Discrete Parallel Machine Makespan
SchelLoc Problem

Corinna Hefler

Department of Mathematics,
TU Kaiserslautern, Germany,
c.hessler@mathematik.uni-kl.de

Kaouthar Deghdak

Laboratoire Informatique,
Université Francois-Rabelais de Tours, France,
deghdak@univ-tours.fr

27th July 2015

Scheduling-Location (ScheLoc) Problems integrate the separate fields of
scheduling and location problems. In ScheLoc Problems the objective is to
find locations for the machines and a schedule for each machine subject to
some production and location constraints such that some scheduling object-
ive is minimized. In this paper we consider the Discrete Parallel Machine
Makespan (DPMM) ScheLoc Problem where the set of possible machine loc-
ations is discrete and a set of n jobs has to be taken to the machines and
processed such that the makespan is minimized. Since the separate location
and scheduling problem are both NP-hard, so is the corresponding SchelLoc
Problem. Therefore, we propose an integer programming formulation and
different versions of clustering heuristics, where jobs are split into clusters
and each cluster is assigned to one of the possible machine locations. Since
the IP formulation can only be solved for small scale instances we propose
several lower bounds to measure the quality of the clustering heuristics. Ex-
tensive computational tests show the efficiency of the heuristics.

mailto:c.hessler@mathematik.uni-kl.de
mailto:deghdak@univ-tours.fr

1 Introduction

Scheduling-Location (ScheLoc) Problems combine the two well-studied fields of location
planning and scheduling theory. The goal of ScheLoc Problems is to simultaneously
locate a set of machines and schedule a set of jobs on the machines such that the
processing of the jobs is optimized. For processing on a machine the job has to be
moved from its job location to the corresponding machine location. The point in time
at which the job arrives at a machine is treated as the release date of the job. Since it is
dependent on the distance from the job location to the machine location, the release-date
of a job is dependent on the machine location. The objective of a ScheLoc Problem is
always a pure scheduling objective, but due to the location-dependent release dates its
value is also dependent on the location decisions.

While location planning is more of a strategic decision, machine scheduling is situated
in the operational level of the supply chain. Still the two types of decisions depend
largely on one-another and a sequential solution of the two problems will yield suboptimal
results for the supply chain. There are many applications where simultaneous location
and scheduling is required. One application mentioned in Kalsch [6] comes from the
mining industry where crushers are used in processing minerals. Those crushers are
movable and can change their location dependent on the set of valuable minerals to
improve some scheduling objective. That means that for a given set of jobs we have
to find a set of locations for the crushers such that a scheduling objective is optimized.
Kalsch also presented various other applications.

To overcome the weaknesses of a sequential approach the ScheLoc Problem was intro-
duced by Hennes [4] and Hennes and Hamacher [3]. They considered the Single Machine
Network (SMN) ScheLoc Problem, i.e., the problem where the location of a single ma-
chine in a network is to be found, and reported some polynomial time algorithms for
special cases. The Single Machine Planar (SMP) Makespan ScheLoc Problem was treated
by Elvikis et al. [1] and Kalsch and Drezner [5]. Kalsch [6] considered ScheLoc Problems
with a universal objective function that is defined similar to the Ordered Weber Prob-
lems in location theory (see e.g., Nickel and Puerto [10]) and integrates some well-known
scheduling objectives as well as some new objective functions into a general framework.
Some algorithms to solve special cases of the Single Machine Universal Planar (SMUP)
ScheLoc Problem are presented and some special cases of the SMN ScheLoc Problem are
considered. A Single Machine Universal Network (SMUN) ScheLoc Problem was treated
in Kaufmann [7] and a polynomial time algorithm for an SMUN ScheLoc Problem with
Preemption was proposed.

There are some problems in the literature that are related to SchelLoc problems as
they combine scheduling problems with transportation decisions. However, most of those
problems do not integrate the location decision. The only problem known to the authors
that also considers location decisions was introduced in Wesolkowski et al. [I3]. In this
paper the problem of locating training devices for military forces such that the training
can be completed at minimum cost is considered. The location part is the essential
part of the problem as for each possible location the optimal mix of training devices
has to be computed. The scheduling part is reduced to an assignment of soldiers to

locations. Furthermore, the problem is considered with multiple cost objectives. In the
paper a multi-objective genetic algorithm is proposed that provides good results for the
considered problem. But since the scheduling part is reduced to an assignment problem
without accounting for any scheduling data (e.g., processing times) the genetic algorithm
is not fit for ScheLoc Problems.

In this paper we will consider the Discrete Parallel Machine Makespan (DPMM) Sch-
eLoc Problem, i.e., the problem of locating a set of parallel machines on a finite set
of possible locations such that the given set of jobs are scheduled in such a way that
the time at which the last job is completed is minimized. Parallel Machine ScheLoc
Problems have been defined in Hennes [4] (for the network case) and Kalsch [6] (for the
general case), but to our knowledge no work so far has dealt with the solution of this
kind of problem.

The DPMM ScheLoc Problem consists of two problems: a discrete location problem
and a parallel machine problem that are linked via the assignment of jobs to locations.
Since both subproblems are N'P-hard, so is the ScheLoc Problem. If both the locations
and the assignment are fixed the scheduling problem reduces to a polynomially solvable
single machine problem for each location. Therefore, we focus on finding heuristics that
solve the location and assignment problem taking into account the scheduling data and
then optimally solve the reduced scheduling problem. Although the makespan objective
is a maximum objective, it depends on the jobs assigned to each machine. Therefore, the
location problem to be solved here is more similar to the p-median problem than to the
p-center problem. There are several extensive surveys on algorithms for the p-median
problem (e.g., Reese [11], Mladenovi¢ et al. [9], Tansel et al [12]).

A popular type of heuristic for the p-median problem are clustering heuristics, the
first was proposed by Maranzana [§]. The clustering problem is very similar to the
p-median problem and consists of splitting a set of objects into disjoint subsets based
on similarity. In the location context the clustering problem is the problem of finding
p cluster centers and an assignment of demand to clusters such that the sum of the
distances of demand locations to the corresponding cluster centers is minimized. An
extensive survey on general clustering algorithms is given in Xu and Wunsch [I4]. This
type of heuristic can be adapted to the ScheLoc context as the scheduling data can be
integrated when computing cluster centers and the assignment and for each (partial)
assignment an optimal schedule can be computed.

