
Noname manuscript No.
(will be inserted by the editor)

Tight Bounds for NF-based Bounded-Space Online Bin
Packing Algorithms

József Békési · Gábor Galambos

the date of receipt and acceptance should be inserted later

Abstract In [14] Zheng et al. modelled a surgery problem by the one-dimensional
bin packing, and developed a semi-online algorithm to give an efficient feasible
solution. In their algorithm they used a buffer to temporarily store items, having
a possibility to lookahead in the list. Because of the considered practical problem
they investigated the 2-parametric case, when the size of the items is at most 1/2.
Using an NF-based online algorithm they proved an ACR of 13/9 = 1.44 . . . for
any given buffer size not less than 1. They also gave a lower bound of 4/3 = 1.33 . . .

for the bounded-space algorithms that use NF-based rules.
Later, in [13] an algorithm was given with an ACR of 1.4243, and they improved

the lower bound to 1.4230. In this paper we present a tight lower bound of h∞(r)
for the r-parametric problem when the buffer capacity is 3. Since h∞(2) = 1.42312,
our result – as a special case – gives a tight bound for the algorithm-class given
in [13]. To prove that the lower bound is tight, we present an NF-based online
algorithm that considers the r-parametric problem, and uses a buffer with capacity
of 3. We prove that this algorithm has an ACR that is equal to the lower bounds
for arbitrary r.

1 Introduction

Bin packing is one of the most deeply studied problem in the field of combinatorial
optimization. The one-dimensional version can be defined as follows. Let L =
{a1, a2, . . . , an} be a list of n items, with sizes s(ai) ∈ (0, 1], i = 1, . . . , n. The task
is to assign the items to the minimal number of unit capacity bins, subject to the
constraint that the total size of the items assigned to any bin is at most 1. If the
sizes of the items for some integer r ≥ 2 are chosen from the interval (0, 1

r], then
we speak about r-parametric (or simply, parametric) bin packing problem.

It is well-known that the problem is NP-hard [9]. Therefore a couple of approx-
imation algorithms have been developed in the last 40 years. The quality of the

Department of Applied Informatics,
Gyula Juhász Faculty of Education, University of Szeged,
H-6701 Szeged, POB 396, Hungary
E-mail: {bekesi,galambos}@jgypk.szte.hu

2 József Békési, Gábor Galambos

approximation algorithms is a central question in the algorithm theory. There are
several methods to measure the quality of an algorithm: experimental examination,
worst case competitive analysis and probabilistic analysis.

In this paper we apply the asymptotic competitive analysis. Using this method
we are looking for performance guarantees which are valid for any – even for the
extreme, so-called “pathological” – instances. Let A be an arbitrary approximation
algorithm, and let I be an instance of the given problem. Let A(I) and OPT(I)
denote the solution of A and the optimal solution, respectively. The asymptotic

competitive ratio (ACR) for minimum problems is defined as follows.

R∞A = lim sup
k→∞

{
max

I

{
A(I)

k

∣∣∣∣OPT(I) = k

}}
.

The efficiency of an algorithm strongly depends on the information available
in each step of the algorithm. If we have complete information about the list we
need to put into bins, then we speak about off-line algorithms.

An online algorithm packs the items one by one. Packing the actual item the
algorithm does not know anything about the remaining part of the list: neither
the number of unpacked items nor their sizes are known. It is clear that the online
algorithms do not have enough information to produce as good packing as the
offline algorithm. The best online algorithm was given by Heydrich and van Stee
(see [8]) with 1.5816 of ACR, which is an improvement of the algorithm by Seiden
(see [10]) with 1.58889 of ACR. The best known lower-bound (248

161 ≈ 1.5403) for
online algorithms was given by Balogh et al. [1].

It is a question whether we can improve the efficiency of online algorithms by
getting more – but not complete – information during the packing? If it is allowed
for an online algorithm to apply at least one of the following operations: repacking
some items, lookahead into several next elements, or some kind of preprocessing,
then we speak about semi-online algorithms. Among others, semi-online algorithms
were investigated in the papers [2,3,5,6,7].

In [14] Zheng et al. considered the following surgery problem. In each day
there is a uniform time interval available for an operating room to process surgical
operations. Each request with a planned operation time is temporarily stored in
a waiting pool. In each day, a surgery scheduler selects a subset of requests to be
executed the next day. The total planned operation time of the selected requests
cannot exceed the time available for the day. They modelled this problem by the
one-dimensional bin packing, and developed a semi-online algorithm to give an
efficient feasible solution. In their algorithm they used a buffer to temporarily
store items, having a possibility to lookahead in the list. Because of the considered
practical problem they investigated the 2-parametric problem, i.e. maxa∈L s(a) ≤
1/2. In each iteration step their algorithm puts the largest items of the buffer into a
new opened bin using a Next Fit-based rule (NF): packing the actual preprocessed
contents of the buffer the algorithm opens a new, empty bin, puts iteratively the
largest items of the buffer into this bin until they fit and closes the bin. This
means that at most 1 bin can be open during the packing. The algorithms that
use constant number of open bins are called bounded-space algorithms. If there
is at most 1 open bin, the algorithm is called NF-based online algorithm. Using
this NF-based online algorithm they proved an ACR of 13

9 for any given buffer
size not less than 1. They also gave a lower bound of 4

3 for those bounded-space
algorithms that use NF-based rules.

