
bounds on the clique-number of some powers of these graphs, or helps to prove existence
and nonexistence results on homomorphisms to powers of cycles, which in turn will give rise
to some bounds on the circular chromatic number of generalized Petersen graphs.

Our first result in this regard is the following theorem.

5



Theorem 3.

(a) Suppose that the system (∗) has no trivial solution. Then, if (u, v
+
, v− , r) is a (non-

trivial) solution, then

K
4r+2
→ Pet(n, k)

2r+1

.

(b) Let K 2n
4k+4

be the complement of the circular complete graph K 2n
4k+4

. Then, for n > 2k,

we have
K 2n

4k+4

→ Pet(n, 2k)
2k+1

.

Using Theorem 3 we will obtain the following corollary on lower bounds for the circular
chromatic number of Petersen graphs.

Corollary 2.

(a) Let n and k be odd and suppose that the system (∗) has no trivial solution. If
(u, v

+
, v− , r) is a (non-trivial) solution of (∗), then

2 +
4r

4r2 + 2r + 1
≤ χ

c
(Pet(n, k)).

(b) If g
odd

(Pet(n, 2k)) = 2k + 3, we have

2n(2k + 1)

2kn+ b 2n
4k+2c

≤ χc(Pet(n, 2k)).

A lower bound for circular chromatic number of Petersen graphs has already been intro-
duced as follows.

Theorem D. [9] For any n > 2k, we have

2 +
2

2k + 1
≤ χ

c
(Pet(n, 2k)).

In Proposition 2 (Section 3) we will show that the lower bound of Corollary 2(b) can be
strictly greater than the lower bound obtained in [9].

Now, let us concentrate on the upper bounds. For this we define the graph Pb(n, k) on
the cycle C

n
by connecting edges having distance k (i.e. the graph is obtained by identifying

vertices vi and ui in Pet(n, k)). Also, let C
r

n
be the r-th power of Cn .

Theorem 4.

(a) If n is odd, k is even, n
k−1≡ ±2 and s = (n−4)(k−2)

2(k−1) , then there exists a homomorphism

σ : Pb(n, k)→ Kn
s
.

(b) For any generalized Petersen graph Pet(n, k), there exists a homomorphism

σ : Pet(n, k)→ Pb(n, k).

(c) If n and k are odd and n > 2k + 1, there exists a homomorphism

σ : Pet(n, k)→ C
k

n
.
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Using Theorem 4 we will obtain the following corollary on upper bounds for the circular
chromatic number of generalized Petersen graphs.

Corollary 3.

(a) Let k be even, n be odd and n
k−1≡ ±2. Then

χc(Pet(n, k)) ≤ 2n(k − 1)

(n− 4)(k − 2)
.

(b) If n and k are odd and n > 2k + 1, then

χ
c
(Pet(n, k)) ≤ 2n

n− k
.

As a direct corollary one may conclude the following on odd-pentagonality of some sub-
classes of the class of generalized Petersen graphs.

Corollary 4. Let C be the subclass of the class of generalized Petersen graphs for which at
least one of the following conditions hold.

(a) Pet(n, k), where k is even, n is odd and n
k−1≡ ±2.

(b) Pet(n, k), where both n and k are odd and n ≥ 5k.

Then C is odd-pentagonal.

It is instructive to note that by results of [17] Pet(n, k) is isomorphic to Pet(n,m), if

and only if either m 6n≡ ±k or mk
n≡ ±1. Hence, one may construct larger odd-pentagonal

subclasses of the class of generalized Petersen graphs. Also, note that this study motivates
the interesting problem of characterizing conditions under which we have

Pet(n, k) −→ Pet(n′, k′).

2 Odd girth of Generalized Petersen Graph

In this section, we will prove Theorems 1 and 2 by analyzing the solutions of the integer
program (∗). To start, let C be a cycle of length ` in Pet(n, k) with a fixed orientation as

C = w
0
w

1
w

2
. . . w

`
w

0
.

We define,

• u
+

(C)
def
= |{w

j
w
j+1
| ∃i ∈ [0, n− 1], (w

j
, w

j+1
) = (u

i
, u

i+1
)}|,

• u−(C)
def
= |{wjwj+1 | ∃i ∈ [0, n− 1], (wj , wj+1) = (ui , ui−1)}|,

• v
+

(C)
def
= |{w

j
w
j+1
| ∃i ∈ [0, n− 1], (w

j
, w

j+1
) = (v

i
, v
i+k

)}|,

• v−(C)
def
= |{w

j
w
j+1
| ∃i ∈ [0, n− 1], (w

j
, w

j+1
) = (v

i
, v
i−k)}|,

• b(C)
def
= |{wjwj+1 | ∃i ∈ [0, n− 1], {wj , wj+1} = {ui , vi}}|

7



in which addition, +, and subtraction,−, are in Z
n
. Also, hereafter, when we refer to any one

of the above parameters we assume that the prefixed orientation is clear from the context.
Let us list the following basic facts for further reference.

Lemma 1. For any cycle C of length ` (along with a fixed orientation) in Pet(n, k), we
have,

(a) Parameters u+(C), u−(C), v+(C), v−(C), and b(C) are all non-negative.

(b) u
+

(C) + u−(C) + v
+

(C) + v−(C) + b(C) = `.

(c) u
+

(C) + u−(C) ≤ n and v
+

(C) + v−(C) ≤ n.

(d) u
+

(C)− u−(C) + k(v
+

(C)− v−(C))
n≡ 0.