The paper is structered as follows: We will formally introduce the DPMM ScheLoc
Problem in Section [2| In Section [3| we will give an IP-formulation and propose several
lower bounds. We present some clustering type heuristics in Section 4| and a local search
heuristic based on the clustering heuristics in Section Computational results of all
heuristics are provided in Section [f] We conclude with a summary and perspectives for
future research in Section [7l

2 Problem Definition

We consider the Discrete Parallel Machine Makespan Schel.oc Problem. In this problem
we choose p locations for machines out of a discrete set of possible locations M =
{1,...,m} and schedule a set of jobs N' = {1,...,n} on the parallel machines such that
the makespan is minimized. Jobs are stored in so-called job locations and have to be
moved to a machine for processing. Therefore, the earliest possible start time of a job, its
release date, is dependent on the distance between the job and the machine location. Let
D € R™™ be the matrix of distances, i.e., D(i,k) = dist(i, k) is the distance between
the location of job i € N and possible machine location & € M. There are several
structures that may give rise to this distance matrix, e.g., shortest path distances where
N and M are nodes in a graph or Euclidean distances where N and M are locations
in the plane. The release date r;; of job i if processed on a machine in location k is
dependent on the storage arrival time o;, i.e., the time at which job 7 becomes available
in its job location, the travel speed v;; which is the speed at which job ¢ moves towards
machine k, and the distance between the locations dist(i, k). It is computed as follows

rik = 0; + Tigpdist (a;, vg) ,

where 7;;, = 1/v;,. After arriving at a machine location a job has to be processed for
p; time units on the machine. Each machine can process at most one job at each point
in time. The DPMM problem consists of selecting exactly p locations from M and
scheduling all jobs i € A on the selected machines such that the location-dependent
release dates 7 are respected and Cpax = max{C;|i € N'} is minimized where C; is the
completion time of job i.

To illustrate the setting of the problem we consider a small example where the under-
lying structure is a graph.

Example 2.1. Consider the graph G = (V, E) of Figure with N = M = V. That
means that in each node of the graph there is one job and machines can also be located
in each node of the graph.

Figure 2.1: Graph G = (V, A) with edge lengths [;; for v;,v; € V

Let the number of machines be p = 2 and denote with P = (6,1,2,4,5,3) the vector
of the processing times. The distances D € R™ ™ are given by shortest paths distances

in the graph, i.e.,

0 6 8 4 7 12
6 04 5 8 6
8 4 0 7 7 2
b= 4 5 7 01 8
7T 8710 9
12 6 2 8 9 0

Furthermore, let 09 = 1, 04 = 2, and 0; = 0 for i = 1,3,5,6. Let vgy = 2, vg1 = 1/2,
and vy, = 1 for all other i € N and k € M. The release dates can be computed
from the distances as follows: ro = dist(2,k) + 1 for all k, ry1 = idist(4,1) +2 = 4,
rap = dist(4,k) + 2 for k # 1, re1 = 2 dist(6,1) = 24, and ry, = dist(i, k) for all other
pairs (i, k). The matriz of release dates is

0 6 8 4 7 12
7 15 6 9 5
n— 8 4 0 7 7 2
4 7 9 2 3 10
7T 8 710 9
24 6 2 8 9 0

Suppose we want to locate the machines in nodes vi and vs. The jobs have to be as-
signed to chosen locations and scheduled on the corresponding machine. Since the parallel
makespan scheduling problem with release dates is NP-hard in general we cannot do that
optimally. In this example let us assign each job to the machine on which it has the
smallest release date. This gives the following assignment: jobs 1 and 2 are assigned to
v1 and jobs 3,4,5, and 6 are assigned to vs. For the given assignment we can compute
an optimal schedule for each machine (by the earliest release date first rule, see Graham
[2]) which yields the schedule in Figure with a makespan of Cpax = 14. We can
easily see that this schedule is not optimal as reassigning job 4 to location vy yields a
makespan of Cpax = 12.

711,755 ”f5 7“21,17“35 r65
Us 5 4 3 6
U1 1 2
0 3 5 6 7 8 9 11 14

Figure 2.2: Schedule for vy, v5 and A,, = {1,2}, A,, = {3,4,5,6}

The example shows that treating the location problem independently of the scheduling
problem may yield non-optimal results. Therefore, we present some solution approaches
that integrate the scheduling data as good as possible in the location and assignment
decisions.

3 IP Formulation and Lower Bounds

Before we consider heuristic solution approaches we formulate the problem as an IP in
Section to be able to solve at least small scale instances to optimality. Since we
cannot solve large scale instances to optimality we need heuristic algorithms. For those
instances the gap provided by a commercial IP solver is very high if a feasible solution
can be found at all. Therefore, to measure the quality of those algorithms in Section [3.2]
we propose several lower bounds for the problem.

3.1 IP Formulation

The DPMM ScheLoc problem combines the two problems of discrete location and parallel
machine scheduling. Therefore, we can formulate the problem as an IP by combining
the IP formulations of the two separate problems. To do this we introduce scheduling
variables z;, for ¢ € N and kK € M which are 1 if job 7 is processed on a machine in
location k and 0 else and scheduling variables yfj for i,57 € N and k € M which are 1
if job ¢ directly preceeds job j on machine k£ and 0 else. Furthermore, we need location
variables z; which are 1 if a machine is placed in location k € M.

To model the problem as an IP we introduce two dummy jobs 0 and n + 1 with
machine independent release dates equal to 0 and processing times equal to 0. Let M be
any upper bound on Chax, €.8., M = >, i + maxgepr {7ir}. The DPMM ScheLoc
Problem can be formulated as 1P —.

The objective is to minimize the makespan, i.e., the latest completion time of a
job. The constraints are split into pure scheduling constraints - and -

(3.15)), pure location constraints (3.9 and linking constraints (3.10)) - (3.12]).
Constraints (3.2]) - (3.4) compute the completion times and the makespan. The first

set of constraints make sure that no job is started before its release date, the
second set of constraints make sure that no job is started before its predecessor is
completed. This set of constraints is linearized by the big-M method. To ensure that
each job i € N has exactly one predecessor and one successor we need constraints (3.5))
and . Here the dummy jobs are used as predecessor of the first job on each machine
and as successor of the last job on each machine. Constraints make sure that
only a job scheduled on machine k can be the first to be processed on that machine and
constraints ensure that only jobs scheduled on the same machine can be predecessor
and successor. The location constraints limit the number of locations chosen to p.
We have several types of linking constraints: To make sure that only chosen machines
are scheduled and each chosen machine is only scheduled once (i.e., not more than one
schedule for each machine location) we add constraints . Constraints ensure
that jobs are only assigned to opened machines and constraints ensure that each
job is assigned. The remaining constraints to are restrictions on the values
of variables.

