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Abstract

We consider Web services defined by orchestrations in the Orc language
and two natural quality of services measures, the number of outputs and
a discrete version of the first response time. We analyse first those sub-
families of finite orchestrations in which the measures are well defined
and consider their evaluation in both reliable and probabilistic unreliable
environments. On those subfamilies in which the QoS measures are well
defined, we consider a set of natural related problems and analyse its com-
putational complexity. In general our results show a clear picture of the
difficulty of computing the proposed QoS measures with respect to the
expressiveness of the subfamilies of Orc. Only in few cases the problems
are solvable in polynomial time pointing out the computational difficulty
of evaluating QoS measures even in simplified models.
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1 Introduction

As the number of Web services available on-line increases at high speed, one
fundamental question is to analyse their performance and reliability. We are
interested in the computational limits of computing quality of services (QoS)
measures for Web services and to provide a counterpart to many experimental
results about the topic. There are plenty of proposals for quality of service
(QoS) and Risk analysis for Web services (see as an example [30, 20, 10, 19,
7, 14, 13, 23, 12, 17]). However in all those papers there are almost no results
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name sites operators
ElementaryOrc 1(z), 0, S(z1,...,%n) [, >x >, >
PruningOrc 1(z), 0, S(z1,...,zn) L >z> > <z<
IfOrc 1(z), 0, S(z1,...,zn), if (z) [, >z >, >
Orc 1(z), 0, S(z1,...,%n), if (x) ,>z>, > <z<

Table 1: The subfamilies of Orc expressions.

indicating the computational limits of the proposed QoS measures. The aim of
this paper is to set some theoretical basis to define formally QoS measures and to
study the computational limits of such measures at least for some subfamilies
of Web services defined by orchestrations. We adopt the Orc language [21]
which was proposed as a minimalistic language to describe orchestrations of
Web services. In Orc, services are modeled by sites which have some predefined
semantics. A site accepts an argument and publishes a unique result value. For
example, a call to a search engine, Find(x), may publish the set of sites which
currently offer service x. An orchestration which composes a number of service
calls into a complex computation is represented by an Orc expression. Thus an
orchestration publishes a stream of values. We restrict ourselves to the subfamily
of finite orchestration described by Orc expressions, i.e. orchestrations without
iteration and infinite recursion.

Once the subset of orchestrations is defined we introduce two QoS measures
of interest. Our first step is to devise the appropriate semantics that guarantees a
correct definition of the intended measures. There are many semantics proposed
for orchestrations described in Orc [29, 25, 15, 9, 16, 28]. However, we derive
some minimalistic semantics to reason about the QoS measures considered in
this paper. We focus on two natural QoS measures related to the productivity
and the latency of the system. The number of outputs providing the length of the
produced stream, and a delay measure, the first item delay, providing the delay
incurred in the production of the first output. We analyse on which subfamilies
of finite orchestrations those measures are well defined. Our results show that
this happens when only non-blocking sites are allowed or when blocking sites are
allowed but the pruning operator is forbidden. This leads us to consider three
subfamilies of orchestrations (See Table 1 and Section 2.1 for formal definitions.)

QoS must be assessed in the presence of misbehaviours or failures, usually
inside some probabilistic framework. In our probabilistic model we assume
some knowledge on the unreliable behaviour of the sites, which is given by a
probability of success or a probability distribution on a discreet subset of values
of interest. Our probabilistic model is a generalization of the percentage of
success that is usually given by the provider [2, 26, 1]. We extend, as usual,
the QoS measures to unreliable environments by computing their expectation
or their probability of success.

We analyse the complexity of several computational problems related to the
considered QoS measures both in reliable and unreliable environments. Table 2
provides an overview of the results in the paper. Our results show a natural



PrPub oblivious
PrPub stable
ExpectedOut oblivious

needs EXPSPACE
#P-hard, PSPACE
P

needs EXPSPACE
#P-hard, PSPACE
#P-hard

Problem ElementaryOrc PruningOrc IfOrc
ExistsOut P [11] P [11] NP-complete
Out P [11] P [11] #P-complete

needs EXPSPACE
#P-hard, PSPACE
#P-hard

PrBoundFirst oblivious
PrBoundFirst stable
ExpectedFirst oblivious
ExpectedFirst stable

needs EXPSPACE
#P-hard, PSPACE
needs EXPSPACE
#P-hard, PSPACE

needs EXPSPACE
#P-hard, PSPACE
needs EXPSPACE
#P-hard, PSPACE

ExpectedOut stable PSPACE #P-hard, PSPACE | #P-hard, PSPACE
BoundFirst P P NP-complete
First P P NP-hard, PSPACE

needs EXPSPACE
#P-hard, PSPACE
needs EXPSPACE
#P-hard, PSPACE

Table 2: Summary of results.

jump of increasing complexity from the reliable to the unreliable setting. In the
reliable setting the expressiveness and the computational mechanism used in the
construction of the Orc expression have an impact in the computational com-
plexity of the considered problems. We can derive efficient algorithms when sites
are non-blocking and the pruning operator is allowed. The problems become
intractable when blocking sites are allowed, even when the pruning operator is
forbidden. Finally, in the probabilistic model complexity changes depend more
on correlations than on the expressiveness of the orchestrations. In general, our
membership results make a careful use of variable contexts and of the structure
of the orchestration. Hardness results follow from reductions from variations of
the satisfiability problem for boolean formulas.

We have found only very few non experimental papers dealing with our topic
of interest. In [24] the study of orchestrations in unreliable environments with
known probabilities has been undertaken using finite Markov chains. Here we
develop an alternative approach based on probabilistic environments.

The paper is organized as follows. In Section 2 we provide an overview of Orc
and state our main hypothesis. We also introduce the probabilistic framework
used to study QoS measures in unreliable environments. In Section 3 we deal
with the number of outputs measure, we first analyse in which Orc subfamilies
the measure is well defined. Then, we introduce and study the complexity of
the associated computational problems. Section 4 defines the first item delay
measure and analyses the Orc subfamilies in which it is well defined. This is
complemented with the study of the complexity of the associated problems.
We conclude in Section 5 presenting our conclusions and some lines for future
research. We assume familiarity with Orc and the computational complexity
classes P,NP,#P and PSPACE and EXPPSPACE [6, 22]. We adopt the usual
convention that numbers appearing in a problem are either natural or rational.
For rational numbers we assume a representation as an irreducible fraction, so
they are represented by two numbers in binary.



2 Preliminaries

We start describing in a general way the components of the proposed framework
for orchestrations.

2.1 Orc expressions

An orchestration which composes a number of service calls into a complex com-
putation can be described in Ore [21]. An orchestrator may utilize any service
that is available on the Web. The simplest kind of Orc expression is a site (ser-
vice) call S(x1,...,2,), where S is the service’s name and (z1,...,x,) is a list
of formal parameters, for some n > 0. Thus, when it is executed and the for-
mal parameters hold acceptable arguments (vy,...,v,) it will publish (return,
output) the result value s(vy,...,v,). As usual we distinguish the syntactic call
S(z1,...,x,) on variables from the computed function s(vi,...,v,) with an
abuse of notation we write (z1,...,2,) = (v1,...,v,) to express the fact that
the formal parameters are assigned to the corresponding value. For sites with 0
parameters we write S() and for sites with just one parameter S(x). A site call
is silent if it does not publish a result. Orc has two special internal sites, site
1 and site 0. A call to site 0 never publishes a result and thus remains silent.
A call to site 1 always returns one signal. Site 1 admits calls with any number
of parameters, with the form 1(x1,...,z,) (or 1(x)), the call returns a signal
whenever all the variables in the parameter list are defined. Usually we do not
need to distinguish among the published value of a call to site 1, however when
we want that site 1 publishes a boolean value, we denote this fact as 1(1) and
1(0). In the first case the published value is 1 (true) and in the second 0 (false).
We model the output of a site by a string. As usual, we use + to denote string
concatenation.

The following table provides a description of some of the sites appearing in
other examples. Most of them are taken from [21].

Site Meaning Published Value
AddressAlice publishes Alice’s email aalice
AddressBob publishes Bob’s email abob
Email(a,m) sends m to email a and publishes s.+a+_-+m

EmailAlice(m) | sends m to Alice’s email and publishes s_aalice_+m
EmailBob(m) sends m to Bob’s email and publishes s_abob_+m
EmailDad(m) | sends m to my dad’s email and publishes s_adad_+m

CNN publishes a summary of the CNN news cnn

BBC publishes a summary of the BBC news bbc

For instance, the call Email(aalice, cnn) publishes the string s_aalice_cnn.
We consider orchestrations, where the orchestrator calls different “exter-

nal” sites like CNN or Email(a, m). We assume that all the “external” sites

have well-defined behaviours, implementing polynomial time computable functi-



ons and acting according to the non-blocking hypothesis and the constant delay
hypothesis [11]:

A site S is non-blocking if S(x1, ..., x,) must publish a result for any
well-defined arguments vy, . . ., v,; otherwise S is potentially blocking.

NON-BLOCKING HYPOTHESIS: Every external site is non-blocking.

CONSTANT DELAY HYPOTHESIS: Every site S has associated a delay
dg and, in any call, S publishes after dg time units from the time at
which all their parameters are defined.

We consider an exception to the non-blocking hypothesis as we can use an
additional internal site, the site if (z). This site was introduced in [21]. A call to
if (b) publishes a signal when b gets the value true and remains silent otherwise.
Note that site if (z) is potentially blocking. We can think of such a site as
being implemented “locally” by the orchestrator. This is the unique blocking
site allowed in an orchestration.

In an orchestration the results published by a sub-orchestration can be stored
in a local variable that can be used as a parameter in another site call. Observe
that some times a variable x remains undefined (written as x = 1). We use
upper-case letters for external sites and orchestrations and lower-case letters
for variables. Notice that, although a site call publishes at most one result,
this is not the case of an orchestration as the combined structure will publish
a stream of data. In this paper we deal only with finite orchestrations where
finite means: excluding iteration and recursion. If P and @ are Orc expressions
then the following expressions are also Orc expressions [21].

e Sequence P > x > Q(z): P is evaluated and, for each value v published by
P, an instance Q(v) is executed. If P publishes the stream, vy, va, ... v,,
then P > x > Q(x) publishes some interleaved stream of the outputs of
the calls Q(v1),Q(v2),...,Q(vy). When the value of x is not needed we
write P > Q.

e Symmetric Parallelism P | Q: P and @ are evaluated in parallel. P | @
publishes some interleaving of the streams published by P and Q.

e Pruning P(z) < © < @: P and @ are evaluated in parallel. Some sub-
expressions in P may become blocked by a dependency on z. The first
result published by @ is bound to z, the remainder of Q)’s evaluation is
terminated and evaluation of the blocked residue of P is resumed’.

