Skip to main content
Log in

Online integrated allocation of berths and quay cranes in container terminals with 1-lookahead

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

This paper studies an online over-list model of the integrated allocation of berths and quay cranes (QCs) in container terminals with 1-lookahead ability. The objective is to minimize the maximum completion time of container vessels, i.e., the makespan. We focus on two different types of vessels, three berths and a small number of QCs in the hybrid berth layout, with 1-lookahead ability. We propose a \({{(1 + \sqrt{2} )/2}}\)-competitive algorithm for the case with four cranes, a 5/4-competitive algorithm for the case with five cranes and a 4/3-competitive algorithm for the case with six cranes, respectively. All of the algorithms are proved to be optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 202(3):615–627

    Article  MathSciNet  MATH  Google Scholar 

  • Blazewicz J, Cheng TCE, Machowiak M, Oguz C (2011) Berth and quay crane allocation: a moldable task scheduling model. J Oper Res Soc 62:1189–1197

    Article  Google Scholar 

  • Borodin A, El-Yaniv R (1998) Online computation and competitive analysis. Cambridge University Press, New York

    MATH  Google Scholar 

  • Carlo H, Vis I, Roodbergen K (2013) Seaside operations in container terminals: literature overview, trends, and research directions. Flex Serv Manuf J 27:1–39

    MATH  Google Scholar 

  • Chen JH, Lee DH, Cao JX (2012) A combinatorial benders cuts algorithm for the quayside operation problem at container terminals. Transp Res Part E Logist Transp Rev 48(1):266–275 (2012) (select Papers from the 19th International Symposium on Transportation and Traffic Theory)

  • Giallombardo G, Moccia L, Salani M, Vacca I (2010) Modeling and solving the tactical berth allocation problem. Transp Res Part B Methodol 44(2):232–245

    Article  Google Scholar 

  • Imai A, Sun X, Nishimura E, Papadimitriou S (2005) Berth allocation in a container port: using a continuous location space approach. Transp Res Part B Methodol 39(3):199–221

    Article  Google Scholar 

  • Liang C, Guo J, Yang Y (2011) Multi-objective hybrid genetic algorithm for quay crane dynamic assignment in berth allocation planning. J Intell Manuf 22(3):471–479

    Article  Google Scholar 

  • Lokuge P, Alahakoon D (2007) Improving the adaptability in automated vessel scheduling in container ports using intelligent software agents. Eur J Oper Res 177(3):1985–2015

    Article  MATH  Google Scholar 

  • Mandelbaum M, Shabtay D (2011) Scheduling unit length jobs on parallel machines with lookahead information. J Sched 14(4):335–350

    Article  MathSciNet  MATH  Google Scholar 

  • Park YM, Kim KH (2003) A scheduling method for berth and quay cranes. OR Spectr 25(1):1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Theofannis S, Golias M, Boile M (2007) Berth and quay crane scheduling: a formulation reflecting service deadlines and productivity agreements. In: Proceedings of the international conference on transport science and technology (TRANSTEC 2007), Prague, pp 124–140

  • Zhang L, Khammuang K, Wirth A (2008) On-line scheduling with non-crossing constraints. Oper Res Lett 36(5):579–583

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng F, Xu Y, Zhang E (2008) How much can lookahead help in online single machine scheduling. Inf Pro Lett 106:70–74

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng F, Qiao L, Liu M (2015) An Online Model of Berth and Quay Crane Integrated Allocation in Container Terminals. In: Lu Z, Kim D, Wu W, Li W, Du DZ (eds) Combinatorial Optimization and Applications. Lecture Notes in Computer Science, vol 9486. Springer, Cham, pp 721–730

  • Zhen L, Chew EP, Lee LH (2011) An integrated model for berth template and yard template planning in transshipment hubs. Transp Sci 45(4):483–504

    Article  Google Scholar 

  • Zheng F, Cheng Y, Liu M, Xu Y (2013) Online interval scheduling on a single machine with finite lookahead. Comput Oper Res 40(1):180–191

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng F, Qiao L, Liu M, Chu C. Online integrated allocation for small numbers of berths and quay cranes in container terminals, private communication

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Grants No. 61221063 from NSF of China, No. IRT1173 from PCSIRT of China and No. 2015781040 from China Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayin Pan.

Appendices

Appendix 1: Lower bound of the case with four QCs

We show the complete calculation process as follow.

