Skip to main content
Log in

The minimum value of geometric-arithmetic index of graphs with minimum degree 2

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

The geometric-arithmetic index was introduced in the chemical graph theory and it has shown to be applicable. The aim of this paper is to obtain the extremal graphs with respect to the geometric-arithmetic index among all graphs with minimum degree 2. Let G(2, n) be the set of connected simple graphs on n vertices with minimum degree 2. We use linear programming formulation and prove that the minimum value of the first geometric-arithmetic \((GA_{1})\) index of G(2, n) is obtained by the following formula:

$$\begin{aligned} GA_1^* = \left\{ \begin{array}{ll} n&{}\quad n \le 24, \\ \mathrm{{24}}\mathrm{{.79}}&{}\quad n = 25, \\ \frac{{4\left( {n - 2} \right) \sqrt{2\left( {n - 2} \right) } }}{n}&{}\quad n \ge 26. \\ \end{array} \right. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Divnić T, Milivojević M, Pavlović L (2014) Extremal graphs for the geometric-arithmetic index with given minimum degree. Discret Appl Math 162:386–390

    Article  MathSciNet  MATH  Google Scholar 

  • Fath-Tabar G, Furtula B, Gutman I (2010) A new geometric-arithmetic index. J Math Chem 47:477–486

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Liu B, Liu J (2010) Complete solution to a conjecture on Randić index. Eur J Oper Res 200:9–13

    Article  MATH  Google Scholar 

  • Pavlović L (2003) Graph with extremal Randić index when the minimum degree of vertices is two. Kragujevac J Math 25:55–63

    MathSciNet  MATH  Google Scholar 

  • Pavlović L (2010) Comment on Complete solution to a conjecture on Randić index. Eur J Oper Res 207:539–542

    Article  MATH  Google Scholar 

  • Pavlović L, Gutman I (2001) Graphs with extremal conectiyity index. Novi Sad J Math 31(2):53–58

    MathSciNet  MATH  Google Scholar 

  • Rodriguez JM, Sigarreta JM (2016) Spectral properties of geometric-arithmetic index. Appl Math Comput 277:142–153

    MathSciNet  Google Scholar 

  • Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley, Weinheim

    Book  Google Scholar 

  • Vukičević D, Furtula B (2009) Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J Math Chem 46:1369–1376

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan Y, Zhou B, Trinajstić N (2010) On geometric-arithmetic index. J Math Chem 47:833–841

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou B, Gutman I, Furtula B, Dua Z (2009) On two types of geometric-arithmetic index. Chem Phys Lett 482:153–155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Sohrabi-Haghighat.

Appendix: The expression of \(GA_1^{1}\)

Appendix: The expression of \(GA_1^{1}\)

Here, we give more details about the expression of \(GA_1^{1}\). Note that

$$\begin{aligned} GA_1^1 \left( G \right)= & {} \frac{{2\sqrt{2\left( {n - 2} \right) } }}{n}x_{2,n - 2} + \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{n + 1}}n_2 + \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}}n_{n - 2} \\&+ \sum \limits _{i = 2}^{n - 3} {\frac{{2\sqrt{2i} }}{{i + 2}}} x_{2,i} + \sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{n - 1 + i}}} n_i + \sum \limits _{3 \le i \le j \le n - 2} {\frac{{2\sqrt{ij} }}{{i + j}}} x_{i,j}. \\ \end{aligned}$$