This formulation has a large number of variables (O(n?m)) and a large number of con-
straints (O(n?m)). Therefore, only small problem instances can be solved to optimality
using this formulation (see Section [] for computational results).

min Cpag (3.1)

st. Ci> > rigin + i Vie N (3.2)
keM
Ci20j+pi—M(1—yﬁ->, Vi,j e N, ke M (3.3)
Crmaz > Ci7 Vie N (34)
> k=1, Vi € N U {0} (3.5)
JENU{n+1} keM
D) =1, VieNU{n+1} (3.6)
ieENU{0} keM
Y6 < Tik, Vie N, ke M (3.7)
1
vy < 5 (@i + e Vi,j e N, ke M (3.8)
Z 2k <P (3.9)
keM
> b < s vk € M (3.10)
JEN
Z Tjk < N2k, Vk € M (3.11)
JEN
Z Tk = 1, Vie N (3.12)
keM
Co=0 (3.13)
Ci >0, Vie N (3.14)
v =0, Vie N ke M (3.15)
ik, Yhy, 2k € {0, 1}, Vi,j e N, ke M. (3.16)

We can improve the formulation by relaxing the integrality constraints on variables
z;, and 2. This does not change the formulation which can be seen as follows: Suppose
there is some z;; € (0,1). If job i is scheduled first on machine k then y&, = 1 since yfj
are still binary variables. So by constraints also x;; = 1. Inductively assume that
xyi, integral for the first [jobs on machine k. Then for the (I 4+ 1)st job on machine k
we get 2741, = 1 by constraints together with the assumption that yfl 41 = 1and
1 = 1. Therefore, all z;; are integral without enforcing it by constraint . Next

suppose that some zj is non-integral. If there is at least one job scheduled on machine
k we get that z; = 1 by constraints (3.10). If no job is scheduled on machine k the
variable z; may be non-integral, but by constraint we get that there are at most
p locations for which z; = 1 and jobs are scheduled only in those locations. To obtain
an optimal integral solution we set z; = 0 for all non-integral z; which is feasible since
there are no jobs scheduled on the corresponding machines.

Unfortunately, this relaxation does not improve the computation time to solve the IP
since we still require yfj to be integral. If we relax those variables, constraints will
always result in C; > C 4+ p; — M’ for some large value M’ which makes the constraints
superfluous. In an optimal solution of the relaxation the completion times will only be
determined by constraints yielding a very bad lower bound.

Since the IP formulation can only be solved to optimality for small scale instances
we need to find heuristic algorithms to solve the problem. Furthermore, to measure the
quality of the heuristics we need lower bounds since we cannot compare the heuristic
values to optimal solutions. Therefore, in the next subsection we introduce various lower
bounds for the problem.

3.2 Lower Bounds

To measure the quality of the heuristics we present several lower bounds for the DPMM
ScheLoc Problem. Probably the easiest lower bound can be found by considering the
pure scheduling problem P, ||Cpax, i.€., the parallel machine scheduling problem that
minimizes the makespan without release dates. This is a special case of the DPMM
ScheLoc Problem where D = 0, 0; = 0 for all i € N and v, = 1 for all i € A and
k € M. For this problem a well-known lower bound is the following:

Crnax > LieN P (3.17)

p

Since r;, = 0 for all i € N and k € M is a lower bound on the release dates this also is
a lower bound for the DPMM ScheLoc Problem. Of course the bound will be very weak
for problems with many r;; > 0. However, if there are at least p locations k for which
min;epr 7 = 0 we can show that the bound is tight.

Example 3.1. Let the graph G = (V, A) in Figure be given. Let N = M =V, ie.,
there is one job in each node and each node is a possible machine location. We want to
locate p = 2 machines. The processing times are given by P = (2,3,5,3,5,2).

Figure 3.1: Graph G = (V, A) with dist;; for v;,v; € V

If we locate the machines in locations v1 and vg we get as optimal schedule the sequence

(1,2,3) on machine 1 and (6,4,5) on machine 6. The makespan is Cpax = 10 which is

equal to —pri =2,

Note that for the tightness of the bound it is only important that r11 = 0 and rg¢ = 0.
All other release dates may be unequal to zero in a randomly generated setting. The
example can easily be extended to work for arbitrary values of n and p.

The tightness of the bound implies that we can only enhance the bound by a part
that is equal to zero if the above property is fulfilled. One way to do that is to add the

minimum release date:
Chax > 7Zi6Npi + min min 7.
P keMneN
When job locations are allowed as machine locations this bound is equivalent to the
previous bound since the minimum release date will be zero.

To improve the bound in case that all job locations are possible machine locations
(i.e., N = M) we consider 7; = minge pm.52i{rix } the smallest release date of job i if it is
not processed in its job location. If there is no machine located in ¢ a lower bound on the
completion time of job i is LB(C;) = r; + p;. Otherwise, LB(C;) = p;. A lower bound
on the makespan is Cpax > max{LB(C;)}. Therefore, we assume that the machines
are located in the p locations 4 for which r; + p; is maximal. Let K’ be the set of the
corresponding jobs. For all other jobs we get LB(C;) = r; + p; and can bound the
makespan by

Cmax > gé?{)/({rz + pi}-

Finally, we propose a bound that not only considers the minimum release date but
also the structure of the release dates. For each k € M we optimally solve a single
machine problem with respect to all jobs but only until the load [(k) of machine k
is I(k) = w. If this load is achieved during the processing of a job, this job is
only partially processed and the makespan of machine k is the completion time of this
partial job. The optimal scheduling can be done by the earliest release date (ERD) rule:
Whenever a machine is free, schedule the available job with smallest release date. Let
Cmax (k) be the makespan on machine k of this subset of jobs. We get the following lower
bound:

Chax > ngeli\l}l{Cmax(k)}. (3.18)

Correctness of the bound can be seen as follows: In any feasible solution of the ScheLoc
Problem at least one machine has load I(k) > w since otherwise jobs remain

unscheduled. Since the ERD rule is optimal for the single machine problem the point
in time Ciyax(k) is the minimal completion time of machine k for (k) > w. Let
location &’ be such that k' € arg mingc ({Cmax(k)}. If location &’ is chosen in an optimal

solution and has I(k’) > w the lower bound holds. Otherwise, there is some other

machine £” that fulfills I(k”) > w with Cinax (k") > Cmax (k). Therefore, LB (3.18))
indeed is a lower bound.