(e) b(C) is an even number. Also, if u+(C) + u−(C) 6= 0 and v+(C) + v−(C) 6= 0, then
b(C) ≥ 2.

Proof. Statements (a), (b) and (c) are clear by definitions. For (d), let

C = w
0
w

1
w

2
. . . w

`
w

0

and consider the potential function ς on the vertex set of Pet(n, k) to [0, n−1], that is equal
to i exactly on u

i
and v

i
(in Watkins’ notation). Without loss of generality, let ς(w

0
) = 0.

Note that

0 =
∑
C

(ς(w
j+1

)− ς(w
j
))

n≡ (u
+

(C) + kv
+

(C))− (u−(C) + kv−(C)).

Statement (e) is also clear by considering the fact that the number of transitions between
the parts consisting of u

i
’s and v

i
’s is always an even number. Also, if the cycle C has some

vertices in both parts, then b(C) 6= 0. �

Now, we consider some properties of the solution of the integer program (∗).

Lemma 2. If (u, v+ , v−) is a solution of (∗), then

(a) Either v− = 0 or v
+

= 0.

(b) If n is even, then k is even.

(c) 0 ≤ u + v− + v
+
≤ n.

(d) If k is odd, then u < k.

(e) If k is even, then either (u, v+ , v− , t) = (k, 0, 1, 0) or u < k.

(f) (n, k)|u.

Proof.

(a) Let (u, v+ , v−) be a solution with v− 6= 0 and v+ 6= 0, and define the new parameters
v′
+

and v′
−

as, {
v′
+

= v
+
− v− , v

′
−

= 0 if v
+
− v− ≥ 0,

v′
−

= v− − v
+
, v′

+
= 0 if v

+
− v− < 0,

and note that (u, v′
+
, v′

−
) is a solution satisfying u + v′

+
+ v′

−
< u + v+ + v− , which is a

contradiction.

8



(b) Suppose that n is even and k is odd. Since u + k(v+ − v−) = tn is even, either both u
and (v+ − v−) are even or both are odd. Thus,

u + v+ + v− = (u + v+ − v−) + 2v− ,

is even, which is a contradiction.

(c) If n is odd then (u′, v′
+
, v′

−
) = (n, 0, 0) is feasible. Also, if n is even, then by part (b), k

is even, and one may verify that (u′, v′
+
, v′

−
) = (k, 0, 1) is feasible. In both cases, since

we have an objective less than or equal to n and (u, v
+
, v−) is a minimizer, we have

u + v− + v
+
≤ n.

(d) By contradiction assume that u ≥ k. Using (a) we may assume v− = 0 or v+ = 0 and
define {

u′ = u− k, v′
−

= v− = 0, v′
+

= v+ − 1, if v+ > 0,

u′ = u− k, v′
−

= v− + 1, v′
+

= 0, if v
+

= 0.

Now note that (u′, v′
+
, v′

−
) is feasible for (∗), satisfying

u′ + v′
+

+ v′
−
≤ u + v

+
+ v− − (k − 1) < u + v

+
+ v− ,

which is a contradiction.

(e) If k is even, then (u′, v′
+
, v′

−
) = (k, 0, 1) is feasible. Now, if (u, v

+
, v−) is a solution

giving rise to an odd objective less than k + 3 and u > k, then we should have
k < u ≤ u + (v+ + v−) ≤ k + 1. Consequently, u = k + 1, and we may conclude that
v+ +v− = 0 and k+1 = u = u+k(v+−v−) = tn > 2k ≥ k+2, which is a contradiction.

(f) By the definition of (∗), we have u = tn− k(v
+
− v−). Since gcd(n, k) divides the right

hand side, it divides u too.

�

The following simple observation as a corollary of Lemma 2(a) is sometimes quite useful.

Note that by Lemma 2(a) one may define v
def
= v+ − v− and talk about a (u, v, r, t) solution

of the system (∗). Clearly, for such a solution if v ≥ 0 then one has (u, v+ = v, v− = 0, r, t)
as a solution and if v ≤ 0 then one has (u, v

+
= 0, v− = −v, r, t) as a solution. Hereafter, we

may freely talk about (u, v, r, t) as a solution, adapting this convention. Also, note that by
Lemma 1(a) for any solution (u, v

+
, v−) we have,

|v| = |v
+
− v− | = v

+
+ v− .

On the other hand, the set of solutions of (∗) is equal to the set of solutions of the
following minimization problem,

min u + |v|
u + |v| = 2r + 1
u + kv = tn
u ≥ 0.

Now, by substitution for the variable u we find the following minimization problem whose
set of solutions is equal to the set of solutions of (∗).

min tn− kv + |v|
tn− kv + |v| = 2r + 1
tn− kv ≥ 0.

(∗∗)

The following result is our first step toward a clarification of relationships between the
set of solutions of (∗) and the odd girt of Pet(n, k).
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Theorem 5. The following statements are equivalent,

(a) The feasible set of (∗) is non-empty.

(b) Pet(n, k) has an odd cycle.

Also, if (u, v
+
, v− , r, t) is a solution of (∗), then the odd girth of Pet(n, k) is equal to 2r + 1

if (u, v
+
, v− , r, t) is a trivial solution (i.e. either u = 0 or v

+
+ v− = 0). The odd girth of

Pet(n, k) is equal to 2r + 3, if all solutions of (∗) are nontrivial.

Figure 2: Constructing an odd cycle given v+ , v− and u with u + k(v+ − v−)
n≡ 0 in three

cases: (a) v
+

+ v− = 0, (b) u = 0, (c) v
+

+ v− 6= 0 and u 6= 0.

Proof.