Substituting (9) and (10), we have

$$\begin{aligned}&GA_1^1\left( G \right) \\&\quad =\, \frac{{2\sqrt{2\left( {n - 2} \right) } }}{n}\left[ \frac{{\left( {n - 1} \right) \left( {n - 3} \right) }}{{n - 2}} - \sum \limits _{i = 2}^{n - 3} {\left( {1 + \frac{{n - i - 2}}{{\left( {i - 1} \right) \left( {n - 2} \right) }}} \right) } {x_{2,i}}\right. \\&\quad \left. \qquad \qquad \qquad \qquad \qquad - \sum \limits _{3 \le i \le j \le n - 2} {\left( {\frac{{n - 3}}{{i - 1}} + \frac{{n - 3}}{{j - 1}}} \right) \frac{{{x_{i,j}}}}{{n - 2}}} \right] \\&\qquad + \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{n + 1}}\left[ \frac{{\left( {n - 1} \right) \left( {n - 3} \right) }}{{n - 2}} + \frac{{2{x_{2,2}}}}{{n - 2}} - \sum \limits _{i = 3}^{n - 3} {\frac{{\left( {n - i - 2} \right) {x_{2,i}}}}{{\left( {i - 1} \right) \left( {n - 2} \right) }}}\right. \\&\quad \qquad \qquad \qquad \qquad \qquad \left. - \sum \limits _{3 \le i \le j \le n - 2} {\left( {\frac{{n - 3}}{{i - 1}} + \frac{{n - 3}}{{j - 1}}} \right) \frac{{{x_{i,j}}}}{{n - 2}}} \right] \\&\qquad + \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}}\left[ \frac{{n - 1}}{{n - 2}} + \frac{{2{x_{n - 2,n - 2}}}}{{n - 2}} - \sum \limits _{i = 3}^{n - 3} {\left( {\frac{1}{{i - 1}} - 1} \right) \frac{{{x_{i,n - 2}}}}{{n - 2}}} \right. \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \left. - \sum \limits _{2 \le i \le j \le n - 3} {\left( {\frac{1}{{i - 1}} + \frac{1}{{j - 1}}} \right) \frac{{{x_{i,j}}}}{{n - 2}}} \right] \\&\qquad + \sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{n - 1 + i}}} \left( {\frac{{{x_{2,i}} + {x_{3,i}} + \cdots + {x_{i - 1,i}} + 2{x_{i,i}} + {x_{i,i + 1}} + \cdots + {x_{i,n - 2}}}}{{i - 1}}} \right) \\&\qquad + \sum \limits _{i = 2}^{n - 3} {\frac{{2\sqrt{2i} }}{{i + 2}}} {x_{2,i}} + \sum \limits _{3 \le i \le j \le n - 2} {\frac{{2\sqrt{ij} }}{{i + j}}} {x_{i,j}}. \end{aligned}$$

With simple calculations, we conclude that

$$\begin{aligned}&\sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{n - 1 + i}}} \left( {\frac{{{x_{2,i}} + {x_{3,i}} + \cdots + {x_{i - 1,i}} + 2{x_{i,i}} + {x_{i,i + 1}} + \cdots + {x_{i,n - 2}}}}{{i - 1}}} \right) \\&\quad =\, \sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }}{x_{2,i}}}\\&\qquad + \,\sum \limits _{3 \le i \le j \le n - 3} {\left( {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }} + \frac{{2\sqrt{j\left( {n - 1} \right) } }}{{\left( {n - 1 + j} \right) \left( {j - 1} \right) }}} \right) {x_{i,j}}} \\&\qquad +\, \sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }}{x_{i,n - 2}}}. \end{aligned}$$