4 Clustering Heuristics

The DPMM ScheLoc Problem is an NP-hard problem. Since we can only solve small
scale instances using the IP formulation and commercial IP solvers we want to find
heuristic algorithms that provide good solutions in a short computation time. The
problem decomposes into three different problems: Locating the machines, assigning
the jobs to the machines, and scheduling the assigned jobs on each machine. Once the
machine locations have been chosen and the jobs have been assigned to the machines,
the remaining scheduling problem can be solved optimally by the ERD rule. Therefore,
we want to find heuristics that solve the first two subproblems. To obtain good results
we want to integrate the scheduling data in the location and assignment decisions. An
approach that allows to solve each subproblem iteratively while considering data of the
other subproblems is to solve clustering problems. Formally, the clustering problem is
defined as follows: Given a discrete set of possible locations M, a set of demand locations
N with demand d; for each i € N and a distance function dist (i, k) for i € N and k € M,
find a subset C C M of size p called cluster centers and an assignment C}, C N of demand
locations to cluster centers k € C such that | .. Cr, = N, Cp,NC; =0 forall k,l € C, and
> kec 2icc,, didist (i,k) is minimized. In case of uncapacitated clusters, each demand
location 7 is assigned to the closest cluster center C) independent of the values d;.

The DPMM Schel.oc Problem can be formulated as a clustering problem by identifying
the cluster centers C), with the machine locations k£ and the demand locations with
the job locations. Finding cluster centers and an assignment of demand locations to
cluster centers corresponds to choosing machine locations and assigning jobs to machines.
However, in the DPMM ScheLoc Problem we want to optimize a different objective
function. Therefore, we alter the assignment criterion such that the scheduling data is
taken into account.

We considered three types of heuristics to solve the clustering problem:

CH1 First choose the cluster centers then assign the jobs to the clusters.
CH2 First cluster the jobs in p clusters then assign a cluster center to each cluster.

CH3 TIteratively choose a cluster center and the jobs assigned to that cluster center until
there are p clusters.

10

For each of the three types we identified various criteria based on which the location
and the clustering decisions are made. In the following subsections we present the three
types of clustering heuristics and the criteria in more detail.

4.1 Location first, Cluster second

In this type of clustering heuristic we first compute all cluster centers and then assign
the jobs to the clusters. We identified several criteria to choose the cluster centers.

CH1-1 Select positions arbitrarily.
CH1-2 Select machine positions k such that max;cns 71 + p; 1S minimal.

CH1-3 Select machine positions k such that), 7 is minimal.

CH1-4 Select machine position k such that 7« with ¢* € argmax;; {Z;‘:ll m} is

minimal.

The easiest criterion is to choose the locations arbitrarily and integrate the scheduling
data only in the assignment decision. A better way is to already integrate the scheduling
data in the location decisions as is done in the other three criteria. In the second criterion
we compute a lower bound on the completion time for each job on each machine, namely
the sum of release date and processing time. We choose the locations such that the
maximum of the lower bounds is minimal. This criterion selects machine locations that
are close to the jobs with long processing times avoiding that a large job arrives late
at a machine which increases the makespan if the machine has been idle before. The
problem with this criterion is that machines may be far away from small jobs which
increases the makespan if a lot of small jobs arrive at the machine at the same late point
in time. Therefore, in criterion three we take the sum over all release dates and select
the machines that minimize that sum. This criterion selects machines that are not too
far away from all the jobs such that many jobs will arrive early at the machine and the
idle time will be small. The problem with criteria one to three is that all machines are
selected at the same time. An even better way is to choose locations one by one and
take previous decisions into account. This is done in criterion four. We select the first
machine position randomly. In iterations k = 2,...,p the first £k — 1 machine locations
are already selected. We compute the sum of the release dates for each job ¢ on the
already selected machines 1,...,%k — 1. Location k is then chosen such that it is closest
to the job ¢* for which the sum of the release dates is maximum. That means, the new
machine location is selected such that it is close to the job that is far away from all the
previously selected machines. This criterion ensures a better spread of the machines.
However, it may select locations that are close to one job but far away from all others.
This problem is overcome in the second and third version of the clustering heuristic (see
Subsections and .

To compute the assignment we use a modified ERD rule: Whenever a machine is free
schedule the available job with smallest release date on that machine next. This rule has

11

two advantages: It well integrates the scheduling data, both the release dates and the
processing times and it automatically computes the optimal schedule for the resulting
assignment as on each machine the jobs are ordered according to non-decreasing release
dates. The procedure is summarized in Algorithm

Algorithm 1 Location first, Cluster second

Input: Instance of a DPMM ScheLoc Problem

Output: Set of p machine locations and a schedule for each machine
1: Compute the locations using one of the criteria 1-4.
2: Schedule the jobs by the modified ERD-rule.

4.2 Cluster First, Location Second

In this version of clustering heuristic we first compute the clusters and then assign a
location to each of the clusters. Since the machine locations, and therefore the release
dates are unknown when the clustering is done, we can only do that based on the
distances between job locations. As these distances are not part of the original input of
the problem we cannot compute this version of clustering heuristic for all instances of
the problem. But if the underlying structure of the problem is a network (see Examples
and [3.1)) or a plane (job and machine locations are given by coordinates in R?) we
can compute the distances between jobs as shortest paths or by the Euclidean distance.

To do the clustering we first have to select a starting job for each cluster. This can
be done by various criteria:

CH2-1 Choose p random jobs.

CH2-2 Let G be the center of gravity of all jobs. Select the p jobs i as cluster centers
that maximize dist(G,1).

CH2-3 Let G; be the center of gravity of selected cluster centers 1,...,4. Select cluster
center i + 1 such that it maximizes dist(G;,i+ 1).

The first criterion randomly chooses the cluster centers. The second criterion chooses
all cluster centers at the same time based on the distance to the center of gravity. This
criterion puts jobs in different clusters that are far from the center of the jobs. This
ensures some scattering but also allows jobs that are close to each other to be in different
clusters if they are both far from the center of gravity. To overcome this problem we
again propose an iterative procedure that given ¢ cluster centers chooses the i + 1st
cluster center such that it is furthest away from the center of gravity of the ¢ cluster
centers. This criterion avoids putting jobs in different clusters that are far from G but
close to one another. Given the cluster centers we place the remaining jobs j one by one
in the cluster that has its center of gravity closest to job j.