In the remaining of the paper we use the term Orc to denote the set of finite
orchestrations that can be constructed using the previous operators in which all
sites, except if(b), follow the non-blocking hypothesis. We also consider three
subfamilies of Orc (see Fig.1). In ElementaryOrc the if (b) site and the pruning
operator are not allowed. In PruningOrc we forbid the use of the if(b) site

IThe expression “P(z) < < Q" was encoded as “P(x) where z :€ Q” and called
asymmetric parallelism in in [21].



and, symmetrically, in IfOrc the pruning operator is not allowed. Observe that
iteration and infinite recursion is not allowed in any of the subfamilies, however
our hardness result hold for those cases in which the proposed QoS measures
could be defined. We call the operational semantics induced by the definitions
and given explicitly in [21] the Misra-Cook semantics.

Following we provide some examples of orchestrations. In the examples and
in some constructions, we assign names to sub-expressions. You should bear in
mind that the representation of the Orc expression (according to the definition)
requires the replacement of names by their description in terms of sites.

Example 1. Let us analyse informally the Misra-Cook semantics of the follo-
wing orchestrations. Let us start with TwoAlice orchestration:

TwoAlice = (CNN | BBC) > z > EmailAlice(x)
which for sake of readability is rewritten as:

TwoNews = (CNN | BBC),
TwoAlice = TwoNews > x > EmailAlice(x)
This orchestration has a very rich behaviour. Initially x is undefined. Suppose
that CNN returns first, in this case x stores the value cnn, EmailAlice(cnn) is
called and x becomes undefined again. If later on BBC publishes some result, x
will store bbc and EmailAlice(bbe) will be called.
Consider now the FullCrash expression:
NewsEmail(xz) = (CNN | EmailAlice(x)),
FullCrash = 0 > z > NewsEmail(x)
As 0 never returns, according to the definition of sequential composition, NewsEmail(z)
will never be executed and FullCrash publishes no result.
In OneAlice = EmailAlice(x) < x < TwoNews, observe that the variable x
in OneAlice can take either the value cnn or bbec unpredictably as the pruning

operator introduces non-determinism.
Finally, the expression

OneTwo = (zf(b) > CNN | if (—b) > (BBC | FOX)) <b< (1(1) | 1(0))
publishes (non deterministically) either cnn or the stream bbc, fox. O

In the following example we provide a more complex expressions where we
want to emphasize the role of the variables.

Example 2. Consider the following orchestration MyNews:

TwoNews = (CNN | BBC)

MyEmails(a, ) = (EmailDad(x) | Email(a,x))
SendNews(a) = (TwoNews > x > MyEmails(a, z))
Addresses = (AddressAlice | AddressBob)

MyNews = (SendNews(a) < a < Addresses)



The MyNews expression corresponds to

MyNews = ((CNN | BBC) > z > (EmailDad(z) | Email(a,z)))
< a < (AddressAlice | AddressBob)

where only site calls appear. O

We have to be careful when dealing with iterative descriptions as this might
give rise to expressions with exponential size. In the following example we
provide one of such constructions.

Example 3. Consider the orchestration Bang,, defined as follows

Bangy = (1(1) | 1(1))
Bang, = (Bang, > Bang,)
Bang,, = (Bang,,_, > Bang,,_;) forn>0

The iterative description by sub-expressions is quite succinct. Observe that when
n = 2 we have:

Bang, = ((1(1) 1 1(1) > (1) 1 1(1)) ) > ((1(1) [ 1(1)) > (11) | 1(1)))

Expanding and replicating the sub-expressions it is easy to see that the Orc ex-
pression corresponding to Bang,, has exponential size in relation to n. O

2.2 Probabilistic environments:

In order to define the probabilistic model, we assume that a QoS measure m is
defined for orchestrations. We assume that, for each participating site S, the
number of possible values of m is finite. A distribution of m for site S is a lottery
assigning a probability to each of those values. Observe that such distributions
sometimes can be inferred from vendor (or general) information [2, 26, 1], from
system logs, or can be constructed experimentally by the user. Our notation is
inspired by [18, p. 20]. We denote a QoS distribution for an orchestration E and

a measure m by Pg = (m1@p; | --- | mp@py) where m; are the possible values
of m and p;, 0 < p; < 1, is the probability that the value is m; and Zle p;i = 1.
In Pg = (m1@p; | -+ | mr@py) we think of “[” as a probabilistic choice

operator?. When only two values are possible we use the shorter description
(my gbma) = (m1@p | me@(1—p)). To deal with such probability distributions,
we consider probabilistic orchestrations. E = (E1Qpy | E2Q@Qps | --- | E,Qp,,)
denotes the probabilistic orchestration where E; is executed with probability p;.
When there are two orchestrations we write E = (Eq ,& Eb).

Following we provide examples of diverse probabilistic behaviour of services.
Those examples have been obtained experimentally using a pre-specified time-
out to identify a crash. Whenever the pre-specified time-out is triggered, we

2In [18, p. 20] the notation (prog;@p; | - -- | prog,@py) is used. We avoid |, for probabilistic
choice, as it represents the Orc operator parallel composition.



assume that the service will never publish. We have considered three services
available on the Web. IPFW is a service offering static pages [3]. A call to
the services returns a fixed size table with Spanish verb conjugations. We took
a fixed collection of 100 verbs and perform calls with a selected random verb.
StackOverflow is a well known dynamic site where you can ask computing rela-
ted questions [4]. Again, we selected 100 questions, chosen from the web page,
and each call to the service was done with a randomly selected question. Finally,
we used the news server from Yahoo! [5]. In this case the calls were issued to
the main page, a dynamic page showing the latest news from different sources
and few other info. To get the probability distribution estimation we issued,
within a week, n = 10000 calls to each server. For each call we recorded the
duration (in intervals of 500 ms). The obtained probability distributions, for
the first response delay, are the following (we use w to mean that the “time-out”
was triggered):

Prprw = (500@0.955 | 1000@0.053 | w@0.002)
PstackOverfiow = (1000@0.998 | w@0.002),
Pyahoot = (1500@0.203 | 2000@0.777 | 2500@0.006 | 3000@Q0.004 | w@0.01)

Observe the big span in the response time within a relatively low number of
calls in a short period, for the case of Yahoo!

Definition 1. Given an orchestration E having calls to sites {S1,...,Sn}, and
a QoS measure m a probabilistic environment is a tuple P = (Py, ..., P,) where
foreach 1 <i <mn, P;is a QoS failure distribution of m for site S;, that is m(S;)
behaves according to distribution P;.

We assume that the failure distributions depend only on the site and are
independent among sites. As an orchestration can issue many calls to the same
site, we assume that, for probabilistic orchestrations, the outputs of any success-
ful call to a particular site remain independent. We consider two models:

e Oblivious model. Inside the orchestration the faulty behaviour of any
call to a site S is independent from any other call to S.

e Stable model. The faulty behaviour of the first call to a site S is repli-
cated in any other call to S.

Given a probabilistic environment P, we are interested in modeling the faulty
behaviour of E under P in the oblivious (o) and the stable (s) models and in
computing the probability of some events and their expectation. We use the
notation Pr% or E% to denote, respectively, the probability and expectation
under probabilistic environment P and model a € {0, s}. We drop some of the
indices (P or a) when they are clear from the context.

3 Number of outputs

In order to deal with measures related to the number of outputs produced
by the orchestration, we consider the operational semantics introduced in [21].



In such a model any variable x contains all the possible values before being
used. This approach provides a mathematical tool to derive the desired results.
Many variables in orchestrations keep a value or a stream of values. When
an orchestration F publishes a stream v, vs,...,v,, the relative ordering of
the values depends on the relative response time of the sites appearing in FE.
If we abstract from time, which is possible as we are interested only in the
length of the stream, the possible streams can be described by a multi-set or
bag [|v1,v2,...,v,]] (notation || - || is taken from [18]). In such a case, the
“meaning” of E, denoted by [E], is the bag ||v1,v2,...,v,]] and we write
[E] = |[v1,v2,...,vn]]. The fact that site 0 never returns is formalized as site
0 returns nothing, that is [0] = || ]|]. When using multi-sets we consider the
operatior ”+”, denoting bag union, following [18, p. 82], as required by the
symmetric parallelism composition. As the pruning operator can give rise to a
non deterministic behaviour, we introduce also the “demonic choice” operator
"M” [18, p. 4] to denote non deterministic choice. Observe that, in the presence
of non-deterministic choice, the number of outputs is well defined only in those
cases in which we can prove that all the possible bags have the same size. In
the same lines we associate a meaning [z] to each variable x appearing in an
Orc expression.

Example 4. Consider the following orchestrations whose meaning in the Misra-
Cook semantics is commented in Example 1.
In TwoAlice we have

[ TwoNews] = || cnn, bbc]]
[z] = [TwoNews] = || cnn, bbc]]

[TwoAlice] = ||s-aalice_cnn, s_aalice_ bnn||

Therefore, TwoAlice publishes short summaries of the two emails sent to Alice.

In FullCrash, NewsEmail(x) will never be executed and [FullCrash] = [ ].
In the orchestration OneToAlice, the wvariable x can take the value cnn or
bbe, therefore [x] = |[cnn|| M ||bbc]] and [OneToAlice] = ||s_aalice_cnn]| I
||s_aalice bbc||. Note that [OneTwo] = || cnn]| M ||bbc,fox]| and the or-
chestration can, in a non-deterministic way, output a stream having length 1 or
another with length 2.

Let us consider another example of pruning F1(x) < © < Ey when z = L.
Consider the orchestration PartialCrash = NewsEmail(z) < © < 0. Recall that
the 0 in PartialCrash denotes a failing service. Then, as 0 never publishes,
we have x = L, thus [z] = || || and [NewsEmail(L)] = ||cnn]|. Finally
[PartialCrash] = || cnn|| as expected. O

In order to show the existence of a normal form we analyze first the me-
aning associated to the syntactic constructions in some particular cases. As
in the fully defined variable semantics we abstract from the different publis-
hing times the meaning of an execution consists of the bag of published va-
lues. We introduce some notation to deal with bags. We use || --- || to de-
note bags [18, p. 82] and #|| --- || to denote the number of items in the bag.