So,

$$\begin{aligned}&GA_1^1\left( G \right) \\&\quad = \frac{{2\left( {n - 1} \right) \left( {n - 3} \right) \sqrt{2\left( {n - 2} \right) } }}{{n\left( {n - 2} \right) }} + \frac{{2\left( {n - 1} \right) \left( {n - 3} \right) \sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) \left( {n - 2} \right) }}\\&\qquad + \,\frac{{2\left( {n - 1} \right) \sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{\left( {2n - 3} \right) \left( {n - 2} \right) }}\\&\qquad - \,\frac{{2\sqrt{2\left( {n - 2} \right) } }}{n}\sum \limits _{i = 2}^{n - 3} {\left( {1 + \frac{{n - i - 2}}{{\left( {i - 1} \right) \left( {n - 2} \right) }}} \right) } {x_{2,i}} \\&\qquad +\, \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) }}\left( {\frac{{2{x_{2,2}}}}{{n - 2}} - \sum \limits _{i = 3}^{n - 3} {\frac{{\left( {n - i - 2} \right) {x_{2,i}}}}{{\left( {i - 1} \right) \left( {n - 2} \right) }}} } \right) \end{aligned}$$
$$\begin{aligned}&\qquad -\, \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}}\sum \limits _{i = 2}^{n - 3} {\left( {1 + \frac{1}{{i - 1}}} \right) \frac{{{x_{2,i}}}}{{n - 2}}}\\&\qquad + \,\sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }}{x_{2,i}}} + \sum \limits _{i = 2}^{n - 3} {\frac{{2\sqrt{2i} }}{{i + 2}}} {x_{2,i}}\\&\qquad -\, \frac{{2\sqrt{2\left( {n - 2} \right) } }}{n}\left[ {\sum \limits _{3 \le i \le j \le n - 2} {\left( {\frac{{n - 3}}{{i - 1}} + \frac{{n - 3}}{{j - 1}}} \right) \frac{{{x_{i,j}}}}{{n - 2}}} } \right] \\&\qquad -\, \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{n + 1}}\left[ {\sum \limits _{3 \le i \le j \le n - 2} {\left( {\frac{{n - 3}}{{i - 1}} + \frac{{n - 3}}{{j - 1}}} \right) \frac{{{x_{i,j}}}}{{n - 2}}} } \right] \\&\qquad +\, \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}}\left[ {\frac{{2{x_{n - 2,n - 2}}}}{{n - 2}}} \right] \\&\qquad -\, \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}} \left[ {\sum \limits _{i = 3}^{n - 3} {\left( {\frac{1}{{i - 1}} - 1} \right) \frac{{{x_{i,n - 2}}}}{{n - 2}}} } \right] \\&\qquad -\, \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}}\left[ {\sum \limits _{3 \le i \le j \le n - 3} {\left( {\frac{1}{{i - 1}} + \frac{1}{{j - 1}}} \right) \frac{{{x_{i,j}}}}{{n - 2}}} } \right] \\&\qquad +\, \sum \limits _{3 \le i \le j \le n - 3} {\left( {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }} + \frac{{2\sqrt{j\left( {n - 1} \right) } }}{{\left( {n - 1 + j} \right) \left( {j - 1} \right) }}} \right) {x_{i,j}}} \\&\qquad +\, \sum \limits _{3 \le i \le j \le n - 2} {\frac{{2\sqrt{ij} }}{{i + j}}} {x_{i,j}}+ \sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }}{x_{i,n - 2}}}. \end{aligned}$$