• (a) ⇒ (b) : Let (u, v
+
, v− , r, t) be a feasible point of the system (∗). First, we show

that there exists an odd cycle C in Pet(n, k) of length `, where

` ≤
{

2r + 1, if u = 0 or v
+

+ v− = 0,
2r + 3 otherwise.

Consider the following three cases.

i) If v+ + v− = 0, then we have u
n≡ 0, u = 2r+ 1 6= 0 and 0 ≤ u ≤ n. Consequently,

2r + 1 = u = n, and we have an odd cycle (the outer cycle u0u1 . . . un−1u0) of
length 2r + 1 = n (see Figure 2(a)).

ii) If u = 0, then without loss of generality suppose that v− ≤ v
+

, now

v
def
= v+ − v− = v+ + v− − 2v− = 2r+ 1− 2v− = 2r′+ 1 > 0 and k(v+ − v−)

n≡ 0.

Consequently, one can consider the odd closed walk v0vkv2k
. . . v

(v−1)k
v0 . The

length of this closed walk is equal to v = 2r′ + 1, and contains at least one odd
cycle of length less than or equal to 2r + 1 (see Figure 2(b)).

iii) If v
+

+ v− 6= 0 and u 6= 0, consider the closed walk{
u

0
u

1
. . . uuvuvu+k

v
u+2k

. . . v
u+(v

+
−v−−1)k

v
0
u

0
, if v

+
≥ v− ,

u0u1 . . . uuvuvu−kvu−2k
. . . v

u−(v−−v
+

−1)k
v0u0 , if v+ < v− .

Note that in either case we have a closed walk of length u+k|v
+
−v− |+2 ≤ 2r+3

that contains an odd cycle of length less than or equal to 2r+3 (see Figure 2(c)).
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• (b) ⇒ (a) : Let Cµ be a minimum odd cycle in Pet(n, k). Without loss of generality,
one may assume that u+(Cµ) ≥ u−(Cµ) (reverse the direction, otherwise). Also, let

u
def
= u

+
(C

µ
)− u−(C

µ
), v

+

def
= v

+
(C

µ
), and v− = v−(C

µ
).

Note that since l(Cµ) = u+ v+ + v− + 2u−(Cµ) + b(Cµ) is odd, and b(Cµ) is even, then

u + v
+

+ v− is odd. Also, by Lemma 1 we have u + k(v
+
− v−)

n≡ 0, and consequently,
(u, v

+
, v−) is feasible for (∗).

Again, let Cµ be a minimum cycle with parameters (u, v+ , v− , r). To determine the length
of C

µ
we consider the following two cases.

1. There is a trivial solution (u∗, v∗
+
, v∗

−
, r∗).

By (a) ⇒ (b), there exists an odd cycle of length less than or equal to 2r∗ + 1 and
consequently, l(C

µ
) ≤ 2r∗ + 1.

Also, by (b)⇒ (a), parameters (u, v+ , v− , r) are feasible for (∗) and

l(C
µ
) ≥ u + v

+
+ v− = 2r + 1 ≥ 2r∗ + 1.

Hence, l(Cµ) ≥ 2r∗ + 1 which shows that l(Cµ) = 2r∗ + 1 in this case.

2. There is not any trivial solution and (u∗, v∗
+
, v∗

−
, r∗) is a non-trivial solution.

Similarly, by (a) ⇒ (b), we have l(C
µ
) ≤ 2r∗ + 3. Also, using (b) ⇒ (a), parameters

(u, v+ , v− , r) are feasible for (∗) and consequently,

l(C
µ
) ≥ u + v

+
+ v− + b(C

µ
) = 2r + 1 + b(C

µ
) ≥ 2r∗ + 1 + b(C

µ
).

Note that if l(C
µ
) < 2r∗ + 3, then since l(C

µ
) is odd, by the above inequality we have

2r∗ + 1 ≥ l(C
µ
) ≥ 2r∗ + 1 + b(C

µ
),

which implies that b(C
µ
) = 0, and consequently by Lemma 1(e) either u = 0 or

v+ + v− = 0. But since (u, v+ , v− , r) is feasible and 2r+ 1 ≤ 2r∗+ 1 one concludes that
(u, v+ , v−) is a trivial solution which is a contradiction. Therefore, l(Cµ) ≥ 2r∗+3 and
consequently, l(C

µ
) = 2r∗ + 3. (As a byproduct we have also proved that b(C

µ
) ≥ 2

in this case.)

�

A couple of remarks on the proof of the previous theorem are instructive. First, note
that by the argument appearing in part (i) of the (a) ⇒ (b) section of the proof we may
conclude that for any trivial solution (u, v+ , v−) if v+ + v− = 0 then u is odd and equal to
n. This shows that if n is even then we have v+ + v− 6= 0.

On the other hand, if u = 0 then one may note that (u = 0, v− = 0, v
+

= n
gcd(n,k) ) is

a solution. This not only shows that n
gcd(n,k) being an even number implies that u 6= 0,

but also the above argument shows that if u + v
+

+ v− /∈ {n, n
gcd(n,k)} then (u, v

+
, v−) is a

nontrivial solution.
Also, note that by the proof of the last part of the theorem, if (u, v

+
, v− , r, t) is a solution

of (∗) and the odd girth of Pet(n, k) is equal to 2r + 3, then any cycle of minimum length
will intersect both outer and inner cycles of Pet(n, k).

Moreover, one may reprove the following classic result as a consequence of our discussions
so far.