If A processes \(r_1\) with two QCs on berth \(b_1\), we get:

$$\begin{aligned}&{C_{\max }}(\mathcal {I}) \ge {1 / 2} + {\varDelta / 4} \end{aligned}$$
(1)
$$\begin{aligned}&\varDelta \ge 6,~{C^ * }(\mathcal {I}) = {1 / 2} + {\varDelta / 4}\end{aligned}$$
(2)
$$\begin{aligned}&6 \ge \varDelta \ge 3,~ {C^ * }(\mathcal {I})= {\varDelta / 3}\end{aligned}$$
(3)
$$\begin{aligned}&3 \ge \varDelta \ge 2,~ {C^ * }(\mathcal {I})=1 \end{aligned}$$
(4)

If \(\mathcal {A}\) processes \(r_1\) with three QCs on berth \(b_1\), \(b_2\), we get:

$$\begin{aligned}&\varDelta \ge 6,~{C_{\max }}(\mathcal {I}) \ge {\varDelta / 3}\end{aligned}$$
(5)
$$\begin{aligned}&6 \ge \varDelta \ge {9 / 2},~{C_{\max }}(\mathcal {I}) \ge 2\end{aligned}$$
(6)
$$\begin{aligned}&{9 / 2} \ge \varDelta \ge 2,~{C_{\max }}(\mathcal {I}) \ge {1 / 2} + {\varDelta / 3}\end{aligned}$$
(7)
$$\begin{aligned}&{C^ * }(\mathcal {I}) = {1 / 2} + {\varDelta / 4} \end{aligned}$$
(8)

If \(\mathcal {A}\) processes \(r_1\) with two QCs on berth \(b_1\), \(b_2\), we get:

$$\begin{aligned}&{C_{\max }}(\mathcal {I}) \ge {\varDelta / 2}\end{aligned}$$
(9)
$$\begin{aligned}&\varDelta \ge 6,~{C^ * }(\mathcal {I}) = {1 / 2} + {\varDelta / 4}\end{aligned}$$
(10)
$$\begin{aligned}&6 \ge \varDelta \ge 3,~ {C^ * }(\mathcal {I})= {\varDelta / 3} \end{aligned}$$
(11)
$$\begin{aligned}&3 \ge \varDelta \ge 2,~ {C^ * }(\mathcal {I})=1 \end{aligned}$$
(12)

After processed Eqs. (14), we have:

$$\begin{aligned}&\varDelta \ge 6,~\rho \ge 1\end{aligned}$$
(13)
$$\begin{aligned}&6 \ge \varDelta \ge 3,~ \rho \ge \max \left\{ {{{6 + 3\varDelta } \over {4\varDelta }}} \right\} \end{aligned}$$
(14)
$$\begin{aligned}&3 \ge \varDelta \ge 2,~ \rho \ge \max \left\{ {{{2 + \varDelta } \over 4}} \right\} \end{aligned}$$
(15)

After processed Eqs. (58), we have:

$$\begin{aligned}&\varDelta \ge 6,~\rho \ge \max \left\{ {{{4\varDelta } \over {6 + 3\varDelta }}} \right\} \ge 1\end{aligned}$$
(16)
$$\begin{aligned}&6 \ge \varDelta \ge {9 / 2},~ \rho \ge \max \left\{ {{8 \over {2 + \varDelta }}} \right\} \end{aligned}$$
(17)
$$\begin{aligned}&{9 / 2} \ge \varDelta \ge 2,~ \rho \ge \max \left\{ {{{6 + 4\varDelta } \over {6 + 3\varDelta }}} \right\} \end{aligned}$$
(18)

After processed Eqs. (912), we have:

$$\begin{aligned}&\varDelta \ge 6,~\rho \ge \max \left\{ {{{2\varDelta } \over {2 + \varDelta }}} \right\} \ge 1\end{aligned}$$
(19)
$$\begin{aligned}&6 \ge \varDelta \ge 3,~ \rho \ge {3 \over 2} \end{aligned}$$
(20)
$$\begin{aligned}&3 \ge \varDelta \ge 2,~ \rho \ge {\varDelta \over 2} \end{aligned}$$
(21)

From Eqs. (1321), we get:

$$\begin{aligned}&\varDelta \ge 6,~ \rho \ge 1\end{aligned}$$
(22)
$$\begin{aligned}&6 > \varDelta \ge {9 \over 2},~ \rho \ge \max \left\{ {{{3\varDelta + 6} \over {4\varDelta }}} \right\} ,~\rho \ge {{13} \over {12}}\end{aligned}$$
(23)
$$\begin{aligned}&{9 \over 2} > \varDelta \ge {{6 + 12\sqrt{2} } \over 7},~ \rho \ge \max \left\{ {{{3\varDelta + 6} \over {4\varDelta }}} \right\} ,~\rho \ge {{1 + \sqrt{2} } \over 2}\end{aligned}$$
(24)
$$\begin{aligned}&{{6 + 12\sqrt{2} } \over 7} > \varDelta \ge 3,~ \rho \ge \max \left\{ {{{4\varDelta + 6} \over {3\varDelta + 6}}} \right\} ,~\rho \ge {{1 + \sqrt{2} } \over 2}\end{aligned}$$
(25)
$$\begin{aligned}&3 > \varDelta \ge {{2 + 2\sqrt{10} } \over 3},~ \rho \ge \max \left\{ {{{4\varDelta + 6} \over {3\varDelta + 6}}} \right\} ,~\rho \ge {6 \over 5} \end{aligned}$$
(26)
$$\begin{aligned}&{{2 + 2\sqrt{10} } \over 3} > \varDelta \ge 2,~ \rho \ge {{4 + \sqrt{10} } \over 6} \end{aligned}$$
(27)

Setting \(\varDelta = {{(6 + 12\sqrt{2} )} / 7}\), then \(\rho \ge {{(1 + \sqrt{2} )} / 2}\).