On the other hand

$$\begin{aligned}&\quad -\, \frac{{2\sqrt{2\left( {n - 2} \right) } }}{n}\sum \limits _{i = 2}^{n - 3} {\left( {1 + \frac{{n - i - 2}}{{\left( {i - 1} \right) \left( {n - 2} \right) }}} \right) } {x_{2,i}}\\&\quad +\, \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) }}\left( {\frac{{2{x_{2,2}}}}{{n - 2}} - \sum \limits _{i = 3}^{n - 3} {\frac{{\left( {n - i - 2} \right) {x_{2,i}}}}{{\left( {i - 1} \right) \left( {n - 2} \right) }}} } \right) \\&\quad -\, \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}} \sum \limits _{i = 2}^{n - 3} {\left( {1 + \frac{1}{{i - 1}}} \right) \frac{{{x_{2,i}}}}{{n - 2}}} \\&\quad +\,\sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }}{x_{2,i}}} + \sum \limits _{i = 2}^{n - 3} {\frac{{2\sqrt{2i} }}{{i + 2}}} {x_{2,i}}\\&= - \frac{{2\sqrt{2\left( {n - 2} \right) } }}{n}\sum \limits _{i = 2}^{n - 3} {\left( {\frac{{i\left( {n - 3} \right) }}{{\left( {i - 1} \right) \left( {n - 2} \right) }}} \right) } {x_{2,i}} + \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) }} \left( {\frac{{2{x_{2,2}}}}{{n - 2}}} \right) \\&\quad -\, \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) }} \left( {\sum \limits _{i = 3}^{n - 3} {\left( { - 1 + 1 + \frac{{\left( {n - i - 2} \right) }}{{\left( {i - 1} \right) \left( {n - 2} \right) }}} \right) {x_{2,i}}} } \right) \\&\quad +\, \sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }}{x_{2,i}}} \end{aligned}$$
$$\begin{aligned}&\quad -\, \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}} \sum \limits _{i = 2}^{n - 3} {\left( {1 + \frac{1}{{i - 1}}} \right) \frac{{{x_{2,i}}}}{{n - 2}}} + \sum \limits _{i = 2}^{n - 3} {\frac{{2\sqrt{2i} }}{{i + 2}}} {x_{2,i}}\\&= - \frac{{2\sqrt{2\left( {n - 2} \right) } }}{n}\sum \limits _{i = 2}^{n - 3} {\left( {\frac{{\left( {i - 1} \right) \left( {n - 3} \right) + \left( {n - 3} \right) }}{{\left( {i - 1} \right) \left( {n - 2} \right) }}} \right) } {x_{2,i}}\\&\quad +\, \frac{{2\sqrt{2\left( {n - 1}\right) } }}{{\left( {n + 1} \right) }}\left( {\frac{{2{x_{2,2}}}}{{n - 2}}} \right) \\&\quad +\, \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) }}\sum \limits _{i = 3}^{n - 3} {{x_{2,i}}} - \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) }}\left( {\sum \limits _{i = 3}^{n - 3} {\left( {\frac{{i\left( {n - 3} \right) }}{{\left( {i - 1} \right) \left( {n - 2} \right) }}} \right) {x_{2,i}}} } \right) \\&\quad +\, \sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }}{x_{2,i}}} \\&\quad -\, \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}}\sum \limits _{i = 2}^{n - 3} {\left( {1 + \frac{1}{{i - 1}}} \right) \frac{{{x_{2,i}}}}{{n - 2}}} + \sum \limits _{i = 2}^{n - 3} {\frac{{2\sqrt{2i} }}{{i + 2}}} {x_{2,i}}\\ \end{aligned}$$
$$\begin{aligned}&= - \frac{{2\sqrt{2\left( {n - 2} \right) } }}{{n\left( {n - 2} \right) }}\sum \limits _{i = 2}^{n - 3} {\left( {\frac{{n - 3}}{1} + \frac{{n - 3}}{{i - 1}}} \right) } {x_{2,i}}\\&\quad + \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) }}\left( {\frac{{2{x_{2,2}}}}{{n - 2}}} \right) \\&\quad +\, \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) }}\sum \limits _{i = 3}^{n - 3} {{x_{2,i}}} - \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) \left( {n - 2} \right) }} \left( {\sum \limits _{i = 3}^{n - 3} {\left( {\frac{{n - 3}}{1} + \frac{{n - 3}}{{i - 1}}} \right) {x_{2,i}}} } \right) \\&\quad +\, \sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }}{x_{2,i}}} \\&\quad -\, \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}}\sum \limits _{i = 2}^{n - 3} {\left( {1 + \frac{1}{{i - 1}}} \right) \frac{{{x_{2,i}}}}{{n - 2}}} + \sum \limits _{i = 2}^{n - 3} {\frac{{2\sqrt{2i} }}{{i + 2}}} {x_{2,i}}\\&= \sum \limits _{i = 2}^{n - 3} {\left( {\frac{{2\sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) }} + \frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }}} \right) {x_{2,i}}}\\&\quad -\, \frac{{2\sqrt{2\left( {n - 2} \right) } }}{{n\left( {n - 2} \right) }}\sum \limits _{i = 2}^{n - 3} {\left( {\frac{{n - 3}}{1} + \frac{{n - 3}}{{i - 1}}} \right) } {x_{2,i}}\\&\quad -\, \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) \left( {n - 2} \right) }} \left( {\sum \limits _{i = 2}^{n - 3} {\left( {\frac{{n - 3}}{1} + \frac{{n - 3}}{{i - 1}}} \right) {x_{2,i}}} } \right) \\&\quad - \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}}\sum \limits _{i = 2}^{n - 3} {\left( {1 + \frac{1}{{i - 1}}} \right) \frac{{{x_{2,i}}}}{{n - 2}}} + \sum \limits _{i = 2}^{n - 3} {\frac{{2\sqrt{2i} }}{{i + 2}}} {x_{2,i}}, \end{aligned}$$