Corollary 5. The generalized Petersen graph, Pet(n, k), is bipartite if and only if n is even
and k is odd.
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Proof. First, note that if n is even and k is odd, then by Lemma 2(b) the feasible set of
the system (∗) is empty. Hence, by Theorem 5 Pet(n, k) is bipartite since it does not have
any odd cycle.

On the other hand, if n is odd, then u = n and v− = v
+

= 0 constitute a feasible set of
parameters for the system (∗), implying the existence of an odd cycle by Theorem 5.

Also, if both n and k are even, then similarly, u = k and v
+

= 0, v− = 1, constitute a
feasible set of parameters for the system (∗), again implying the existence of an odd cycle
by Theorem 5. �

Now, we set for a proof of Theorem 1, but first we will be needing the following simple
lemma.

Lemma 3. Consider the equation u + kv = tn, in which k ∈ N, n ∈ N and t ∈ Z are
constants and u ∈ N and v ∈ Z are unknowns. Then

i) If t = 0 and 0 ≤ u ≤ k then the only solution of this equation other than the trivial
solution (u, v) = (0, 0) is (u, v) = (k,−1).

ii) If t 6= 0 and 0 ≤ u < k then the solution is uniquely determined as follows,{
u = tn− kb tnk c, v = b tnk c, t > 0,
u = kd−tnk e+ tn, v = −d−tnk e, t < 0.

Proof. Part (i) is clear. For part (ii) one may easily verify that the provided expressions
satisfy the equation and its conditions. On the other hand, let’s assume that we have two
solutions, namely,

u + kv = tn, and u′ + kv′ = tn.

Without loss of generality, we may assume u ≥ u′, and consequently, (u−u′) +k(v− v′) = 0.
But by part (i) and the fact that 0 ≤ u − u′ < k we have u − u′ = v − v′ = 0, proving the
uniqueness. �

This shows that if we have a nontrivial solution, and u 6= k then either u = tn−kb tnk c, v =
b tnk c or u = kd tnk e − tn, v = −d tnk e for some positive integer t.

Proof. (of Theorem 1)
Let Pet(n, k) be a non-bipartite graph. We consider the following two cases.

• There exist a trivial solution (u, v, r, t) for (∗):
We show that in this case the odd girth is equal to n

gcd(n,k) . Note that if (u, v) =

(0, n
gcd(n,k) ), then by the discussion proceeding Theorem 5 the odd girth is equal to
n

gcd(n,k) .

On the other hand, if v = 0, then u = n is odd and equal to the odd girth by
Theorem 5. Also, note that in this case (u = 0, v

+
= n

gcd(n,k) , v− = 0) is feasible for

(∗) and consequently, n ≤ n
gcd(n,k) . This implies gcd(n, k) = 1 showing that the odd

girth is equal to n = n
gcd(n,k) .

• There is not any trivial solution and (u, v, r, t) is a solution of (∗):
First, we prove the following claims. Recall that par(k) is the parity function which
is equal to one when k is odd and is zero otherwise.

i) There exists a nontrivial solution (u, v, r, t) for which |t| ≤ b (k−1)
2

n c+ par(k).
We consider the following cases.
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- k and n are odd.
Note that (u′ = n − kbnk c, v

′
+

= bnk c, v
′
−

= 0) is feasible for (∗), and conse-
quently, for any nontrivial solution (u, v, r, t) we have

u + |v| ≤ n− bn
k
c(k − 1) < n− (

n

k
− 1)(k − 1) =

n

k
+ k − 1.

Hence,

|t|n = |u+kv| ≤ u+|v|k < u+(
n

k
+k−1−u)k = u(1−k)+n+k2−k ≤ n+(k−1)2,

implying that

|t| ≤ b (k − 1)2

n
c+ 1.

- k is even.
Note that (u′ = k, v′

+
= 0, v′

−
= 1, t′ = 0) is feasible for (∗). If this is a solution

then the inequality is trivially satisfied. Otherwise, for any nontrivial solution
(u, v, r, t) we have u + |v| < k + 1, implying that u + |v| ≤ k − 1 since k is
even. On the other hand, u ≥ 1 implies that |v| ≤ k − 2, and consequently,
applying Lemma 3 we have,

|t|n = |u+kv| ≤ u+|v|k ≤ (u+|v|)+(k−1)|v| ≤ k−1+(k−1)(k−2) = (k−1)2.

This shows that

|t| ≤ b (k − 1)2

n
c.

ii) There exists a nontrivial solution (u, v, r, t) for which |t| ≤ 2k
gcd(n,k) . Moreover,

if n
gcd(n,k) is even, then there exists a nontrivial solution (u, v, r, t) for which

|t| ≤ k
gcd(n,k) .

First, assume that for positive integers α and β < t we have t = β + αk
gcd(n,k) .

Then one may verify that,

tn+ (1− k)b tnk c = ( αk
gcd(n,k) + β)n+ (1− k)b

( αk
gcd(n,k)

+β)n

k c
=
(
βn+ (1− k)bβnk c

)
+
(

( αk
gcd(n,k) )n+ (1− k)( αn

gcd(n,k) )
)

=
(
βn+ (1− k)bβnk c

)
+
(

αn
gcd(n,k)

)
(1 + k)d tnk e − tn = (1 + k)d

( αk
gcd(n,k)

+β)n

k e − ( αk
gcd(n,k) + β)n

=
(

(1 + k)dβnk e − βn
)

+
(

(1 + k)( αn
gcd(n,k) )− ( αk

gcd(n,k) )n
)

=
(

(1 + k)dβnk e − βn
)

+
(

αn
gcd(n,k)