Recall that the empty set is denoted as || ]|. For instance, ||cnn,bbc]| de-
notes a bag containing the values cnn and bbc. We use + to denote multi-
set union and M to denote non-deterministic choice. The result of a multi-set
union is the multiset formed by the two multiset. As an example || cnn,bbc|| +
|| fox,bbc]| = || cnn, bbe, bbe, fox||. Observe that bbc appears in both multis-
ets and in consequence appears twice in their multiset union. The result of a
non-deterministic choice is one of the multisets, however we cannot control which
one. So, ||cnn,bbc]| M |[fox,bbc|| can unpredictably being either || cnn, bbe ]
or ||fox,bbc]|. We further assume the following “distributive” behaviour of the
non-deterministic choice in front of the multi-set union operation

([Lenn]| T {[bbe]]) + ([[fox || M [|disney]|)

= ||cnn, fox]| M || cnn,disney|| M ||bbc, fox]| M || bbc, disney]]

Given multi-sets My, ..., M, we note as usual ) , ., M; = My +---+ M, and
mlgignMi =M ---N1 M,.

Let us now analyze the meaning associated to some syntactic constructions.
For the internal sites, we have:

-0y o= {2t wen- I o

(1)

Assuming, as mentioned before, that a site call S(x1,...2,) when the para-
meters are assigned to the values (v1,...v,) returns s(vy,...v,) and the non-
blocking hypothesis, the meaning of the external site calls is

[[S(xh...xn)]]—{ &sﬁvl,...’vn)ﬂ if (x1,...2,) = (v1,...0,) @)

ifdi:1<i<n:z;=1

In the following we describe, inductively, the multi-set decomposition cor-
responding to the Orc operators, assuming that the orchestration components
verify this property. For doing so, for the two orchestrations F; and Es, we
assume, that [E1] = Mi<i<n, M; and [E2] = Mi<j<n, M}, for some multisets
My,...,My,,Mj,..., M), . When some of the orchestrations is parameterized
we assume that the multisets are parameterized by the same variable in the
usual sense: each valid assignment of values to the variable determines a mul-
tiset. In such a case we write M (z) to denote this dependency and M (v) for
the multiset determined by the assignment x = v.

The parallel composition executes both subexpressions in parallel, therefore,
we have

[(E1 | E2)] = [Er] + [E2] = Mici<n, Mi<j<n, (Mi + MJ). (3)

For the sequential composition £ = E; > x > Es(x), let us comment first
two easy cases. When ny = 0, [E1] = || ||, and therefore [E] = || ||. When

10



E5(x) is just a site call S(x), in the case where [F1] = ||v1,...v.]], [2] = [EA1]

and
[E] = [[s(v1), ..., s(va) ]l

But when [E1] = ||v1,...v,]] 1 [Jw1,...wn]| and Ex(z) = S(x), we have3
[[Lfl]] = [ls(v1),...,8(vn)]] T ||s(w1),...,s(wy)]|]. Let us consider another case,
[E1] = [lv]} and [Ea(x)] = M (x) 1 M (x)

then*
[E] = M{(v) N Mj(v)

For the general case, first observe that the meaning of a variable is the bag of
values that are stored in the variable in some of the execution paths of the expres-
sion. In the construction Ey > x > Es(x), we have [z] = [E1] = Mi<i<n, M;.
According to the definition the meaning of the whole orchestration is

[By > 2 > Ba(@)] = Micicn, Mi<j<n, »_ Mj(m). (4)
meM;

Finally, let us consider the pruning operator Fi(z) < x < Ej recall that as
we abstract from time, pruning is modeled through non-determinism. Let us
consider first the case Ej(x) = S(z) and [E2] = [|v1,...,v,]]. In such a case
the meaning of the variable x is a non-deterministic choice of the outputs of Es,
ie, [z] = lv)]] M- M |lvn]] = M<i<nl|lvi]]. Therefore, the meaning of the
expression is [E1(z) < < Ea] = Mi<i<nl|[s(vi)]].

In the general case [Ea] = Mi<j<n, M} and the variable x in Ey(z) < z < Ey
has meaning [z] = Mi<j<n, Mpven |[m']] and

[E1(z) <2 < E2] = Micicn, M<j<n, Mmrenr Mi(m). (5)

Using the preceding associations the following theorem can be proved by
structural induction. Observe that, in the case of sites, the decomposition tri-
vially holds and that this decomposition is maintained through the different
operations.

Theorem 1. Given an Orc expression E it holds that either [E] = || || or there
is a unique non-deterministic finite decomposition in multi-sets [E] = M; M;,
elements in M; corresponds to the possible values returned by site calls.

Example 5. Let us compute the bags corresponding to MyNews introduced
in the Example 2. Clearly [TwoNews] = |/ cnn,bbc||. Let us consider the
meaning of the variables. As x appears in a sequential composition [z] =
||cnn, bbc||. Let us consider a, note that [Addresses] = ||aalice,abob||. Asa

3This definition can be seen as an adaptation of the law (prog; M progsy); progs =
progy; progs I progy; progs given in [18, p. 323] to orchestrations.
As we are interested in counting problems we adapt the rule progy; (prog, M progs) C
progy; progy I progy; progs given in [18, p. 324] replacing C by an equality.
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appears in a pruning operation [a] = ||aalice]| M ||abob]|. The orchestration
SendNews(a) verifies [SendNews(a)] = ||m1(a), ma(a), mz(a), ms(a)] where the
elements mi(a) = s_adad_cnn an ms(a) = s_adad_bbc are independent of a. In
ms(a) = s_a_cnn, my(a) = s_a_bbc the variable a has to be replaced by an
address. We shortly write

[SendNews(a)] = || s-adad_cnn, s_adad_bbc, s_a_cnn, s_a_bbc]|.
Finally, as [MyNews] = [SendNews(a) < a < Addresses], using (5) we get

[MyNews] = [SendNews(aalice)] M [SendNews(abob)]

|| s-adad_cnn, s_adad_bbc,s_aalice_cnn, s_aalice_bbc]]

M|/ s-adad_cnn, s_adad_bbc, s_abob_cnn, s_abob_bbc]|.

Example 6. In the following orchestration:
OneAndOne = ((1(95) <a < (CNN | BBC)) | (1(z) < z < (FOX | DISNEY)))

the meaning of the base orchestrations are:

[(CNN | BBC)] = || cnn, bbc|]
[(FOX | DISNEY)] = || cnn,bbc]]|.

Therefore,

[(1(z) < & < (CNN | BBC)))
[(1(z) < « < (FOX | DISNEY')

— [[nn | 1 [[bbe]]
— [£ox| N [|disney ],

and

[OneAndOne] = (| cnn]| M ||bbe]]) + (|| fox]| M ||disney]|)
= ||cnn, fox|| M || cnn, disney|| M || bbe, fox]| M ||bbc, disney]]

O

As we have seen, orchestration OneTwo in Example 4, different multi-sets in
[E] can have different sizes. The following result shows which Orc subfamilies
are guaranteed to produce outputs with a unique output length.

Theorem 2. All the output streams produced by an execution of an Orc expres-
sion E in ElementaryOrc, PruningOrc or IfOrc have the same number of items
denoted as out(E).

Proof. The proof of follows from an inductive structural reasoning over the
different allowed operations on orchestrations. We have structured it through
several claims.
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Claim 1. Any orchestration E in ElementaryOrc publishes a unique output
stream. Assuming that this output stream contains the values vy, ..., vy, then
LE]] = [[v1,---,vn]] (the case || E]| = || || corresponds to n =0). The number
of published outputs is well defined and out(E) = n.

The proof of this claim is straightforward in the case of ElementaryOrc be-
cause there is no indeterminism. Observe that the claim is true when F is a site
call.

For the parallel composition E; | E; where Ey = ||v1,...,v,]] and Ep =
|lwi, ..., wn]|, according to Equation (3) we have

[[El |E2]] = I_LUl,...,Un,wl,...,’meJ.

Therefore, the meaning is an unique multi-set and the number of outputs is well
defined.

Consider the sequential composition Ey > © > Ea(x) with By = ||v1,..., v,
and Fo(z) = [|wi(x), ..., wn(z)]], then from Equation (5) we have

[Er >z > Ey(2)] = [lwi(vy) | wi(z) € [Ea(2)], v € [Ea]ll,

and, again, the meaning is formed by a unique bag.

Claim 2. For any orchestration E in PruningOrc, || E|| has a non-deterministic
behaviour represented by a set of bags. All the bags in || E|| contain the same
number of items.

Observe that the claim is true in the case of site calls. For the other con-
structions assume that [E1] = Mi<i<pn, M; and #M; = k, for 1 < i < n;, and
that [Ea] = Mi<j<n, M} and #M; = k', for 1 < j < ny. In the case of a para-
meter dependency we assume also that the size of a bag is independent of the
value assigned to the parameter.

For the parallel composition E; | Es, from (3) each pair 4, j contributes to
the meaning with the multiset M; 4+ M which has k + &’ elements. Thus all
those multi-sets have the same cardinality.

For the sequential composition Ey > x > Ea(x). According to (4) each pair
i,j contributes with the multi-set ), ), M;(m) having k k' items. As before,
all the multi-sets have the same cardinality.

Consider now the pruning operation, that is F1(z) < < Es. According
to (5), for each 4, j, each choice m’ € M; provides the multi-set M;(m') with
#M;(m) = k and the claim follows.

Claim 3. Any orchestration E € IfOrc publishes a unique output stream thus
having a well defined length.

In this case, as in ElementaryOrc, there is no indeterminism and therefore any
call to the if site is done in a deterministic context and their meaning is a unique
multi-set. The presented case analysis concludes the proof. O O
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3.1 Computational problems:

For those Orc subfamilies in which the measure out is well defined, we consider
the following computational problems:

ExistOut: Given an Orc expression E, decide whether out(E) > 0.
Out: Given an Orc expression E compute out(E).

Let us analyse the complexity of both problems for ElementaryOrc, PruningOrc
and IfOrc.

Theorem 3 ([11]). The problems ExistOut and Out restricted to ElementaryOrc
or PruningOrc can be solved in polynomial time.

Proof. Let us start considering the case of ElementaryOrc orchestrations. In
this case, the proof that both ExistOut and Out belong to P follows from the
following recursive definition. out(0) = 0, out(1) =1
_J1 if the parameter v is defined
out(1(v)) = { 0 otherwise

Whenever E;, E5 are ElementaryOrc expressions it holds that

0Ut(E1|E2)) = out(El) + Out(Eg)
out(Ey > z > Es(z)) = out(Er)out(Ea(z # 1))

where Es(z # L) denotes the orchestration Fy(z) when variable z is well defi-
ned. For instance given Es(z) = (CNN | EmailDad(z)), the case Ea(x # L)
corresponds with a defined value for « and out(Es(x # 1)) = 2.