The advantage of the cluster first, location second heuristic is that for each computed
cluster we can find the optimal location as we can compute the optimal schedule for each

12

location. But if more than one cluster has the same optimal location to avoid trying
each possible combination of p locations we apply an iterative heuristic in this case: For
each cluster of jobs, compute the makespan at each location and order the locations by
non-decreasing makespan. If there is a location k that is optimal for more than one
cluster find the cluster that has the worst second-largest makespan. Assign this cluster
to location k£ and move all other clusters to the respective locations where the clusters
have the second-largest makespan. Continue this procedure comparing the next-largest
makespan of each cluster competing for the same location (e.g., if cluster 7 is currently at
the location with the [-largest makespan and cluster j at the location with the r-largest
makespan compare the | + 1st-largest makespan of cluster ¢ with the (r 4 1)st-largest
makespan of cluster j) until all clusters are assigned uniquely to a location. For p < m,
i.e., less clusters than possible locations this procedure will terminate after at most p?
steps (this bound is reached in case all p clusters have to be moved to the p-worst
location). This is due to the fact that a location that is assigned to a cluster in some
step of the algorithm will always be assigned to a cluster in all following steps as clusters
are only moved if there is more than one cluster at the same location.
The second type of clustering heuristic is summarized in Algorithm

Algorithm 2 Cluster First Location Second
Input: Instance of a DPMM SchelLoc Problem
Output: Set of p machine locations and a schedule for each machine
1: Determine the p cluster centers using one of the criteria 1-3.
2: For each remaining job j put it into the cluster with minimal distance between its
center of gravity and j.
3: For each cluster compute the makespan for each location and assign each cluster to
the location with smallest makespan.
4: If more than one cluster is assigned to the same location:
Schedule the cluster with worst next largest makespan at this location. Move all
other clusters to the location with next largest makespan.
5: Repeat Step 4 until every cluster is assigned uniquely to a location.

4.3 lterative Selection of Clusters and Locations

In the first two versions of the clustering heuristic introduced in Subsections [4.1] and
4.2| we solve the location and assignment problem sequentially. Instead we can consider
a third type of heuristic where we iterate between the location and the assignment
problem. The advantage of this approach is that we can use the partial results of both
subproblems in the course of the algorithm.

In this heuristic we start with a single cluster that contains all jobs. For this cluster
we can compute a single optimal machine location. In the next step we compute a set
of jobs to be removed from the existing cluster and compute a new optimal location
for this cluster. We continue this procedure until we reach the maximum number p of
locations. There are different possibilities to choose the locations and the assignment.
For the location part we identified the following criteria:

13

1. Select as next machine location the one that minimizes the makespan of all unas-
signed jobs.

2. Select as next machine location the one that minimizes the makespan of the |n/p]
jobs with smallest release date on that machine.

The first criterion selects a machine location that is fit for all the unassigned jobs while
the second criterion only minimizes the makespan of the |n/p| jobs that are closest to
the machine. This criterion assumes that on each machine the same number of jobs
is scheduled. This approach is useful if the processing times of the jobs are similar.
Otherwise, the first criterion is the better selection as it does not make any assumptions
on the assignment that is not yet computed but tries to find a location that is good for
all remaining jobs.
For the assignment part we propose the following criteria:

1. Consider the optimal schedule of all unassigned jobs on the selected machine k.
Find the first job j with C; > rj; + p;, remove this job from the machine, and
compute a new optimal schedule (by moving all jobs i with C; > C; as far to the
left as possible). Continue until there are no more jobs with C; > rj;, + p;.

2. Assign the [n/p] jobs with smallest release dates on k to the machine.

The first criterion removes all jobs from the cluster that cannot start at their release date.
Its aim is to find a schedule in which most jobs have the smallest possible completion
time on the machine to which they are assigned. But if the release dates are not well
distributed this may lead to a schedule where one machine has many jobs while others
have only few jobs. This is the case as we do not know how many jobs are removed from
the cluster. If that are only very few, the last clusters will be empty, if that are many the
last cluster will be overfull. Therefore, we introduce the second criterion which creates
clusters of the same size with respect to number of jobs. Since the second location
criterion chooses an optimal location for an assignment that coincides with the second
assignment criterion we combine this location criterion only with the second assignment
criterion and obtain the following three heuristics:

CH3-1 Location criterion 1, assignment criterion 1
CH3-2 Location criterion 1, assignment criterion 2

CH3-3 Location criterion 2, assignment criterion 2

The heuristic is summarized in Algorithm

Algorithm 3 Clustering Heuristic 3
Input: Instance of a DPM SchelLoc Problem
Output: Set of p machine locations and a schedule for each machine
1: Select a machine location k using location criterion 1 or 2.
2: If less than p locations are selected, assign jobs to location k& using assignment cri-
terion 1 or 2. Go to Step 1.
3: If p locations are selected, assign all remaining jobs to location k.

14

The main problem of this heuristic is that all remaining jobs are assigned to the last
selected machine. Especially with assignment criterion 1 this can lead to an unbalance
in the load of the machines. To overcome this problem we can reassign some of the
jobs at the end of the clustering heuristic. We call this post-optimization procedure and
present details in Subsection

4.4 Post-Optimization Procedure

As mentioned in the previous section the load on the machines may be unbalanced after
the iterative clustering heuristic is performed. This may also be the case for the other
two types of clustering heuristics. Therefore, we introduce a post-optimization procedure
that tries to balance the load on the machines by reassigning some jobs. The procedure
starts with a feasible solution to the DPMM Scheloc Problem and selects a machine
k that currently determines the makespan. It tries to reassign the last job j from k
to any other selected machine. This can be done by putting j in its optimal position
(according to the ERD-rule) on each machine. If for some machine [this yields an overall
improvement of the makespan, we move job j to machine [and iterate. If there is no
machine such that the makespan is improved the procedure stops. Details are presented
in Algorithm

Algorithm 4 Post-Optimization Procedure
Input: Instance of a DPMM ScheLoc Problem, feasible solution
Output: Improved feasible solution
1: Determine machine k that currently determines the makespan.
2: Select the job j that is currently scheduled last on machine k.
3: For [=1,...,p the set of selected machines, schedule job j on [# k in the position
of the ERD-order.
4: If there is a machine [# k such that the makespan of the solution is improved if job
J is moved to machine I:
Remove job j from machine k and put it in its ERD-position on machine I.
Go to Step 1
5: Else, stop. Output the (new) solution.

Note that the new solution is indeed at least as good as the old one since we only perform
changes that yield a better makespan.