)
To prove the claim we proceed by contradiction. First, note that by parts (d)
and (e) of Lemma 2, either (u, v, t) = (k,−1, 0) or 0 ≤ u < k. Clearly, the claims
are true for t = 0, hence we may assume that t 6= 0 and 0 ≤ u < k. On the other
hand by Lemma 3 we know that u + v is equal to u + v = tn+ (1− k)b tnk c, t > 0,

u + v = (1 + k)d−tnk e+ tn, t < 0

as the minimum value of the solutions of (∗). But by setting α = 1 when n
gcd(n,k)

is even and α = 2 when n
gcd(n,k) is odd, and the above computation we see that

one finds the minimum values(
βn+ (1− k)bβn

k
c
)
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or (
(1 + k)dβn

k
e − βn

)
for the solutions of (∗) which are strictly smaller, and this is a contradiction.

Now, the rest of the proof is clear by the above case studies since the set Ind(n, k)
essentially categorizes different cases and the minimization provides that odd girth by
Theorem 5.

�

Note that Theorem 1 not only provides an explicit expression for the odd girth of Pet(n, k),
but also the provided expression is also effectively computable in many cases. The following
corollary and example will show some special cases.

Corollary 6. For any odd number n, there exists two generalized Petersen graphs Pet(2n+
1, 2d+ 1) and Pet(2n+ 1, 2d) with odd girth n.

Example 1. Let us consider the following special cases as a couple of concrete examples.

• The odd girth of Pet(n, 2) is equal to 5, except for the case n = 6, for which odd girth
is equal to 3.
The case n = 5 is well-known. If n > 5 then n > (k − 1)2, and consequently, for
n

(n,2) ≥ 5, we have |t| ≤ b (k−1)
2

n c = 0. Hence, in this case the odd girth is equal to

k + 3 = 5. The only case for which we have n
(n,2) < 5 is n = 6, in which ase the odd

girth is equal to 6
(6,2) = 3.

• For Pet(n, 3), we have

g
odd

(Pet(n, 3)) =


n
3 3|n,
n+8
3 n

3≡ 1,
n+10

3 n
3≡ 2.

Note that for n ≥ 5 we have |t| ≤ b (k−1)
2

n c+1 = 1. Therefore, we just need to consider
the special cases t = 1, t = −1 and the trivial solutions.

I

The following result is essentially a direct consequence of Theorem 1, but we provide
some direct proofs for clarity and simplicity.

Proof. (of Theorem 2)
For the upper bounds note that

• If k is even and g
odd

(Pet(n, k)) 6= k + 3 then by feasibility of (u, v
+
, v−) = (k, 0, 1) we

have g
odd

(Pet(n, k)) ≤ k + 1.

• If k is odd then n is also odd by Corollary 5. Also, considering a feasible point uniquely
determined by Lemma 3 for t = 1, by and Theorem 5 we have

g
odd

(Pet(n, k)) ≤ n+ (1− k)bn
k
c+ 2 ≤ n+ (1− k)(

n

k
− 1) + 2 =

n

k
+ k + 1.
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For the lower bounds, first, and by contradiction, let (u, v+ , v− , r, t) be a solution of (∗) such
that u + v− + v+ < n

k , then

u + k(v+ − v−) ≤ u + k(v+ + v−) ≤ k(u + v+ + v−) < k
n

k
= n,

u + k(v
+
− v−) ≥ u− k(v

+
+ v−) ≥ −k(u + v

+
− v−) > −kn

k
= −n.

So −n < u + k(v
+
− v−) = tn < n, thus we have u + k(v

+
− v−) = t = 0.

Now, if k is even this contradicts Lemma 2(e). On the other hand, if k and n are odd,
since u+k(v

+
−v−) = 0, either both u and v

+
−v− are odd or both of them are even. Hence,

u + v+ + v− = (u + v+ − v−) + 2v− is even, which is contradiction, since we already know
that u + v+ + v− = 2r + 1.

For the second term in the lower bound, consider a solution of (∗∗) as tn− kv + |v| ≥ 1.
Then one may verify that,

tn−kv+|v| =

 tn− kv + v = tn− (k − 1)v v > 0
tn− kv − v = tn− (k + 1)v v < 0
tn v = 0

≥

 gcd(n, k − 1) v > 0
gcd(n, k + 1) v < 0
k + 1 ≥ gcd(n, k − 1) + 2 v = 0.

Therefore, if v = 0 then the solution is greater than or equal to gcd(n, k − 1) + 2 (note
that by Definition 1 we know that 2 < 2k ≤ n). Otherwise, the odd girth is greater than or
equal to min{gcd(n, k − 1), gcd(n, k + 1)}.

�

3 On circular chromatic number of Pet(n, k)

In this section we will prove Theorems 3 and 4. To start, let us recall the following results
from [10] and [11].

Theorem E. [10] Let G and H are two graphs, where 2q + 1 < g
odd

(H), then,

G
1

2q+1 → H ⇐⇒ G→ H
2q+1

.

Theorem F. [11] Let G be a non-bipartite graph with circular chromatic number χ
c
(G).

Then for any positive integer s, we have

χc(G
1

2s+1
) =

(2s+ 1)χ
c
(G)

sχc(G) + 1
.

Also, we will need the following lemma. Note that in what follows we use the crucial
observation that for an odd power graph G

2q+1

, two vertices u and v are adjacent if and only
if there exists a path of odd length less than or equal to 2q + 1 between them in G. This in
particular shows that if p ≤ q then G

2p+1

is a subgraph of G
2q+1

.