Let us consider the number of operations needed to compute out(E). Given
an Orc expression E, the number of operators is bounded by the size of the
expression E. The Orc operators in E can be “|”, >, or “> z >”. A way to to
compute out(F) consists to map the expression F into an arithmetic expression.
We do that mapping the Orc operator operator “|” into the arithmetic opera-
tor“sum” and operators “>”, “> x >” are mapped into “product”. Finally,
any site S is mapped into out(S). This arithmetic expression can be evaluated
polynomially in the size of the expression E.

In the second place, let us consider the case of PruningOrc. In this case we
have to extend the recursive definition to the additional operator.

_ Jout(Ei(z # 1)) ifout(Ez) >0
out(Br(2) <z < Ba) = {out(El(z — 1)) ifout(Fs) =0

where Eq(z = L) denotes the orchestration EFj(z) when variable z is undefined.
For instance Eij(x = 1) = (CNN | EmailDad(xz = 1)) = (CNN | 0) and
therefore out(Ey(x = 1)) = 1.

Let us consider the number of operations needed to compute out(E) in the
case of PruningOrc. We need to deal with the asymmetric parallel composition
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operator the “< x <”. Consider the syntactic tree corresponding to the Orc
expression F. In such a tree, the nodes corresponds to the Orc operators. In
the case of nodes corresponding to “< x <” we associate the variable x to this
node. We are interested to know if x = L or x # L. As we can have nested
asymmetric parallel compositions like

E:(...<x<...(...(...<y<...)...)...)

We evaluate the tree from the right to the left in order to get the value of the
variables corresponding to the rightmost asymmetric parallel composition first.
According to that we need to know if y = L before to consider if x = 1. This
concludes the proof. O O

In the following example we compute out(Bang,) according to Theorem 3.

Example 7. Consider a ElementaryOrc case. Let us continue with the Example
3 and compute out(Bang,). We have

Bang, = ((1(1) 1 1(1)) > (1(1) 1 1(1))) > ((10) | 11)) > (1) | 1(1)))

As out(1(1)) = 1, we obtain the following arithmetic expression
out(Bang,)) = (1+1) (1+1)) (1+1) (1+1)) =16 = 2%

In general out(Bang,) = 22". As the size of Bang,, is O(2"*) a polynomial
number of bits, in relation to the size of Bang,,, are enough to compute the
number of outputs.

Next, consider the following PruningOrc expression:

E=1()<z< ((1(1) 11(1) >y > ((1(2) | (1(1) <2 < (1(t) < t < 0)))

We need to consider the variables appearing in asymmetric parallel composition
in the order, t first, z second and x third. As t = 1 we have to compute
out(1(t = 1)). Asout(1(t = 1)) =0, we have z = L and we compute out(1(z =
1)]1(1)) =1 and

out[(1(1) | 1(1)) >y > (1(z=1) | 1(1))] = 2.

As the number of outputs is 2, the variable x is defined and, finally we have
out(E) = out(1(z # 1)) = 1. O

In order to prove complexity bounds for orchestrations in IfOrc we introduce
some notation. When E has n symmetric parallel operators, any valid execution
path can be identified with a trace, a string in t € {1,r}=". Assume that the
i-th execution of a parallel operator corresponds to subexpressions F; | Es.
We codify the path following the call to F; with label 1 and the one following
the call to Fy with label r. Thus, in the i-th position of the trace there will
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(AlicePart(x) | BobPart(x (AlicePart(x) | BobPart(x))
AlicePart(1 &)bpart AlzcePart(/ \BObPW’t(O)
EmailAlice(cnn) (CNN | BBC)

EmailBob(cnn) EmailBob(bbc)

Figure 1: The valid execution paths of SelectiveReaders.

be a corresponding 7 or [ symbol denoting which of the two suborchestrations
has been executed. Observe that, for a given expression E, not all the strings
in {1,7}=" describe valid execution paths. We note paths(E) C {1,r}=" the
set of traces corresponding to valid execution paths. Any execution path gives
potentially one or zero values, for t € paths(FE), val(t) denotes the value returned
by this execution path. Observe that val(t) = ||v]], when the execution path
publishes a value v, or val(t) = || ||, otherwise.

Example 8. Consider the orchestration SelectiveReaders defined as follows:

SelectiveReaders = (1(1) | 1(0)) > x > (AlicePart(x) | BobPart(z)),
AlicePart(z) = if (x) > CNN >y > EmailAlice(y),

BobPart(x) = if (—x) > NewsToBob(x),

NewsToBob(x) = (CNN | BBC) > z > EmailBob(z))

SelectiveReaders contains 3 operators of type |, the corresponding valid exe-
cution paths are depicted in a tree-like form in Fig. 1 and we have that

paths(SelectiveReaders) = {11,1r,rl,rrl,rrr}.
For t =11, in the first two |, we take the left part thus leaving expression

(1(1) > & > AlicePart(z))
= (1(1) > = > if(z) > CNN >y > EmailAlice(y))

and thus val(11) = ||s_aalice_cnn||. When t = rl, we have

(1(0) > z > AlicePart(z))
= (1(0) > = > if(z) > CNN >y > EmailAlice(y))

as this path behaves as 0, it returns nothing and we have val(rl) = || ||. O
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The following result follows from the definitions.

Lemma 1. Let E be an IfOrc expression. We can decide in polynomial time
(in the size of E) whether t € paths(E) and, when t € paths(E), whether

val(t) # [l J|. Furthermore, [E] = 3 cpamse val(t) and #[| E|| = #{t €
paths(E) | val(®) # || ||}

Our next result establishes the computational complexity for IfOrc.

Theorem 4. The problem ExistOut is NP-complete and the problem Out is
#P-complete when restricted to IfOrc.

Proof. Recall that, from Lemma 1, given an Orc expression F having n parallel
operators, each published value can be retrieved following a valid execution path
described by t € {1,r}=". To check whether out(E) > 0, we can guess a trace
and check, in polynomial time, that it corresponds to a productive execution
path. Thus, ExistOut belongs to NP. Observe that also we have #|| E|| = #{t €
paths(E) | val(t) # || ||} which proves that Out belongs to #P.

To prove hardness, we consider a reduction form the 3-SAT problem. Given
a Boolean formula in 3CNF F = Cy A ... A (), over n variables, x1,...,z,,
where

Ci = Vi, vyib vyim {y1a7y1b7y1c} c {xlﬂ"wxnaflw-‘?fn}a

for 1 < i < n, are the clauses. Let us see how to encode a clause through an
IfOrc expression. Assume that C; = y;, V v;, V ¥;., over variables z;_,x;,, i,
define

Ec,(wi,, i, i) = (if (Yia) | (if (7yia) > (if (yin) | (if (myin) > if (vic))))) > 1,

where double negations are eliminated. We associate to the formula F' the
following orchestration Ep:

E(J?l, e 7xn) = ECl (xlaaxlbaxlc) >0 > ECm (-rnLaax'rnbax’mC)
Ep = (True | False) > x1 > --- > (True | False) > x,, > E(x1,...,2y)

Where, True = 1(1) and False = 1(0). Observe that a description of Er can be
computed in linear time in the size of F'. Note that, for (x1,...,z,) € {0,1}",
we have [E(x1,...,z,)] = |[1]], when F(z1,...2,) =1, and [E(z1,...,2,)] =
Il ||, otherwise. As [z;] = ||1,0]], for 1 <i<mn, [Er] =1 1,...... ,1 || and
—_———
#{z|F(z)=1}
out(Er) = #{z | F(x) = 1}. Therefore, the reduction works correctly for both
problems and the theorem holds. O O

3.2 Probabilistic environments and problems:

Now we assume a crash failure model in which a call to an external site S
succeeds (produces an output) with probability ps. In the next definition we
adapt Definition 1 to the crash model. Observe that we have to keep only the
probability of success pg from which it can be derived the probability of crash.
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Definition 2. Given an orchestration E having calls to sites {S1,...,S,}, a
probabilistic out environment for E is a set P = {p1,...,pn} where, for each
1<i<n, 0<p; <1 and p; gives the probability that S; produces an output.

Example 9. Assume that a call to the CNN site succeeds with probability p.
that is probabilistic environment P = {p}. Let us consider the expected number
of outputs of TwiceCNN = CNN > CNN in the probabilistic environment
P = {p} under the oblivious and the stable models. In the oblivious model, both
calls to the CNN are independent (we toss the coin two times) the probability to
get an output is p*, formally E%(out(TwiceCNN))) = p?. In the stable model,
we just toss the coin once and E% ((out( TwiceCNN))) = p. O

Let us define the two computational problems associated to the probabilistic
case. Given an an Orc expression F, a probabilistic out environment P, and an
a model « € {0, s} where o denotes oblivious ans s stable models:

PrPub: compute the probability of publication, i.e. Prg(out(E) >
0).
ExpectedOut: compute E% (out(E)).

First, let us consider the oblivious case. We extend the bag semantics to
probabilistic environments. Let us start with ElementaryOrc.  For a site S
publishing with probability ps, let gs = 1 — ps, we define

) Us(or,.on)]l@ps || |Qgs i (21, ... @n) = (V1,.. . Un)
[[S(xl""x")ﬂ_{ | a1 if3i:1<i<n:zi=L1
(6)
Observe that we assume that the probability of success depends on the site not
on the particular assignment to the variables.
Assuming that, for ElementaryOrc expressions E and E’ or E’(x) we have
[E] = ( [ 1§ingi@pi) and [E'] = ( [ 1gj§k'MJ/'@p;‘) or [E'(z)] = ( [ 1gjgkag/'($)@p;')
where, for 1 < i < kand 1 < j < k', M; and MJI(MJ/(LL‘)) are multi-sets, we
define

[E|ET = ( H 1<i<k I] 1<jan (Mi +M;)@pip;) @)
[E> 2> E(x)] = ( H 1<i<k [ reien (2 Mﬂ{(m))@pi(pb#%) (®)
meM;

As a consequence, in the oblivious model, any E in ElementaryOrc in a proba-
bilistic environment factorizes uniquely as

[E] = (My@py | - | My@py) = ([ 1<;<,, MiQp;)

where M;, 1 < < k, are pairwise different bags and ), pr, = 1. Note that each
M; models a possible output stream.