5 Local Search

A major drawback of the clustering heuristics is that locations and assignments are
fixed when they are chosen and cannot be altered in later iterations. Even with the
post-optimization procedure the possibilities to alter bad decisions are very limited. To
overcome this problem we propose a local search heuristic that iterates between choosing
locations and clusters until a local optimum is reached. The iterations are done by
combining the location first and the cluster first heuristics of Subsections and

15

The local search starts with a feasible solution of the DPMM ScheLoc Problem, e.g.,
the result of one of the clustering heuristics. For the selected locations of this solution
we compute a new assignment of jobs to machines by the modified ERD-rule as in the
location first heuristic. If this new set of clusters improves the makespan compared to
the starting solution, we continue with the new clusters, otherwise we continue with the
clusters of the current solution. In the next step a new set of locations for the clusters is
computed as in the cluster first heuristic. If the new solution is better than the old one,
we restart the procedure for the new set of locations. Otherwise, the search stops and
outputs the current solution that is at least as good as the input solution. The search is
summarized in Algorithm

Algorithm 5 Local Search
Input: Instance of a DPMM ScheLoc Problem, feasible solution S = (X, A) with selec-
ted locations X and selected assignment A.
Output: Improved feasible solution
1: For the locations X compute an assignment A’ by the modified ERD-rule.
2: If A" improves the makespan set A = A’
3: For assignment A compute new locations X’ by the ranking procedure of Section
4.2
4: If X’ improves the makespan set X = X’. Else Stop and output S = (X, A).

To guarantee a polynomial runtime the number of iterations has to be bounded as
the local optimum is not necessarily found in a polynomial number of iterations. How-
ever, computational tests showed that in practice the search terminates in very short
computation time (see Section [G)).

6 Computational Results

To test all proposed heuristics as well as the proposed IP formulation we performed
extensive computational tests. To this end we created four different instance sets. The
first two sets consist of random instances, i.e., instances without any structure in the
distances. The first set contains 50 small scale instances with up to 30 jobs, 10 locations
and 8 machines. The second set contains 450 larger instances with up to 300 jobs, 60
locations and 50 machines. For the third set 350 networks were randomly generated. The
ScheLoc instances were obtained by setting V' = A" = M and computing the distances as
lengths of shortest paths in the graph. The number of machines was randomly generated.
Instances in this set have up to 300 jobs (i.e., up to 300 possible machine locations) and up
to 35 machines. For the last set 600 instances with up to 300 jobs and 35 machines were
generated as follows: jobs were randomly located in squares of different size in the plane
and identified with the set of possible machine locations, i.e., M = A. Distances were
computed as euclidean distance and the number of machines was randomly generated.
For all instances each heuristic with and without the post-optimization procedure was
tested. For the randomized versions of the heuristics 10 runs where performed on each

16

instance and best and average values stored. To test the local search the best solution of
each of the 10 clustering heuristics with post-optimization were used as starting solutions.
Furthermore, 10 runs with random starting solution were performed. For small scale
instances the results of the heuristics were compared to the results of the IP formulation
using the commercial IP solver Cplex and a time bound of 15 minutes. Results of this
test can be found in Subsection For the larger instances the results were compared
to the lower bounds proposed in Subsection Results of this test can be found in
Subsection [6.2]

All tests were performed on a 16-core Intel Xeon E5-2670 processor, running at 2.60
GHz with 20MB cache, 96 GB RAM and Ubuntu 12.04. The IP tests were done using
multi-threading with five threads.

6.1 Comparison to IP solver

For the 50 instances of testset 1 as well as for 25 small scale instances of testset 3, and
50 small scale instances of testset 4 with up to 20 jobs, 20 locations and 5 machines
the IP was solved by the commercial IP solver Cplex. A time bound of 15 minutes per
instance was enforced. Details on the IP tests can be found in Table Cplex was
run on testset 1 also for 60 minutes but there was no improvement on the best found
solution or the number of optimal solutions found.

n/m/p | N° Instances | Avg Gap | N° Optimal | Avg time Avg time
(OPT) | (Best found)

Testset 1 50 28.6% 26 35.9s 53.0s

10/10/8 20 0.0% 20 23.85 1.2

30/10/9 30 52.0% 6 76.1s 90.0s

Testset 3

20/20/5 25 47.6% 2 271.855 194.0s

Testset 4

20 /20 /5 50 51.3% 2 466.7s 170.8s

Table 6.1: Results of Cplex for runtime bound of 15 minutes

The table shows the number of instances per testset, the average gap reached after 15
minutes of computation time, the number of instances solved to optimality, the average
time needed to solve those instances to optimality and the average time over all instances
needed to find the best solution without proving optimality. The 50 instances of testset
1 are split into 20 instances with up to 10 jobs and 30 instances with 11-30 jobs. Each
value is denoted for the entire set as well as for the two subsets.

Testset 1 contains 20 instances with at most 10 jobs. For all of them Cplex was able
to find an optimal solution. For the 30 instances with more than 10 jobs Cplex was
only able to find the optimal solution for 6 instances with up to 15 jobs and 5 locations.
The average time for the 26 optimally solved instances to find and proof optimality is
35.9 seconds. The average time over all instances to find the best known solution is 53
seconds but for the 30 instances with more than 10 jobs the average time is increased

17

to 90 seconds. The average gap is 28% which is due to the large number of optimally
solved instances. For the 30 instances with more than 10 jobs the gap increases to 52%.
This is most likely due to the bad lower bounds computed by Cplex.

For testset 3 Cplex was tested on 25 instances with 10-20 jobs. The optimal solution

could only be found for two instances in on average 271 seconds. The average time to
find the best known solution is 194 seconds. The increased computation time compared
to the first testset (even if only instances with 10 or more jobs are considered) is due
to the larger number of possible machine locations that for testset 3 is identical to the
number of jobs (at least 10) while for testset 1 it is at most 10. This also explains why
fewer optimal solutions are found. The average gap of 47.6% is comparable to that of
testset 1 if only instances with 10 or more jobs are considered.
For testset 4 Cplex was tested on 50 instances with 10-20 jobs. The optimal solution
could only be found for two instances in on average 466 seconds. The average time to
find the best known solution is 171 seconds. The values are comparable to those of
testset 3 as the instances are of the same size in terms of number of possible locations
and number of jobs. There is no difference in the performance although the instances of
the testsets have a different structure. The average gap of 51.3% is comparable to that
of testset 2 and of testset 1 for the instances with 10 or more jobs.

Since Cplex very often does not find the optimal solution we compare the results of
Cplex to those of the clustering heuristics. For better readability we only use the best
results of each version of the clustering heuristics (CH1: location first, CH2: cluster first,
CH3: iterative). The same holds for the local search, we only use the best results of the
local search for starting solutions from each version of the clustering heuristics and of the
ten runs with random starting solutions (LS1: CHI1 as starting solution, LS2: CH2 as
starting solution, LS3: CH3 as starting solution, LS Rand: Random starting solution).
A detailed comparison of different criteria for the same type of clustering heuristic can
be found in Subsection Table shows the percentage of deviation from the best
known solution which in all but four cases is the solution of Cplex. As explained in
Subsection the cluster first heuristic is not tested on randomly generated instances
but only on network and planar instances. Since the runtime of each clustering heuristic
and the local search is only in the order of milliseconds we only compare the quality of
the solutions.