Proposition 1. Let C
def
= w0w1w2 . . . ws−1w0 be an odd cycle of the graph G, where u, v ∈

V (G) \ {w0 , w1 , w2 , . . . , ws−1}. Also, let u be adjacent to wi and v be adjacent to wj in G

for some 0 ≤ i < j ≤ s− 1. Then in the power graph G
s−2

,

(a) w
i

and w
j

are adjacent,

(b) If j − i
s

6≡ ±1, then u is adjacent to wj ,

(c) If j − i
s

6≡ ±2, then u is adjacent to v.
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Proof. Since s − 2 is odd, in each case we show that there exists an odd path of length
less than or equal s− 2 between the corresponding vertices in G.

(a) If j − i is odd, then we have an odd walk w
i
w
i+1

. . . w
j

with length less than or equal
s− 2. If j − i is even consider the odd walk w

j
w
j+1

. . . w
s−1

w
0
w

1
. . . w

i
.

(b) If j − i is odd, then we have an odd walk wjwj+1 . . . ws−1w0w1 . . . wiu, of length s −
j+ i+ 1 less than or equal s− 2. If j− i is even consider the odd walk uw

i
w
i+1

. . . w
j
.

(c) If j − i is odd, then we have an odd walk uwiwi+1 . . . wjv of length j − i+ 2 less than
or equal s− 2. If j − i is even consider the odd walk vwjwj+1 . . . ws−1w0w1 . . . wiu of
length s− j + i+ 2 less than or equal s− 2.

�

Proof. (of Theorem 3(a))
We prove the result for u = tn− kb tnk c, v = b tnk c and 2r + 1 = v + u (i.e. t > 0).
(for u = kd−tnk e+ tn, v = −d−tnk e (i.e. when t < 0) one may use a similar argument.)

Consider the set

P = {u
0
, · · · , uu} ∪ {v0

, · · · , vu} ∪ {uu+k
, · · · , u

u+(v−1)k
} ∪ {v

u+k
, · · · , v

u+(v−1)k
},

as a subset of V (Pet(n, k)) and note that |P| = 4r + 2. Now, it is enough to show that P

constitutes a clique in Pet(n, k)
2r+1

. Clearly, for this, it is enough to show that there exists
an odd path of length less than or equal to 2r + 1 between any pair of vertices in P.

For each 0 ≤ i ≤ n− 1 consider the (2r + 3)-cycle, C
i
, defined as follows

C
i

def
= u

i
u
i+1

. . . u
i+uvi+uvi+u+k

v
i+u+2k

. . . v
i+u+(v−1)k

v
i
u
i
,

where summations are in modulo n. Applying Proposition 1(a) to C
0

we find out that

{u
0
, · · · , uu} ∪ {vu+k

, · · · , v
u+(v−1)k

} ∪ {v
0
, vu}

constitutes a clique in Pet(n, k)
2r+1

.
We claim that, if i, j ∈ {0, 1, 2, . . . , u}, and h, ` ∈ {0, 1, 2, 3, ..., v − 1}, then there exists

an odd path of length less than or equal to 2r+ 1 between the following pairs of vertices in
Pet(n, k).

• v
i

to u
j
.

Applying Proposition 1(a) to C
i

the claim is true for j ≥ i. For j < i use the same
argument on C

i−u .

• v
i

to v
j
.

For j > i note that v
j

is connected to u
j

in C
i

and the distance between v
i

and u
j

in
C
i

is greater than one. Hence, Proposition 1(b) proves this case. If j < i then use the
same reasoning on Ci−u .

• u
u+hk

to v
u+`k

.
If ` ≥ h invoke Proposition 1(a) for C

hk
. If ` < h consider C

(h−v)k
, note that u

u+hk
is

connected to v
u+hk

in this cycle, and invoke Proposition 1(b).

• u
u+hk

to u
u+`k

.
Note that if |` − h| 6= 2, we may invoke Proposition 1(c) in C

0
. Also, if |` − h| = 2,

we may applying Proposition 1(b) on C
hk

if ` > h. If |` − h| = 2 and ` < h, consider
C

(h−v)k
and invoke Proposition 1(b).
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• u
u+hk

to v
i
.

If h 6= 0, consider C0 and Proposition 1(c), (note that in this case the distance between
v
u+hk

and ui is not equal to 2). Also, the case h = 0 is the case for ui and vj mentioned
before.

• u
u+hk

to u
i
.

If h = 0 this is the case of u
i

and u
j

mentioned before. If h 6= 0, the distance between
v
u+hk

and u
i

in C
0

is not equal to 1. Therefore, we can apply Proposition 1(b).

• v
u+hk

to v
i
.

If h = 0 this is the case of v
i

and v
j
. Also, for i = 0 we can apply Proposition 1(a)

on C
0
. If i 6= 0 and h 6= 0, the distance between v

u+hk
and u

i
in C

0
is not equal to 1.

Hence, we can apply Proposition 1(b).

�

Corollary 7. If the system (∗) does not have any trivial solution and the odd girth of
Pet(n, k) is equal to 2r + 3, then

Pet(n, k) 9 C2r+3 .

Proof. By contradiction assume that

Pet(n, k)→ C2r+3 .

Then by Theorem 3 and the functorial property of the power construction we have

K4r+2 → Pet(n, k)
2r+1

→ C
2r+1

2r+3
= K2r+3 ,

which is a contradiction. �

Proof. (of Corollary 2(a))
Since (2r + 1) < g

odd
(Pet(n, k)) = 2r + 3, by Theorem E we have

K4r+2 → Pet(n, k)
2r+1

⇒ K
1

2r+1

4r+2
→ Pet(n, k).