and

$$\begin{aligned}&\sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }}{x_{i,n - 2}}} + \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}}\left[ {\frac{{2{x_{n - 2,n - 2}}}}{{n - 2}}} \right] \\&\quad -\, \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}} \left[ {\sum \limits _{i = 3}^{n - 3} {\left( {\frac{1}{{i - 1}} - 1} \right) \frac{{{x_{i,n - 2}}}}{{n - 2}}} } \right] \\&= \sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }}{x_{i,n - 2}}} + \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}}\left[ {\frac{{2{x_{n - 2,n - 2}}}}{{n - 2}}} \right] \\&\quad -\, \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{\left( {2n - 3} \right) \left( {n - 2} \right) }}\left[ {\sum \limits _{i = 3}^{n - 3} {\left( {\frac{{{x_{i,n - 2}}}}{{i - 1}}} \right) } } \right] + \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{\left( {2n - 3} \right) \left( {n - 3} \right) }}\left[ {\sum \limits _{i = 3}^{n - 3} {\frac{{n - 3}}{{n - 2}}{x_{i,n - 2}}} } \right] \\&= \sum \limits _{i = 3}^{n - 3} {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }}{x_{i,n - 2}}} + \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{2n - 3}}\left[ {\frac{{2{x_{n - 2,n - 2}}}}{{n - 2}}} \right] \\&\quad -\, \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{\left( {2n - 3} \right) \left( {n - 2} \right) }}\left[ {\sum \limits _{i = 3}^{n - 3} {\left( {\frac{{{x_{i,n - 2}}}}{{i - 1}}} \right) } } \right] \\&\quad +\, \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{\left( {2n - 3} \right) \left( {n - 3} \right) }}\left[ {\sum \limits _{i = 3}^{n - 3} {\left( {1 - \frac{1}{{n - 2}}} \right) {x_{i,n - 2}}} } \right] \\&= \sum \limits _{i = 3}^{n - 2} {\left( {\frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }} + \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{\left( {2n - 3} \right) \left( {n - 3} \right) }}} \right) {x_{i,n - 2}}} \\&\quad -\, \frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{\left( {2n - 3} \right) \left( {n - 2} \right) }}\sum \limits _{i = 3}^{n - 2} {\left( {\frac{1}{{i - 1}} + \frac{1}{{n - 3}}} \right) {x_{i,n - 2}}}. \end{aligned}$$

Therefore,

$$\begin{aligned} GA_1^1\left( G \right)= & {} \frac{{2\left( {n - 1} \right) \left( {n - 3} \right) \sqrt{2\left( {n - 2} \right) } }}{{n\left( {n - 2} \right) }} + \frac{{2\left( {n - 1} \right) \left( {n - 3} \right) \sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) \left( {n - 2} \right) }}\\&+ \frac{{2\left( {n - 1} \right) \sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{\left( {2n - 3} \right) \left( {n - 2} \right) }} + \sum \limits _{i = 2}^{n - 3} {{f_{2,i}}{x_{2,i}}} + \sum \limits _{3 \le i \le j \le n - 2} {{f_{i,j}}{x_{i,j}}}, \end{aligned}$$

where

$$\begin{aligned} {f_{i,j}}= & {} \frac{{2\sqrt{i\left( {n - 1} \right) } }}{{\left( {n - 1 + i} \right) \left( {i - 1} \right) }} + \frac{{2\sqrt{j\left( {n - 1} \right) } }}{{\left( {n - 1 + j} \right) \left( {j - 1} \right) }}\\&\quad - \,\frac{{2\sqrt{\left( {n - 1} \right) \left( {n - 2} \right) } }}{{\left( {2n - 3} \right) \left( {n - 2} \right) }}\left[ {\frac{1}{{i - 1}} + \frac{1}{{j - 1}}} \right] \\&\quad + \,\frac{{2\sqrt{ij} }}{{i + j}} - \frac{{2\sqrt{2\left( {n - 2} \right) } }}{{n\left( {n - 2} \right) }}\left[ {\frac{{n - 3}}{{i - 1}} + \frac{{n - 3}}{{j - 1}}} \right] \\&\quad -\, \frac{{2\sqrt{2\left( {n - 1} \right) } }}{{\left( {n + 1} \right) \left( {n - 2} \right) }}\left[ {\frac{{n - 3}}{{i - 1}} + \frac{{n - 3}}{{j - 1}}} \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi-Haghighat, M., Rostami, M. The minimum value of geometric-arithmetic index of graphs with minimum degree 2. J Comb Optim 34, 218–232 (2017). https://doi.org/10.1007/s10878-016-0062-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-016-0062-4

Keywords

Navigation