Recall that the probability generating function of random variable X, g(X)(z)
is a polynomial over a variable z, defined as

9(X)(2) = po +przt 4 - .mmxzémax _ Zﬁeze 9)
¢
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where p; = P(X = i). We will make use of two well known properties: Pr(X =
0) = ¢g(X)(0) and E(X) = ¢/(X)(1) were ¢'(X) is the derivative of g(X). In
order to analyse the probability that an Orc expression F publishes, we consider
the generating function associated to the probability distribution of the random
variable out(E). We use g(E) as an abbreviation of g(out(E)).

From the bag semantics of E, defining fi,.x = max{#M; | 1 < i < k}, we
have that the probability of getting an output of length ¢, 0 < ¢ < fiax, 1S
Pe =D _ypr,—Pi- We provide the tools to evaluate g(E)(0) = Pr(out(E) = 0)
and ¢'(E)(1) = E(out(F)) without having to compute explicitely the coefficients
of g(E). From the the definitions and the extension of the bag semantics we
have the following recursive expressions.

Lemma 2. For local sites 1 and 0, g(1)(z) = z and g(0)(z) = 1. For a site S
publishing with probability ps and remaining silent with probability q¢s = 1 — ps,
9(S)(2) = psz + qs. For ElementaryOrc expressions E and F (F(zx)), g(E |
F)(2) = 9(E)(2) g(F)(2), 9(E > F)(z) = g(E)(9(F)(2)), when [E] # [ I,
9(E > x> F())(z) = g(E)(g(F(z # 1)(2))-

Example 10. Take BlockingCoin = (1(1) 1/2® 0) and define:

ParBlockingCoin,, = (BlockingCoin | - - - | BlockingCoin)

n times

ManyTosses,, = ParBlockingCoin,, > BlockingCoin

Remind that g(BlockingCoin)(2) = GsiockingCoin + PBlockingCoin? = 1/2 + 2/2.
From this we get that g(ParBlockingCoin,)(z) = (g(BlockingCoin)(z))™ To
compute PrPub we apply Pr(out( Tosses,) > 0) = 1 — g(ManyTosses,,)(0). The
generating function verifies
g(Tossesy,)(0) = g(ParBlockingCoin,, > BlockingCoin)(0)

= g(ParBlockingCoin,,)(g(BlockingCoin)(0))

= g(ParBlockingCoin,,)(1/2) = (g(BlockingCoin)(1/2))" = (3/4)"
because g(BlockingCoin)(0) = 1/2 and g(BlockingCoin)(1/2) = 3/4. Then we
have that Pr(out(Tosses,) > 0) = 1 — (3/4)". As expected, the probability is
close to 1 for n large ®. Now consider the Orc expression

ManyOutputs,, = ((1(1) | 1(1)) > --- > (1(1) | 1(1)))
n times

ExpTosses, = ManyOutputs,, > ParBlockingCoin,,
Observe that g( ManyOutputs)(z) = 22" . Thus
g(EzpTosses,,)(0) = g(ManyOutputs,, > ParBlockingCoin,,)(0)
= g(ManyOutputs,,)(g(ParBlockingCoin,, )(0))
= g((ManyOutputs, )(1/2") = (1/2™)%".

5We would like to warn the reader against the following, clearly false, ”intuitive” approach:
Pr(out(Tossesy) > 0) = Pr(out(ParBlockingCoin,) > 0) Pr(out(BlockingCoin,) > 0) =
(1= (/2)")1/2 < 1/2.
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and Pr(out( EzpTosses,) > 0) = 1 — (1/27)?" = (272" —1)/2"2". As2"?" —1
1s an odd number the fraction is irreducible and it requires n2™ bits. O

In order to get complexity results we need to fix the representation of a
probabilistic environment P for an orchestration E where Sy,...,S, are the
sites appearing in E. We use the standard representation for rational numbers.
For any 1 < i < n we write explicitly the probability of success of .S; as a fraction
of two natural numbers p; = x;/y;, encoded as a pair (x;,y;). The length (or
size) of P denoted as | P | is O( Y, ,., (logz;+logy;)). Observe that we have
restricted ourselves to rational valued probabilities, which is needed in order to
get an upperbound on the complexity of the considered problems. The hardness
results, as usual in complexity theory when dealing with function problems, rely
on the output size in the fixed representation.

Let us consider the ExpectedOut problem in the oblivious case. It is well
known the relation between the expected number of outputs and the derivative
¢’ (in relation to z) of the generating function. We have E(out(E)) = ¢'(E)(1).

Lemma 3. For ElementaryOrc the following holds. Given a site S with pro-
bability of success ps, E(out(S)) = ps. For internal sites 1 and 0 we have
E(out(1)) = 1 and E(out(0)) = 0. For the parallel composition, E(out(E |
F)) = E(out(E)) + E(out(F)). For the sequential composition, E(out(E >
F)) = E(out(E)) E(out(F)). When [E] # || || we have E(out(E > z >
F(x))) = E(out(E)) E(out(F(x # 1))).

Proof. For parallel composition ¢'(E | F)(z) = ¢'(E)(2) g(F)(2)+g(E)(2) ¢'(F)(z),
as g(F)(1) = g(B)(1) = 1 we get Bout(E | F)) = ¢/(E)(1) + ¢/(F)(1) =
E(out(E)) + E(out(F')). For sequential composition, applying the cham rule w
get ¢'(E > F)(2) = ¢'(E)(g(F)(2)) ¢'(B)(z) and therefore E(out(E > F))
E(out(E)) E(out(F)). When [E] # || ]| we have E(out(E > = > F(z)))
E(out(E)) E(out(F(x # L1))). O

@

o

Let us continue with Example 10.

Example 11. We compute the expected number of outputs of ManyTosses,, and
ExpTosses,, based on their syntactic structure.

E(out(ManyTosses,,)) = E(out(ParBlockingCoin,,)) E(out(BlockingCoin))
= E(out(ParBlockingCoin,,))/2 = nE(out(BlockingCoin))/2 = n/4

Let us consider ExpTosses,. As E(out(1(1))) = 1 we have E(out(1(1) | 1(1)) =
2 and E(out(ManyOutputs,)) = 2", as before E(out(ParBlockingCoin,,)) =
n/2. Finally E(out(E:cpTossesn)) = n2"" 1. The number of bits required to
write the expectation is, in this case, polynomial with respect to the size of
EzxpTosses,, expression. O

Theorem 5. In the oblivious model restricted to ElementaryOrc, the problem
PrPub requires exponential space while the ExpectedOut problem can be solved
in polynomial time.
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Proof. The analysis of the ExpTosses,, given in Example 10 shows that compu-
ting the probability of publications requires an exponential number of bits with
respect to the size of the given expression. This occurs because

Pr(out(Ezp Tosses, ) > 0) = (22" —1)/2"%"

is an irreducible fraction and therefore the encoding as a pair (2"?" — 1,27%")
needs exponential space.

Let us consider the complexity bounds of the recursive approach suggested
in Lemma 3. Let S1,...,S, the sites appearing in P. For any .S; the probability
of success is p; = x;/y;, encoded as a pair (z;,y;). Define b = max{log x;,log y; |
1 < i < n}. Each p; is written as a pair (z;,y;) needing each one at most b
bits. As usual the p; + p; is described by the pair (z;y; + ;v:, ¥iy;) and p; p;
is given by (x;z;,y;y;). Remind that to multiply 2 numbers of at most b bits
2b bits are enough. To sum two numbers of at most 2b bits we need at most
2b + 1. Therefore, p; + p; can be encoded with a pair needing 2b + 1 bits for
the first component and 2b bits by the second. In the case of a product p; p;
the encoding pair is (z;x;,v:,y;) and 2b bits are enough for each component.
Taking 2(b 4+ 1) we have a common bound for both, sums and products. In
order to compute the expectations, consider the syntactic tree associated to the
expression E (unfolding the recursive calls until calls to a sites). Remark that,
as we are working with Orc expressions, the size of the syntactic tree is similar
to the size of the expression. This tree has operators “”, “>” and “> z >” as
internal nodes. This tree can be directly transformed into a tree corresponding
to an arithmetic expression having fractions (the success probabilities) as leaves.
As in the case of out ‘|” is mapped into “sum” and the sequential operators
“>7  “> > into “product”. Leaves correspond to site’s expectation, that is
E(S:) = =i/y:.

The number of operations (sums or products) is bounded by the size of F
denoted as | E' | We have to add or multiply at most | E' | times fractions of b
bits. Just taking into account a bound to the number of bits needed to perform
an operation we have the following. The operation between 2 leaves need at
most 2b+ 1 bits. The operation between 4 leaves needs 2(2b+1)+ 1. In the case
of 8 leaves we need 2(2(2b + 1) + 1) +1=2%b+23 -1 <23(b+1) = 8(b+ 1).
An upper bound to the number of bits needed to perform any operation is

G+D)|EIS(PN+1)|E=0E|+]|P|)?)

and the expectations can be computed in polynomial space. To prove a polyno-
mial time bound is straightforward. The number of operations is upper bounded
by | E |. The most time consuming operation is a product of two numbers of
at most O((| E'| + | P [)?) bits. This can be done in time O((| E | + | P |)*).
This give us a time bound O(( | E | (| E |+ | P N)*) =O0((| E |+ | P |
)0(1)), O O

By reductions from the #MONOTONE 2-SAT problem which is known to be
#P-hard [27] we get the following result.

21



Theorem 6. In the oblivious model, the problem ExpectedOut is #P-hard when
restricted to PruningOrc or IfOrc expressions.

The proof of Theorem 6 is done in two separate lemmas. We provide a
separate hardness proof for each of the different subfamilies of orchestrations.

Lemma 4. For PruningOrc expressions in the oblivious model, the ExpectedOut
problems is #P-hard.

Proof. We provide a reduction from the #MONOTONE 2-SAT problem: Given a
MONOTONE 2-SAT formula F = Ci A---AC,, with n variables x1, ..., x, where
Ci =i, Vi, {Yin» i} C{21,...,2,} for 1 <i < m, compute the number of
satisfying assignments of F. We define the orchestration Er as follows:

BlockingCoin = (1(1) 1/2® 0)

for1<i<mdo Eci(yia7yib) = (1(yia)|1(yib))

E(x1,...,20) =1(s) < s < (Ec,(Y1,,Y1,) > - > Ec,, (Ymy s Ymy )

Ep = (- (E(x1,...,2n) < 21 < BlockingCoin) < x5 < ---) < x,, < BlockingCoin

Observe that Er can be computed in polynomial time in the size of F'. Given
v = (v1,...v,) with v; € {1, L}, we associate a Boolean interpretation to the
tuple, b((v1,...v,) = (b(v1),...b(vy,)) where, for 1 < i < n,

b(vi) = ! ?fvi:l’
0 ifv; = 1.