Therefore, by Theorem F we have,

χ
c
(Pet(n, k)) ≥ χ

c
(K

1
2r+1

4r+2
) =

(2r + 1)χc(K4r+2)

rχ
c
(K

4r+2
) + 1

=
(2r + 1)(4r + 2)

r(4r + 2) + 1
= 2 +

4r

4r2 + 2r + 1
.

�

Example 2. Consider the special case in which n ≤ 4k2 + 1, n
2k≡ 1 and

n− 1

k
is even.

Then (∗) has no trivial solution and g
odd

(Pet(n, k)) ≤ n− 1

2k
+ 3. Therefore, by setting

2r + 1 =
n− 1

2k
+ 1, we have

χc(Pet(n, k)) ≥ 2 +
4r

4r2 + 2r + 1
.

In particular, if n = 4sk + 1, where u ≤ k, by setting r = s, we have,

χc(Pet(4sk + 1, 2k)) ≥ 2 +
4s

4s2 + 2u + 1
.

For example, for u = 1, we have

χc(Pet(4k + 1, 2k)) ≥ 2 +
4

7
,

implying Pet(4k + 1, 2k) 9 C5. I
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Example 3.

1. Let k = 3. For any odd n, where 3 - n, by Theorem 1, we have

2r + 1 =

{
n− 2n−13 = n+2

3 n
3≡ 1,

n− 2n−23 = n+4
3 n

3≡ 2.

Therefore,

χ
c
(Pet(n, 3)) ≥

{
2 + 6n−6

n2+n+7 n
3≡ 1,

2 + 6n+6
n2+5n+13 n

3≡ 2.

For instance, χ
c
(Pet(11, 3)) ≥ 2 +

72

189
. Note that since

χ
c
(C

7
) = 2 +

1

3
< 2 +

72

189
= χ

c
(Pet(11, 3))

one may conclude that Pet(11, 3) 9 C
7
. Similarly,

χ
c
(Pet(7, 3)) ≥ 2 +

36

63
> 2 +

1

2
= χ

c
(C

5
),

and we have Pet(7, 3) 9 C
5
.

2. If n = 21 and k = 5, by Theorem 1 we have 2r + 1 = 5, and consequently,

χc(Pet(21, 5)) ≥ 2 +
8

21
> 2 +

1

3
,

implying Pet(21, 5) 9 C
7
.

I

Proof. (of Theorem 3(b))

Reorganize the vertices of Pet(n, 2k)
2k+1

as

x
0

= u
0
, x

1
= v

0
, x

2
= u

1
, x

3
= v

1
, . . . x

2n−2
= u

n−1
, x

2n−1
= v

n−1
.

In what follows we prove that each x
i

is connected to x
i+`

for 1 ≤ ` ≤ 4k + 1 where

summation is modulo n. This clearly implies that there is a subgraph in Pet(n, 2k)
2k+1

isomorphic to K 2n
4k+4

.

Note that, by symmetry, it is enough to prove the claim for u0 and v0 . Hence, in what
follows, we show that for any j ∈ {1, 2, . . . , 2k} and in Watkins’ notation, there exists an
odd path of length less than or equal to 2k + 1 between the following pairs of vertices in
Pet(n, 2k).

(1) u
0

to u
j
,

Apply Proposition 1(a) in C
0
.

(2) v0 to uj ,
Apply Proposition 1(a) in (see Figure 3)

C0 = u0u1 . . . u2k
v
2k
v0u0 .

(3) v
0

to v
j
,

If j = 2k we apply Proposition 1(a) in C0 . Also, if j 6= 2k, the distance between v0

and uj is not equal to 1 in C0 , and consequently, one may invoke Proposition 1(b).
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(4) u0 to vj ,
If j = 2k we apply Proposition 1(a) in C0 . Also, if j 6= 2k, and j 6= 1 the distance
between u

0
and u

j
is not equal to 1 in C

0
, and consequently, one may invoke Propo-

sition 1(b). On the other hand, if j = 1 we apply Proposition 1(a) in (see Figure 3)

C
n−2k−1

= u
n−2k−1

u
n−2k

. . . u
0
u

1
v
1
v
n−2k−1

v
n−2k−1

.

(5) v
0

to u
2k+1

.
Consider the odd path v

0
v
2k
u

2k
u

2k+1
(see Figure 3).

Figure 3: A 2k + 3- cycle in Pet(n, k).

�

We will need the following result to prove Corollary 2(b).

Theorem G. [22] Let K p
q

be the complement of the circular complete graph K p
q

. Then, for
p
q ≥ 2, we have

χ
c
(K p

q

) =
p

bpq c
.

Proof. (of Corollary 2(b))
Since 2k + 1 < Pet(n, 2k), by Theorem E we have,

(
K 2n

4k+2

) 1
2k+1

→ Pet(n, 2k) ⇐⇒ K 2n
4k+2

→ Pet(n, 2k)
2k+1

.

Theorem 2(b) implies that K 2n
4k+2

→ Pet(n, 2k)
2k+1

, and consequently,

(
K 2n

4k+2

) 1
2k+1

→ Pet(n, 2k).

But since n > 2k by Theorem G, we have

χ
c

(Pet(n, 2k)) ≥ χ
c

(K 2n
4k+2

) 1
2k+1

 =
2n(2k + 1)

2kn+ b 2n
4k+2c

.

�

In [9], the following lower bound has been obtained for the circular chromatic number of
generalized Petersen graphs.