Appendix 2: Theorem 2

As in case 2, namely, \(2 \le \varDelta \le {{(2 + 2\sqrt{10} )} / 3}\) or \(\varDelta \ge {{(6 + 12\sqrt{2} )} / 7}\), the algorithm is the same as that in Zheng et al., we can refer to their proof. For the sake of completeness, we present their proof here:

Proof

Given any request input sequence \(\mathcal {I} = \left\{ {{r_1},{r_2},\ldots ,{r_n}} \right\} \). let \(\sigma \) be the schedule produced by LIST. Let \({C_\sigma }(\mathcal {I})\) be the makespan of \(\sigma \), and \( C^*(\mathcal {I}) \) that of a schedule produced by an optimal online algorithm OPT. We consider two cases below.

  • Case 1 The last request is a large one, i.e., \({r_n} = \varDelta \). For the case with \(T_{_a}^ * = [0,0)\), we have \( C^*(\mathcal {I}) = {C_\sigma }(\mathcal {I}) = {C_{n,1}} + {\varDelta / 4}\) since neither LIST nor OPT makes any waste of QC utility within \(\left[ {0,{C_\sigma }(\mathcal {I})} \right) \). For the other case with \(T_{_a}^ * = [{t_1},{t_2}) \ne [0,0)\), let \(k \ge 1\) be the number of large requests after time \(t_2\). \( {C_\sigma }(\mathcal {I})= {t_2} + k{\varDelta / 4}\). If \({t_2} = {1 / 2}\) and \(k = 1\), implying \(n = 2\), \({r_1} = 1\) and \({r_2} = \varDelta \), then \( C^*(\mathcal {I}) \ge \min \left\{ {{1 / 2} + {\varDelta / 4},\max \left\{ {1,{\varDelta / 3}} \right\} } \right\} \) and thus \({{{C_\sigma }(\mathcal {I})} / {{C^ * }(\mathcal {I}) \le {5 / 4}}}\); otherwise if either \({t_2} \ge 1\) or \(k \ge 2\), \({C^ * }(\mathcal {I}) \ge {t_2} + k{\varDelta / 4} - {1 / 4}\) and \({{{C_\sigma }(\mathcal {I})} / {{C^ * }(\mathcal {I}) \le {6 / 5}}}\).

  • Case 2 The last request is a small request, i.e., \({r_n} = 1\). We claim that \(T_{_a}^ * = [0,0)\) in \(\sigma \) since otherwise \(r_n\) would have been processed in the \(T_{_a}^ *\). Divide this case into two subcases by whether \({C_{n,1}} = {C_{n,2}}\).

  • Case 2.1 \({C_{n,1}} = {C_{n,2}}\), In this case \({C_\sigma }(\mathcal {I}) = {C_{n,1}} + {1 / 2}\). If either \(n = 1\) or \(n = 3\) with \({r_1} = {r_2} = {r_3} = 1\), we have \({C_{n,1}} \le {1 / 2}\) and \({C_\sigma }(\mathcal {I}) = {C^ * }(\mathcal {I})\); if \(n = 2\) and \({r_1} = \varDelta \), then \({C_{n,1}} = {\varDelta / 4}\) and \( C^*(\mathcal {I}) \ge \min \left\{ {{1 / 2} + {\varDelta / 4},\max \left\{ {1,{\varDelta / 3}} \right\} } \right\} \), implying \({{{C_\sigma }(\mathcal {I})} / {{C^ * }(\mathcal {I}) \le {5 / 4}}}\); otherwise if \({C_{n,1}} \ge 1\), then \({C^ * }(\mathcal {I}) \ge {C_{n,1}} + {1 / 4}\), implying a ratio of at most 6 / 5.

  • Case 2.2 \({C_{n,1}} < {C_{n,2}}\) (or \({C_{n,2}} < {C_{n,1}}\)). Then we have by previous analysis that \({C_{n,2}} = {C_{n,1}} + {1 / 2}\) (or \({C_{n,1}} = {C_{n,2}} + {1 / 2}\)), and thus \({C_\sigma }(\mathcal {I}) = {C^ * }(\mathcal {I})\).

The theorem follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Xu, Y. & Zhang, G. Online integrated allocation of berths and quay cranes in container terminals with 1-lookahead. J Comb Optim 36, 617–636 (2018). https://doi.org/10.1007/s10878-017-0113-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-017-0113-5

Keywords

Navigation