Using this association we have that

(B 0)] = {LUJJ if F(b(v1),...b(vy)) = 1,

[l ]] otherwise.

For a fixed (va, ..., v,), let us compute the meaning of E(xz1,va,...,v,) < 1 <
BlockingCoin. As [x1] = [BlockingCoin] = (||1]]@1/2 ] || |]@1/2), thus we get

[E(z1,v2,...,v,) < 21 < BlockingCoin]
= ([E(l,va,...,v,)]Q1/2 ] [E(L,va,...,v,)]Q1/2)

Assuming (B@p, [ B@p, | --+) = (BQ(p1 +p2) | --+) and defining p = #{z |
F(xy,...z,) = 1}/2™, we have

1Be) = (] o requye B vl@(1/2)") = (L] @p | L ]@(1 - p)).

From this last equality it follows that E(Er) = (er{o,1}n F(z))/2". There-
fore, E(Fr)2™ is the solution to the #MONOTONE 2-SAT problem. O O

Lemma 5. For IfOrc expressions in the oblivious model, the ExpectedOut pro-
blems is #P-hard.
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Proof. To deal with hardness we consider the following variation of the reduction
given in Theorem 4:

BoolCoin = (1(1) 1,26 1(0))
E(xla cee axn) = ECl (x1a7x1b7xlc) > > Ecm,(:’rma,’xmb7mmn)
Ep = BoolCoin > x1 > -+ > BoolCoin > x, > E(x1,...,x,)

It holds that E(out(Er)) = {z | « € {0,1}" such that F(z) = 1}/2" and the
#P-hardness of ExpectedOut follows. O O

In the stable model, an orchestration E with calls to n different sites {S1,...S,}
and probabilistic out environment P = (p1,...,pn), in an execution, follows a
success profile s = s1---s, € {0,1}". In such a profile, s; = 1 means that
all the calls to site S; succeed and s; = 0 means that all the calls to site
S; fail. According to P a success profile s occurs with probability Pr(s) =
ITi—; (pi-si+(1—pi)-(1—s;)). Let us call E|4 the orchestration obtained after re-
placing all occurrences of sites S; having s; = 0 with site 0. We can compute Pr-
Pub as Z{se{o,l}"b\out(E|s>0)} Pr(s) and ExpectedOut as 3 ¢4 1y Pr(s)out(Els).

Example 12. Let us consider the expressions ManyTosses, and ExpTosses,,
(see Example 10) in the stable model. Remind that:

BlockingCoin = (1(1) 1/2® 0)
ParBlockingCoin,, = (BlockingCoin | - - - | BlockingCoin)

n times

ManyTosses,, = ParBlockingCoin, > BlockingCoin

The probabilistic behaviour is given by S1 = BlockingCoin, and P = (p1) =
(1/2). The success profile contains just one site, s = s1 € {0,1}. Consider the
successful case s = 1, then BlockingCoin s_, = 1(1) and

(ParBlockz'ngC’oz'nn)‘S:1 =(1(1) ] ---] 1(1))
—_——

=W [---[1(1) > 1(1)
—_———

n times

(ManyTosses,,) s=1
and out( (ManyTOSS@Sn) |s=1

completelly fails and therefore behaves like O site, (McmyTo&s’esn)ls:0 =0. The
PrPub is 1/2 and ExpectedOut is n/2. In the case of ExpTosses, we have:

) =n. Whens = s; = 0 the expression ManyTosses,,

(ExpTosses,,)|s=o
= (1) [1(1)) > ---> (1(1) [ 1(1))) > (0] ---[0) = 0

n times n times

(ExpTossesn)|S:1
= (1) [1(1)) > > (1(1) [ 1(1))) > (1(1) | --- [ 1(1))

n times n times
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The PrPub is also 1/2 and ExpectedOut is (1/2)n2". O

We summarize our complexity results for the stable model in the following
theorem:

Theorem 7. In the stable model, the problem PrPub is #P-hard when restricted
to ElementaryOrc. Both problems, PrPub and ExpectedOut, are #P-hard when
restricted to PruningOrc or IfOrc. Both problems, PrPub and ExpectedOut, be-
longs to PSPACE when restricted to ElementaryOrc, PruningOrc or IfOrc expres-
sions.

Next, we provide a proof through several lemmas.

Lemma 6. In the stable model, the problems PrPub and ExpectedOut belong to
PSPACE when restricted to ElementaryOrc, PruningOrc or IfOrc.

Proof. Let us consider the ElementaryOrc case. In the case of the PrPub problem
we need to compute Z{sG{O,l}"|out(E‘s>0)} Pr(s). Let b the number of bits needed
to encode each of the integers in the probabilities given in P. Any probability
Pr(s) can be encoded with a pair of numbers of n2(b + 1) bits. In the case of
PrPub we need to sum at most 2" such fractions, but this can be done allocating
O(n) extra bits and we keep in polynomial space. In the case of expectations,
we need to compute }_ g 13n Pr(s)out(Es). As out(Ejs) can be computed in
polynomial time we keep the whole computation in polynomial space. The other
cases are similar. O O

Lemma 7. For ElementaryOrc expressions in the stable model, the problem
PrPub is #P-hard.

Proof. Let us consider the following reduction from #MONOTONE 2-SAT. Gi-
ven a MONOTONE 2-SAT formula F' = Ci A---AC,, with n variables x1,...,x,
where C; = i, V Yi,» {YinsYin } C {x1,...,25} for 1 <i < m. Let us define the
orchestration Ep as follows. First, define X; = (1(1) 1/2®0), for 1 <4 <n, se-
cond, for each 1 <4 < m, define E¢, = (Xia |X¢b) and finally, set the expression
Ep =E¢, > > Ec,,. Given s = s1 -+ s,, by construction out((Ep)js) > 0)
iff F(s) =1. As for any s € {0,1}", Pr(s) = 27" it holds Pr(out(Er) > 0) =
236{0,1}” Pr(OUt((EF)\S) > 0) =2"" Zse{o,l}" F(s). O O

Lemma 7 proves #P-hardness for the simplest family and therefore the #P-
hardness for PrPub restricted to IfOrc or PruningOrc is inherited from Elemen-
taryOrc. In the same way, for ExpectedOut we inherit the #P- hardness of Out

for IfOrc, because a probabilistic environment includes the non-faulty scenarios
and we conclude the proof of Theorem 7.

4 First item delay

We analyse now for which Orc families the delay needed to get the first published
value is a well defined measure. We assume that delays are measured within
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milliseconds, and therefore they are non-negative integers. Symbol w means
“Infinite” delay or “never”. As usual that é+w = w+w = w and min{d,w} = 0.
According to the constant delay hypothesis each site S (different from 0) has
an associated finite delay dg. Note that in orchestrations with pruning the delay
of the first item is not always unique as it is shown in the following example.

Example 13. Depends = (if (b) > CNN | if (=b) > BBC) < b < (1(1) | 1(0))
and assume that cnn # dppco. The delay of 1(x # L) is §1 independently of the
value taken by x. The expression Depends has a non-deterministic behaviour,
it returns cnn with delay dcnyy + 61 or bbc with delay dppc + 01- O

We introduce a refinement of our semantics, a timed version of the fully
defined variables model. Assume that an orchestration E publishes a stream
v1, V2, ..., Uy, Where each value v; is published with delay §; after E is called.
When time is abstracted, we have noted this behaviour as ||v1,va, ..., v, ]|. If we

take into account the different publication times we write || (vy : 01), (v : d2) ...

We call such a bag a timed multiset. Observe that, under this semantics, the
behaviour of 0 is again described by |||]. Taking into account the constant-
delay hypothesis the behaviour of S(x1,...,2,) is [| (S(v1,...,v,) : 0g) || when
all variables are defined (x; = v;, for 1 < i < m) and || || otherwise. Let us
provide the meanings associated to the different syntactic constructions in some
particular cases. For the internal sites, we have:

[[(1:d¢)]] if b=true
1L otherwise
(10)
Assuming that a site call S(x1,...x,) with assigned parameters (vy,...v,) re-
turns s(v1, ... v,) and the non-blocking and time-delay hypothesis, we have

o=tyn@i={ o0 B2t men-{

if x =

s(v1,...,0n) : 0g if (x1,...20) = (v1,...0p

HS($17...$n)]:{ Hl( ) >JJ if(ai:lgi)gn(:UiZJ_)
(1)
In the following we describe the timed multi-set decomposition corresponding
to the Orc operators assuming that the meaning of the component orchestrations
is described by a non deterministic choice of timed multi-sets. Let E; and E5 be
two orchestrations. We assume that [E1] = Mi<i<n, M; and [Ea] = MN<j<n, M]
for some timed multisets M, ..., M, ,Mj,..., M) . As before when the orc
expressions are parameterized we assume that the bags in the decomposition
are parameterized. The parallel composition executes both subexpressions in

parallel, therefore we have
[(Ey | E2)] = [Er] + [B2] = Micicn, Mi<j<n, (M; + Mj). (12)

To express the meaning of the sequential composition F = F; > x > Fs(x)
we need additional definitions. Given M = || (vy : d1), (v2 : d2) ..., (Vy : On) |]
and a delay § we note

5@M=|_|_<U125+(51>,<’U22(5+52>,...,<’Un:5+6n>ﬂ
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As [E1] = M; M;, in the fully defined variables approach [z] = M;M;. Assuming
that a pair (v:d) € M; launches a call F5(x), at some time 4, it will generate
M (v) with a delay of 0, i.e., § ® Mj(v). The output associated to elements in
M; belong to the same multibag, thus providing a timed multibag Z@:é)eMi 0P
M (v) for each possible selection of j. As each pair (i, j) indexing (M;, M}(z))
determines a possible multibag in the non-deterministic choice we have:

[Ey > x> Ey(2)] = Micicn, Mi<jcn, | Y, 0@ Mj(v) (13)
(v:8)€ M,

Let us consider the asymmetric parallelism Ej(z) < z < FEs. Firstly, we
need to introduce another operation the first arrivals of a timed multi-set M =
|| (v1: 1), (va:d2),...,(vp : dp) || which is defined as

first(M) =[(v:9) € M | § = min(dy,...,0,)]

Observe that #first(M) can be greater than 1 as M can have different values
arriving at the same minimum time. In the case of an asymmetric paralle-
lism composition E;(z) < = < FEs, the meaning of the variable z is the non-
deterministic choice among the first arrivals of Eo. When [Es] = Mi<j<p, M J’
we have

[2] = Mi<j<n, Mw,s)efirst(ar) [(v: ).
Note that [z] may contain many different time values. Assuming again that
[E1(z)] = Mi<i<n, M;(x), then

[[El (LU) <z < Egﬂ =Mi<i<n, [[x]] 6D Ml(’l}) (14)

rI(11:6)»’:‘

As for Theorem 1, the proof of the following result follows from the previous
results and structural induction.