Theorem H. [9] For any n > 2k, we have

χc(Pet(n, 2k)) ≥ 2 +
2

2k + 1
.
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The following proposition shows that the lower bound of Theorem 3(b) can be strictly greater
than the lower bound presented in Theorem H.

Proposition 2. Let n
2k+2≡ y and 0 < y ≤ 2k + 1− n

2k + 2
, then

2n(2k + 1)

2kn+ b n
2k+1c

> 2 +
2

2k + 1

Proof. Since y ≤ 2k + 1− n

2k + 2
, if we set u = b n

2k + 2
c, then

n = u(2k + 2) + y ⇒ n = u(2k + 1) + (u + y).

Since 2k + 2 - n we have u <
n

2k + 2
, and consequently,

u + y < (
n

2k + 2
) + (2k + 1− n

2k + 2
) = 2k + 1.

Therefore, b n

2k + 1
c = u = b n

2k + 2
c. Finally,

2n(2k + 1)

2kn+ b n
2k+1c

=
2n(2k + 1)

2kn+ b n
2k+2c

≥ 2n(2k + 1)

2kn+ n
2k+2

= 2 +
2

2k + 1
.

But, equality holds if and only if 2k + 2|n, which is impossible since n
2k+2≡ y and y 6= 0. �

It must be noted that there exist many pair of numbers (n, k), such that 4k2 − 1 < n <
4k2+6k+2 for which conditions of both Proposition 2 and Corollary 2(b) hold simultaneously
(e.g. 5 ≤ n < 12 for Pet(n, 2), or 16 ≤ n < 30 for Pet(n, 4)).

Proof. (of Theorem 4)

(a) Assume that n is odd, k is even and n
k−1≡ −2, (for n

k−1≡ 2 one may use the same
argument on the reverse direction for Pet(n, k)). Also, let

V (Pb(n, k)) = {x
0
, x

1
, · · · , x

n−1
}.

Note that if j(k − 1) = n+ 2, then

k

2
j(k − 1) =

k

2
n+ k

n≡ k, (
k

2
j − 1)(k − 1) =

k

2
n+ 1

n≡ 1 (1),

and consequently, since n and (k − 1) are relatively prime, we can define

σ(x
i(k−1)

)
def
= y

i
,

where operations are in Z
n
.

By the hypothesis, s = (n−4)(k−2)
2(k−1) and

(n− 4)(k − 2)

2(k − 1)
= s ≤ k(n+ 2)

2(k − 1)
⇒ k(n+ 2)

2(k − 1)
− 1 ≤ n− s = n− (n− 4)(k − 2)

2(k − 1)
.

Hence, using (1) and symmetry, one may verify that the edge x0x1 = x0x( k
2
j−1)(k−1)

is

mapped to y
0
y
k
2
j−1

= y
0
y
k(n+2)
2(k−1)

−1
∈ E(Kn

s
), and also, x

0
x
k

= x
0
x
k
2
j(k−1)

is mapped

to y
0
y
k
2
j

= y
0
y
k(n+2)
2(k−1)

∈ E(Kn
s

).
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(b) Again, using Watkins’ notation for Pet(n, k), we can define

σ
V

(vi)
def
= σ(ui+1)

def
= xi ,

which is a homomorphism.

(c) Here, let

V (C
k

n
) = {x

0
, x

1
, · · · , x

n−1
},

and define σ(v
i
)

def
= σ

V
(u

i+1
)

def
= x

i
. Consider the following three cases.

– Edges of type uiui+1 , are mapped to xi+1xi+2 ,

– Edges of type vivi+k are mapped to xixi+k ,

– Edges of type viui are mapped to xixi+1 ,

which proves that σ is a homomorphism.

�

Proof. (of Corollary 3)

(a) By Theorem 4(b),
Pet(n, k)→ Pb(n, k),

and by Theorem 4(a), for s = (n−4)(k−2)
2(k−1) we have a homomorphism

Pb(n, k)→ Kn
s
.

Thus, there exists a homomorphism

Pet(n, k)→ Kn
s
,

and consequently,

χ
c
(Pet(n, k)) ≤ χ

c
(Kn

s
) =

2n(k − 1)

(k − 2)(n− 4)
.

(b) First, one may verify that χ
c
(C

k

n
) = 2n

n−k , by considering the following homomorphism

η : C
k

n
→ K n

n−k
2

,

η
V

(xi) =

{
y i

2

i is even

yn+v
2

i is odd,

in which V (K n
n−k

2

) = {y
0
, y

1
, · · · , y

n−1
}.

Now, by Theorem 4(c), there exists a homomorphism

σ : Pet(n, k)→ C
k

n
.

Thus, we have

χ
c
(Pet(n, k)) ≤ χ

c
(C

k

n
) =

2n

n− k
.

�

Proof. (of Corollary 4)
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(a) Since k is even, if g
odd

(Pet(n, k)) tends to infinity, then by Theorem 2, k tends to

infinity, and consequently, if n is odd and n
k−1≡ ±2, by Corollary 3 the circular

chromatic number χ
c
(Pet(n, k)) tends to 2 because 2n(k−1)

(n−4)(k−2) tends to 2.

(b) If both n and k are odd and n ≥ 5k, by Corollary 3 we have,

χ
c
(Pet(n, k)) ≤ 2n

n− k
≤ 5

2
.

�

References

[1] O. V. Borodin, S. G. Hartke, A. O. Ivanova, A. V. Kostochka, and
D. B. West, Circular (5, 2)-coloring of sparse graphs, Sib. Élektron. Mat. Izv. 5 (2008),
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