CH1 | CH2 | CH3 | LLS1 | LS2 | LS3 | LS Rand
Testset 1 | 11.7 - 175 | 5.5 - 5.7 5.1
Testset 3 | 13.4 | 21.1 | 17.1 | 82 | 94 | 7.4 3.4
Testset 4 | 7.5 19.5 | 15.8 | 6.6 | 87 | 87 3.0

Table 6.2: Average Deviation (in percent) of clustering heuristics from best known
solution

Table [6.2] shows that all clustering heuristics provide results that are on average 7-
21% from the best known solution. If the local search is additionally applied the gap
is reduced to 3-9% on average. We also see that the best performance is obtained by
repeatedly starting the local search with a random starting solution. This is due to the

18

ten runs that are performed with random starting solutions that cover many of the for
small scale instances rather limited location choices. If instead for each instance the
best solution over all local searches with starting solutions of the clustering heuristics
is taken, the gap can be further reduced to 2-3%. Since each run of the heuristics and
the search can be done in a few milliseconds this approach in total will still be very fast
(around 5-10 seconds). Therefore, the heuristic approach is competitive with Cplex as
it drastically improves the runtime at only a very small cost in terms of solution quality.

6.2 Comparison of Heuristics

For almost all large scale instances Cplex was not able to even find a feasible solution
within the 15 minutes time bound. Therefore, in this section we compare the results of
the different heuristics on testsets 2-4 to the best one of the lower bounds introduced in
Subsection [3.21

6.2.1 Post-Optimization Procedure

First we want to analyze the improvement that the post-optimization procedure intro-
duced in Subsection yields. We tested all heuristics with and without the post-
optimization procedure. This procedure is implemented such that the heuristics with
post-optimization always perform at least as good as without post-optimization. But
it is not a priori clear whether the post-optimization yields a significant improvement.
The results presented in Table however show that this indeed is the case. For the
randomized heuristics again ten runs were performed and the best solution is denoted.
The results with post-optimization shown in Table are obtained by performing the
post-optimization on the solutions without post-optimization, i.e., the randomization
has no influence on the comparability of the values.

CH1-1 | CH1-2 | CH1-3 | CH1-4
Set 1 18.6 19.8 19.7 19.0
Set 3 17.8 22.7 21.7 20.5
Set 4 | 229 27.3 24.5 25.2

CH2-1 | CH2-2 | CH2-3 | CH3-1 | CH3-2 | CH3-3
Set 1 - - - 735.6 | 175.0 | 173.7
Set 3 | 42.7 56.5 64.3 715.5 | 104.6 | 120.9
Set 4 | 40.5 50.8 70.4 783.0 | 116.8 | 128.0

Table 6.3: Average Deviation (in percent) of clustering heuristics without post-optimi-
zation from best lower bound

19

CHI1-1 | CH1-2 | CH1-3 | CH1-4
Testset 2 17.9 18.2 18.4 17.8
Testset 3 16.0 21.2 20.8 19.4
Testset 4 19.6 24.5 22.8 224

CH2-1 | CH2-2 | CH2-3 | CH3-1 | CH3-2 | CH3-3 | Best CH
Set 2 - - - 22.9 24.3 25.8 12.3
Set 3 18.1 25.2 30.1 21.2 20.2 24.0 9.5
Set 4 | 19.2 23.4 34.5 17.6 18.4 21.1 11.5

Table 6.4: Average Deviation (in percent) of clustering heuristics with post-optimization
from best lower bound

From the values we can see that especially for the cluster first and the iterative heurist-
ics there is a major improvement by the post-optimization. For the cluster first heuristic
that is due to the fact that clustering is done independent of processing times. For
CH3-1 it is due to the misbalance in number of jobs assigned to the different machines
and for the other two iterative heuristics it is due to the misbalance in processing times
as the number of jobs is equalized. This shows that for these two types of heuristics
the post-optimization procedure is essential to improve the assignment. But since the
solution with post-optimization is good that shows that these heuristics make good loc-
ation choices. For the location first heuristic the improvement is only around 1-3% but
since there is no notable increase in the runtime of the heuristics it is worth including
the procedure in all of the heuristics. Therefore, in the following we only compare the
results of the heuristics with post-optimization.

6.2.2 Comparison to Lower Bounds

Table shows the average deviation from the lower bound for all 10 versions of the
clustering heuristics with post-optimization using the best solution for the randomized
heuristics, where the numbering is according to that given in Subsections The
last column Best CH gives the average deviation if for each instance the best solution
over all clustering heuristics is taken. As explained in Subsection CH2 is not tested
for instances with random distances.

As can be seen in the table the different criteria of the same version yield comparable
average results. There are slight differences in the versions of the heuristics but there is
no version that performs best on all testsets. While CH1 performs best on the random
and network instances CH3 performs best on planar instances. The results of CH2 are of
comparable quality but are slightly worse for both network and planar instances. This
may be due to the fact that in this heuristic the clustering is done without considering
processing times. Altogether the randomized heuristics (CH1-1, CH1-4 and CH2-1)
perform best among their respective versions. But this only holds for the best solution
over the ten runs. Table shows that for the random clustering heuristics the average
value is around 1-6% worse than the best value of the same heuristic. The best results
can be achieved if for each instance all ten versions of the heuristics are run and the

20

best result is taken (CH Best) which improves the gap by 5-8%. This shows that the
performance of each heuristic is dependent on the problem data but for each instance
there is at least one version of the heuristic that performs quite well. This approach is
valid since the runtime of each single heuristic is within milliseconds yielding a runtime
of only a few seconds to obtain the Best CH solution.

CH1-1 | CH1-1 | CH1-4 | CH1-4 | CH2-1 | CH2-1 | LS Rand | LS Rand
avg best avg best avg best avg best
Set 1 18.4 17.9 18.1 17.8 - - 29.1 17.7
Set 3 | 21.6 16.0 23.3 19.4 22.8 18.1 15.9 9.7
Set 4 | 25.2 19.6 27.3 22.4 23.3 19.2 16.0 10.0

Table 6.5: Average Deviation (in percent) of randomized clustering heuristics (best and
average solution value) from best lower bound

Table shows that for CH1-1 the average values are comparable with the values
of CH1-2 which is the worst heuristic of the location first type. The average values of
CH1-4 are even worse and around 4% from those of CH1-2 for the network and planar
instances. For CH2-1 the average values are around 2% better than those of CH2-2
and even 7-11% better than those of CH2-3. That shows that a random selection of
cluster centers performs quite well compared to a selection of cluster centers based on
centers of gravity. For the local search with random starting solution the average values
are even worse with around 6-12% deviation from the best run. For testset 1 with the
random distances the average value is even around 10% worse than the average value of
the random clustering heuristics (CH1-1, CH1-4, CH2-1). For the network and planar
instances on the other hand the average value of the local search with random starting
solution is around 3% better than the best solution of the clustering heuristics. This
shows that the local search performs quite well even with an arbitrary solution if the
instance has a special structure. However, in Section we will see that if the local
search is applied to the solutions of the clustering heuristics the average value of the local
search with random starting solution is comparable to the worst solutions and around
3% worse than the best solution (see Table [6.6]).