Theorem 8. In a timed fully defined variables semantics, an Orc expression E
verifies [E] =[] or has a unique finite decomposition [E] = M;M; where M; is
a timed multiset.

Given M = || (v1:01),...,{(vp : 0pn) ||, we define the associated delays-
multiset, A(M) = ||61,...,0,]]. Timed multisets M; and M are called time-
equivalent ift A(M;) = A(Ms). The following result identifies the families of
Orc where the measure first can be defined. In the preceding constructions it
is shown that, when F belongs to ElementaryOrc or IfOrc, [E] has a unique
timed bag and when E belongs to PruningOrc, all the timed bags in [E] are
time-equivalent.

Theorem 9. For an Orc expression E in ElementaryOrc, PruningOrc or IfOrc,
the delay of the first published output is well defined and we note this quantity
as first(E).
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4.1 Computational problems

Given an Orc expression E with Sy,...,S,, ds,,...,0s, we consider the follo-
wing computational problems associated with the first measure:

BoundFirst: Given an integer k decide whether first(F) < k.
First: Compute first(E).

We denote first(0) = w. According to the constant delay hypothesis:

0g ifa; A Lfor1<i<n
w otherwise.

first(S(z1,...,2,)) = {

Let us start considering the complexity in the case of PruningOrc expressions.

Lemma 8. The problems BoundFirst and First are solvable in polynomial time
when restricted to PruningOrc.

Proof. We show how to compute efficiently the first measure when pruning is
allowed. For doing so we have to keep a timed context for variables. The context
will keep track of the time at which a variable will be defined in the evaluation
of a sub-expression. Within a context, time will be relative to the time at which
the sub-expression is called. A context for a set of variables X is a mapping
from the variables in X to a delay t. The time delay associated to a variable
indicates the time at which the variable will be defined. We use functional
notation, so that C'(z) means the delay associated to z in context C. We use
the notation firsto(E) to denote the first delay item of expression E assuming
that it is evaluated within context C'. From the time-delay hypothesis, for a site
call S(X) executed within context C, as the site has to wait until all variables
are defined, we have that firstc(S(X)) = 0s + max,ex C(x).

In order to show the recursion that allow us to compute the measure first
in polynomial time we need two additional operations for contexts. Let C be a
context for variable set X

e For § > 0, C' + J denotes the context obtained from C' when the initial
time is advanced to the time step §. The new context is defined over the
same set X of variables. For z € X, (C + ¢§)(z) = max{0,C(zx) — d}.

e For a pair z,d with z ¢ X, C[z < ] denotes the context in which a
new variable time pair is added. Formally, C[z < ¢] is defined on the set
X U{z} with C[z + ¢](z) = C(z) for z € X and C[z + ¢](z) = 9.

The initial context C for the complete orchestration E will be empty. Let
us analyse the recursive steps depending on the construction.

e Parallel composition. When evaluating A | B for a context C, A and B
are evaluated in parallel in separate threads, each within context C'. The
full expression publishes the values published by the two sub-expressions,
therefore firsto (A | B) = min{firstc(A), firsto(B)}.
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e Pruning. When evaluating A(z) < z < B, for a context C, A and B are
evaluated in parallel in separate threads, each within context C. When B
publishes its first result, it is assigned to z on A and all the threads of B
are killed. If some threads of A are waiting for x to have value, they are
resumed. The full expression publishes the values published by the sub-
expression A. Therefore, firsto(A(z) <z < B) = firsto |z firsto (8)] (4)-

e Sequential composition. When evaluating A > x > B(z) within a context
C, for each value-time pair (v : §) published by A, we evaluate B(z) at
time §. The results published by B are the results published by the full
expression. We have to take into account the additional delay due to the
elapsed time before the call to B is issued and readjust the context to this
initial time. Thus, we have that

firste (A >x > B(x)) = firste (A) + first(CHirstc(A))[xeo] (B)

Observe that this simple recursion allows us to compute first(F) in polyno-
mial time and the lemma follows. O O

The proof of Lemma 8 gives us a method to compute first. We develop this
approach in the following example.

Example 14. Let us continue with the Example 2, remind

TwoNews = (CNN | BBC)

MyEmails(a, x) = (EmailDad(z) | Email(a,x))
SendNews(a) = (TwoNews > x > MyFEmails(a, x))
Addresses = (AddressAlice | AddressBob)

MyNews = (SendNews(a) < a < Addresses)

or displaying as Orc expression in order to get a clear view of the variables x
and a positions:

MyNews = ((CNN | BBC) >z > (EmailDad(z) | Email(a, z)))
< a < (AddressAlice | AddressBob)
First, we follow an intuitive approach. When MyNews is launched, two

threads are spawn to deal in parallel with SendNews(a) and Addresses. The
variables © and a become defined respectively at times

C(CE) = min{écNNy 5BBC}7 C(a) = min{(sAddressAlicea 5AddressBob}

Let us consider the publication times of sites in MyEmails(a, ). Once x becomes
defined EmailDad(x) takes 0 gmaiipad €xtra time to publish a result. The publis-
hing time is C(z) + 0 Emaitpad- In the case of MyEmail(a,z), max{C(z),C(y)}
is needed to get values for a and x and the publication time is max{C(xz),C(y)}+
O Email- Therefore,

first(MyNews) = min{C(x) + 0 pmaitpad, max{C(x),C(a)} + dpmail }-
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Second, let us take the recursive approach. Starting with an empty context
Co = () we write

first(MyNews) = firstc, (SendNews(a) < a < Addresses)
Defining Cy = Cyla + first( Addresses)] we have Cy(a) = C(a) and:

first(MyNews)
= firstc, (SendNews(a)) = firsto, (TwoNews > x > MyEmails(a, z))
= firstc, (TwoNews) + ﬁrstCl+f;,5tcl(TwoNews)[I_,O](MyEmails(a, x))).

As firste, (TwoNews) = C(x) defining Cy = Cy + firsto, (TwoNews)[x + 0] such
that Co(a) = max{0,C(a) — C(x)} and Ca(x) = 0 we have

firsto, (MyEmails(a, x))
= firsto, (EmailDad(z) | Email(a,z)) = min{d gmaipad; OEmair + C2(a)}
As C(x) 4+ C(a) = C(x) + max{0,C(a) — C(z)} = max{C(z),C(a)} we get:
first(MyNews)
= C(z) + min{0gmaiDad, OBmail + C2(a)}
)

== IHIH{O(:ZZ) + 5EmailDad; C($) + CQ (CL + 6Email}
- mln{C(x) + 5EmailDad7 maX{C(x), C(CL)} + 5Email}

as in the intuitive approach O
We need to consider also the IfOrc expressions. Remind that,

0; if ¢ = true

w otherwise

first(if (b)) = {

Given E in IfOrc and t € paths(E) (see Section 3) §(t) denotes the delay
associated to this execution path. Such a delay is computed adding the delays
of sites encountered along the path, we have §(t) < w iff val(t) # || |].

Example 15. Let us consider the delays associated to SelectiveReaders given
in Example 8. For t = 11, the calls corresponds to

(1(1) > & > AlicePart(z))
= (1(1) > > if(z) > CNN >y > EmailAlice(y))

and thus 6(11) = 81 + ;5 + doNN + OEmaitatice < w. When t =rl, we have

(1(0) > & > AlicePart(z))
= (1(0) > = > if(z) > CNN >y > EmailAlice(y))

identifying 0 with false we have §(rl) =6 +w+ - = w. O
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The proof of Lemma 9 is inspired in Lemma 1 and Theorem 4.

Lemma 9. BoundFirst is NP-complete when restricted to IfOrc. First is NP-hard
and belongs to PSPACE when restricted to IfOrc.

Proof. Let us consider the BoundFirst problem. To prove hardness, we consider
a reduction form the 3-SAT problem given in Theorem 10. Given

ECi (xia; mib? xic)

= (4 (Wia) | (if (79ia) > (¥ (yin) | (4f (=yin) > if (yic))))) > 1

it holds out(Ec¢,) > 0 iff first(E¢,) < 30; + d1. Consider delays in the orches-
tration

E(xlv e Tp) = Ec, (m1a7m1b’mlc) > > Ec'm(xma’xmb’xmc)
Ep = (True | False) > x1 > -+ > (True | False) > x,, > E(x1,...,%y).

As True = 1(1), False = 1(0) we have d e = 0paise = 01 and
(True | False) > x1 > «-+ > (True | False) > x,, > -+ -

has a delay nd;. The following equivalences hold F' is satisfiable iff out(Er) > 0
iff [Er] # [ ] iff first(Er) < ndy + m(3d; + 61) < w. To prove NP hardness
in the case of IfOrc expressions we note that given F' in 3-SAT, F' is satisfiable
iff first(Er) # w. To prove membership in PSPACE observe that, given E in
IfOrc we have first(E) = min{o(t) | t € paths(E)}. Let Si,...,S, be the sites
appearing in F, as the computation of §(t) can be computed in polynomial
time in function of | E | +)°,.,., logds, and the min can be computed as a
loop. o O O

The preceding results can be summarized into the following result.

Theorem 10. The problems BoundFirst and First restricted to ElementaryOrc or
PruningOrc can be solved in polynomial time. BoundFirst is NP-complete when
restricted to IfOrc. First is NP-hard and belongs to PSPACE when restricted to
IfOrc.

4.2 Probabilistic first environments

In order to analyse the first measure instead of assuming a crash failure model
we assume a probability distribution on a finite set of possible delays.

Definition 3. Given an orchestration E having calls to sites {S1,...,S.}, a
probabilistic first environment for E is a set P = {Py,..., P,} where, for each
1 <i < n, P; gives the probability distribution of S;’s delay in producing their
output.
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Environment P is given explicitly. That is, given S € {51,...,S5,} with
P = (6:@p; | --- | 0x@py). Site S returns at time §; with probability p;, for
1 < i < n. We assume again that p; = x;/y; being x;, y; natural numbers. Any
0; < w is a natural number. We encode w as short string, when §; = w we define
(to simplify notations) log; =| w |. Then | P |= )", ., (logd; +1ogz; +logy;)
and | P |= Zlgign | P |.

Let us define the two computational problems associated to the first measure
in probabilistic environments. Given an Orc expression E, a first probability
environment P for E, a model « € {o,s} where o denotes oblivious and s
stable:

PrBoundFirst: and an integer, k compute Pr3 (first(E) < k).
ExpectedFirst: compute E% (first(E)).

Let us consider an example of such problems in the oblivious model.

Example 16. Let Coin be a equiprobable coin with two return times, dgport <
O1ong- The probabilistic first environment is Pcoin = (Oshort @1/2 | d10ng @1/2).
Consider ExpTosses,, given in Example 10 where BlockingCoin is replaced by
Coin:

ParCoiny, = (Coin | --- | Coin)

ManyOutputs,, = ((1(1) | 1(1)) > --- > (1(1) | 1(1)))

ExpTosses, = ManyOutputs,, > ParCoin,,.

Note that first( ParCoin,) > dsnors occurs only when all the sites return with
delay d1ong, this happens with probability (1/2)" therefore Pr(first( ParCoiny,) >
5short) = (1/2)n

Let us consider ManyOutputs,,. Assume that 1(1) has a delay distribu-
tion (61@1), that is, it returns 1 in 01 units with probilibity 1. Therefore,
ManyOutputs,, outputs 2" values 1 with delay nd; and probability 1. To com-
pute Pr(first(ExpTosses,,) > Osnort + nd1) remark that we need to fulfill the con-
straint at any of the 2™ publications of ManyOutputs,,, this give us a probability
(1/2)"2" and therefore

1

Pr(first(ExpTosses,,) < dsnort +nd1) =1 — =

and, as we have seen before this needs an exponential quantity of bits to be

encoded. In order to compute the expectation of first(ExpTosses, ) note that it
can take only the values nd1 + d1ong and 161 + Ognort and

E (first(EzpTosses,)) = ndy + 510ng% + Jshort (1 ! )

- 277.2”

1
= n(sl + 6short + W (5long - 5short) .
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Taking 61 = dsport = 1 and 61ong = 2 we have

2n2" 1 1
E (first(E:z:p Tossesn)) = %
As 27" (n + 1) is an even number, 2"*" (n + 1) + 1 is odd. As 2"*" is even
the integer pair (272" (n + 1) + 1,2"%") is irreducible and therefore needs an
exponential number of bits to be encoded. [

The Example 16 gives us an exponential lower bound for ElementaryOrc.
Therefore, we get the following result.

Lemma 10. In the oblivious model, the problems PrBoundFirst and Expected-
First require exponential space for ElementaryOrc expressions.

Let us consider the orchestration of Example 16 in the stable model.

Example 17. Let us reconsider the orchestration of the Example 16 under the
stable model. In the stable model we roll Coin once and therefore ParCoin,
behaves like Coin and

first(ParCoin,,) = first(Coin) = (dshort @1/2 | d10ng @1/2)

Orchestration ManyOutputs,, will generate 2" activations of a “frozen” version
of ParCoin,, therefore Pr(first(ExzpTosses,,) < dshort +nd1) = 1/2 and the ex-
pectation is E (ﬁrst(ExpTossesn)) = n01 + (Oshort + O1ong)/2- O

Lemma 11. In the stable model, the problem PrBoundFirst is #P-hard when
restricted to PruningOrc and IfOrc.

Proof. We provide a reduction from the problem PrPub of PruningOrc and IfOrc
expressions to PrBoundFirst with delay distributions in the stable model. Let E
be a PruningQOrc or IfOrc expression. Each site S; appearing in E has probability
p; of success and probability g; of be silent. Now, let us change the sites in F, for
sites S, following delay distributions ds; = (1@p; | wQg;), let us name this new
expression E’. Then Pr(out(E) > 0) = Pr(first(E) < |E|), as each execution
publishing in F has an execution publishing in E’ within time |FE|, and when
not publishing the execution will take time w. This reduces the problem PrPub
in one family to the problem PrBoundFirst in the same family. O O

Lemma 12. In the stable model, the problem ExpectedFirst is #P-hard when
restricted to PruningOrc.

Proof. Let us consider the following reduction from #MONOTONE 2-SAT. Gi-
ven a MONOTONE 2-SAT formula F' = Cy A---AC,, with n variables z1,...,x,
where C; = i, Vi, s {Yin» Vi } C {21,..., 25} for 1 <i <m. Given a DelayCoin
site with delay distribution (0@1/2 | 1@1/2) consider n independent copies (like
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proxies) called DelayCoiny, ..., DelayCoin,,. Let us redefine the orchestration
Er, in the oblivious model, as follows:

for 1 <i < mdo Ec,(¥i,.vi,) = (11(yi,)|12(y3,))
E(Ila e ,iUn) = (Ecl(y1a7ylb) > > Ecm(ymaaymb))

Ep = (- (E(x1,...,2n) < 21 < DelayCoing) < xz9 < --+) < x, < DelayCoin,,

Given © = (1,...x,) such that z; has delay € {0,1} let us define a Boolean
map b(x1,...2,) = (b(x1),...b(x,)) such that, for 1 <i <n,

1 if ; has delay 0
b(vi) = .
0 if z; has delay 1
Observe that,

0 if F(b(xy),...b(z,)) =1,
1 otherwise

first(E(z1,...,2n)) = {

As DelayCoin; follows a delay distribution (0@1/2 | 1@1/2), each z € {0,1}"
occurs with probability 1/2", then

E(first(Ep)) = (1/2") > first(E(x))

ze{0,1}™
= (1/2") Y F())=#{z|F(x)=1}/2"
ze{0,1}™
Therefore, E(first(Er))/2™ solves #MONOTONE 2-SAT. O O

Lemma 13. In the stable model, ExpectedFirst is #P-hard when restricted to
IfOrc.

Proof. Let us consider the following reduction from 3-SAT. Given a 3-SAT for-
mula F = Cy A ... ACy, over n variables x4, ..., x,, where C; = y;, V vi, V Y.,
{v1,,v1,,v1.} S {x1,.. ., Tn,T1,..., T}, for 1 < i < m. Let us encode clauses
through calls to site if. Given C; = y;, V yi, V ¥;. define
Ec, Yius i, Yi.) = (if Wia) | (if (5gia) > (if (yav) | (if (mwin) > if (yic))))) > 1
Let site Delay publish 1 with delay 1. Now, let us encode clause failures as
follow. Given C; =y;, V y;, V y;, define

Fo,(Yia, Yiy» Yio) = if (7Yia) > if (myiv) > if (7@ic) > Delay

Taking True = 1(1) and False = 1(0) the orchestration Ep corresponding to
the formula F' is:

BoolCoini = (1@1(1) 1/2@ 1,‘72(0)), 1 S ) S n
E(z1,...,2n) = Ec, (z1,,21,,%1,) > ... > Ec, (Tmy, Tmys Tm,)

F(x1,...,zn) = Fo, (v1,,21,,21,) | --- | Fo,, (@m, s Tmy,, Tm.)

Ep = BoolCoiny > x1 > --- > BoolCoin, > x, > (E(x1,...,2,) | F(z1,...
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Given x = (21, ...x,) such that z; € {0,1} we have that:

0 if F(zy,...2n) =1,
1 otherwise

first(E(x)|F(x)) = {

As each z € {0,1}™ occurs with probability 1/2", we have that E(first(Er)) =

(1/2™) X seqonyn first(E(z)) = (1/27) 32, cq0,1yn F(b(z)) = #F/2". Therefore,
E(first(Er))/2™ solves the #3-SAT problem. O O

Finally, let us consider the stable model. The following Lemma follows the
lines given in the proof of Theorem 7.

Lemma 14. In the stable model, PrBoundFirst and ExpectedFirst belongs to
PSPACE for ElementaryOrc, PruningOrc and IfOrc.

Proof. Consider E with calls to n different sites {S,...S,} and probabilistic
first environment P = {Py,..., P,}, where P, = (0;,Qp;, | ,..., | §;,@Qp;,) to
denote thatS; returns at time d;; with probability p;;. As Site S; has {1,...,ix}
probabilistic choices, we define a first delay profile as an element of the Carte-
sian product D = [[;.;,{1,...,ix}. The probability of £ € D such that
f=fi...fnisPr(t) =py, ...ps,. Moreover, for a given £, we abstract the pro-
babilistic behaviour of Ejs and first(E};) can be computed in polynomial space
according to Theorem 10. (look also at Lemmas 8,9). We solve ExpectedFirst
iterativelly computing E(first(E)) = > .., Pr(f)first(E|¢) and to solve PrBound-
First we compute Z{fG'D\out(E‘fgk)} Pr(s). O O

We sumarize the preceding results into the following Theorem:

Theorem 11. In the oblivious model, the problems PrBoundFirst and Expected-
First requires exponential space for ElementaryOrc expressions. In the stable mo-
del, both problems are #P-hard in PruningOrc or IfOrc and belong to PSPACE
in ElementaryOrc, PruningOrc or IfOrc.

5 Conclusions and open questions

In this paper we have developed formally the appropriate semantics to reason
about QoS measures based on productivity and latency. From those semantics
we have been able to isolate subfamilies of finite orchestrations where the inten-
ded measures are well defined. For those subfamilies where the QoS measures
are well defined, we have analysed the impact of the expressiveness of the family
versus the computational complexity of several problems related to their com-
putation in both reliable and unreliable environments (see Table 2). Some of
our hardness results rely on a natural coding for rational numbers. Our results
do not rule out having a different complexity classification under other explicit
or implicit codings.
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Taking into account the decomposition of the meaning in timed fully defined
variable semantics, as given in Theorem 8, there are other well defined QoS
measures. In particular one could consider the delay of the last published item
or the average delay of the produced items.

With respect to the probabilistic model, we have contemplated only two
independence models for repetitive calls, complete independence (oblivious mo-
del) and a complete correlation (stable model). There remain many levels of
correlation of interest. For example correlation depending on the state of the
network or some joint hypothesis over sets of sites or site types. Another way
to deal with correlations is to consider faulty behaviours as strategic situations
modeled by angel-daemon games as it was done partially for the out measure in
[11]. This approach has been extended to periodic orchestrations in [8].
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