6.2.3 Local Search

To analyze the improvement the local search yields on different starting solutions, Table
shows the average deviation of the local search with all different starting solutions
tested. For randomized heuristics the local search is always started with the best solution
of the ten runs. For the local search with random starting solution the best solution
of the ten runs is denoted. The last column LS Best denotes the deviation if for each
instance the best solution over all local searches with clustering starting solutions (i.e.,
not with random starting solution) is taken.

21

CH1-1 | CH1-2 | CH1-3 | CH1-4 | CH2-1 | CH2-2 | CH2-3
Testset 1 14.1 14.5 14.6 14.2 - - -
Testset 3 13.0 14.8 15.7 14.3 13.8 16.9 17.0
Testset 4 | 13.7 15.4 16.2 12.8 14.1 15.3 16.3

CH3-1 | CH3-2 | CH3-3 | Rand | Best
Testset 1 14.3 15.3 15.5 17.7 | 10.7
Testset 3 15.1 13.9 16.1 9.7 8.2
Testset 4 13.5 13.8 14.8 10.0 8.9

Table 6.6: Average Deviation (in percent) of local search from best lower bound

Comparing the results to those of Table shows that the local search yields a
significant improvement for each clustering heuristic of at least 4%. In the best cases
this improvement is even 18%. It can also be seen that in general the better the starting
solution the better the outcome of the local search. There are only few exceptions in
the range of only 1%, e.g., for testset 3 the local search with CH3-2 is slightly better
than that of CH1-4 (0.4%) while the solution of CH3-2 is slightly worse than that of
CH1-4 (0.8%). For testsets 3 and 4 the local search with random starting solution
performs best among each single heuristic. That is due to the ten runs performed for
that heuristic which allow to cover a larger part of the search space than with any single
starting solution of the clustering heuristics. As mentioned above the average values are
comparable with the worst solutions starting with clustering solutions. If instead for
each instance the best solution over all local searches starting with a clustering solution
is taken, we obtain a solution that is 1-2% better than that of the best random starting
solution for network and planar instances and even 7% better for the random instances.
Since each heuristic runs in a few milliseconds we can compute the values of column
Best in around 5-10 seconds.

7 Conclusion and Further Research

We considered an integrated Scheduling-Location Problem, the Discrete Parallel Machine
(DPMM) ScheLoc Problem. To our knowledge this is the first work done on algorithms
for Parallel Machine ScheL.oc Problems. We gave an IP formulation which unfortunately
can only be solved by commercial IP solvers for small scale instances. Therefore, we give
several clustering type heuristics together with a post-optimization procedure, as well as
a local search heuristic. Tests showed that all clustering heuristics with post-optimization
performed quite good and are 16-35% from a lower bound. All heuristics run within
milliseconds. Therefore, it is a feasible approach to run all clustering heuristics and take
the best solution found. This procedure reduces the gap to 10-12%. If additionally the
local search is used with the clustering solutions as starting solutions this procedure
further reduces the gap to around 8-10%.

These results show that the proposed heuristics are a first good approach to the
problem. However, more elaborate search heuristics like a variable neighbourhood search

22

may be able to further improve the results. Also efficient exact solution methods like a
branch-and-bound approach are worth investigating.

In general there is very little research on ScheLoc Problem although it is an inter-
esting combination of two well-studied optimization problems with many applications.
Therefore, future research should not be limited to the DPMM ScheLoc Problem but
should also include other Schel.oc Problems.

References

1]

[11]

[12]

D. Elvikis, H. W. Hamacher, and M. T. Kalsch. Simultaneous scheduling and
location (scheloc): The planar scheloc makespan problem. Journal of Scheduling,
12:361-374, 2008.

R. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45:1563-1581, 1966.

H. W. Hamacher and H. Hennes. Integrated scheuling and location models: Single
machine makespan problems. Studies in Locational Analysis, 16:77-90, 2007.

H. Hennes. Integration of Scheduling and Location Models. PhD thesis, University
of Kaiserslautern, 2005.

M. Kalsch and Z. Drezner. Solving scheduling and location problems in the plane
simultaneously. Computurs and Operations Research, 37:256-264, 2010.

M. T. Kalsch. Scheduling - Location (ScheLoc) Models, Theory and Algorithms.
PhD thesis, University of Kaiserslautern, 2009.

C. Kaufmann. A polynomial time algorithm for an integrated scheduling and loca-
tion problem. In Proceedings of the 14th International Conference on Project Man-
agement and Scheduling, pages 124-128, 2014.

F. E. Maranzana. On the location of supply points to minimize tranport costs.
Operational Research Quarterly, 15:261-270, 1964.

N. Mladenovié, J. Brimberg, P. Hansen, and J. A. Moreno Pérez. The p-median
problem: A survey of metaheuristic approaches. Furopean Journal of Operational
Research, 179:927-937, 2007.

S. Nickel and J. Puerto. Location Theory: A Unified Approach. Springer Berlin,
2005.

J. Reese. Solution methods for the p-median problem: An annotated bibliography.
NETWORKS, 48:125-142, 2006.

B. Tansel, R. Francis, and T. Lowe. State of the art - location on networks: A
survey. part i: The p-center and p-median problems. Management Science, 29:482—
497, 1983.

23

[13] S. Wesolkowski, N. Franceti¢, and S. C. Grant. Trade: Training device selection
via multi-objective optimization. In IEEE Congress on FEvolutionary Computation,
2014.

[14] R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on
Neural Networks, 16:645—-678, 2005.

24

	Introduction
	Problem Definition
	IP Formulation and Lower Bounds
	IP Formulation
	Lower Bounds

	Clustering Heuristics
	Location first, Cluster second
	Cluster First, Location Second
	Iterative Selection of Clusters and Locations
	Post-Optimization Procedure

	Local Search
	Computational Results
	Comparison to IP solver
	Comparison of Heuristics
	Post-Optimization Procedure
	Comparison to Lower Bounds
	Local Search

	Conclusion and Further Research