Tight Bounds for NF-based Bounded-Space Online Bin Packing Algorithms 3

Later, Zhang et al. also investigated the problem (see [13]). They presented
two algorithms. The first one used a buffer with capacity of 2, and they proved
that the ACR of the algorithm is 1.4375. Using a buffer size 3 they gave further
improvement on the upper bound. Their algorithm has an ACR of 1.4243. Finally,
they gave a lower bound 1.4230, which is also better than the one previously proved
in [14].

Our Contribution We revisited those NF-based semi-online algorithms that
use buffer with constant size. Our results can be summarized as follows. Firstly,
instead of the 2-parametric problem, we investigate the parametric problem in
general. It means that we consider the lists L where maxa∈L s(a) ≤ 1

r for a given
integer r ≥ 1. We prove lower bounds for any NF-based online algorithm with
constant buffer size for the r-parametric case. Our lower bounds for the first few
values of r are the following: h∞(1) = 1.69103, h∞(2) = 1.42312, h∞(3) = 1.30238.
The special case r = 2 gives an improvement for the earlier lower bounds.

On the positive side, we present an NF-based online algorithm that considers
the r-parametric problem, and uses a buffer with capacity of 3. We prove that this
algorithm has ACRs that are equal to the lower bounds, so we also improve the
upper bound for the case r = 2 to 1.42312.

The rest of the paper is organized as follows. In Section 2 we show the Sylvester
sequence, and we define the exact values of h∞(r) for r = 1, 2, In Section 3 we
prove new lower bounds of the considered problem for the r-parametric case. In
Section 4 we define a new, NF-based algorithm with buffer-size 3. Finally, Section
5 concludes this paper.

2 Preliminaries

We will use a sequence that was first introduced by Sylvester in [11] (1880) for
the case r = 1, therefore, we refer to this sequence as generalized Sylvester sequence.

This sequence was commonly used in the bin packing area, see eg. [1,4,12].

For integers k > 1 and r ≥ 1, the generalized Sylvester sequence mr
1, . . . ,m

r
k can

be given by the following recursion.

mr
1 = r + 1, mr

2 = r + 2, mr
j = mr

j−1(mr
j−1 − 1) + 1, for j = 3, . . . , k, .

mr
j r = 1 r = 2 r = 3 r = 4 r = 5

j = 1 2 3 4 5 6

j = 2 3 4 5 6 7

j = 3 7 13 21 31 43

j = 4 43 157 421 931 1807

j = 5 1807 24493 176821 865831 3263443

Table 2.1. The first few items of the generalized Sylvester sequences if k ≤ 5.

These sequences have the following properties.

4 József Békési, Gábor Galambos

k∑
i=j

1

mr
i

=
1

mr
j − 1

− 1

mr
k+1 − 1

, if j ≥ 2,

and

r

mr
1

+
k∑

i=2

1

mr
i

= 1− 1

mr
k+1 − 1

if r ≥ 2.

Similarly, we will use the following notations.

h∞(r) = 1 +
∞∑
i=2

1

mr
i − 1

.

The first few values of h∞(r) : h∞(1) ≈ 1.69103, h∞(2) ≈ 1.42312, h∞(3) ≈
1.30238. To avoid the plenty of indices – where it is not confusing – we will denote
mr

j by mj .

3 An improved lower bound

First, we give an improvement of the lower bound of any NF-based online algorithm
with given buffer size S ≥ 1. The buffer can store arbitrary items with total size
less than the size of the buffer.

Theorem 1 Let us consider the r-parametric case. If a buffer is given with size of

|B| = S, then for any A – NF-based online – algorithm R∞(A) ≥ h∞(r).

Proof We will construct the following instance. Let n > 0 be a large integer
and let k > 4 be an integer. Then we will consider the concatenated list L =
(L1, L2, . . . , Lk), where

- L1 contains n(mk − 1)(m1 − 1) items with size 1
m1

+ ε.

- Li contains n(mk − 1) items with size 1
mi

+ ε, for 2 ≤ i ≤ k − 1,

- Lk contains n(mk − 1) items with size 1
mk−1 − kε,

where ε is arbitrary small, ie. 1
mk−1 − (m1 + k − 3)ε > 1

mk
.

After packing the items of the list L1 there are at most b S
1/m1+ε

c < Sm1 items

in the buffer. Therefore, the algorithm has to pack n(mk−1)(m1−1)−Sm1 items
from the list L1 into bins. Since m1 ≥ 3, so A needs at least

n(mk − 1)(m1 − 1)− Sm1

m1 − 1
= n(mk − 1)− Sm1

m1 − 1
> n(mk − 1)− 2S

bins to pack the elements of L1.

Let us pack the items of L2. We have n(mk − 1) pieces. Having packed the
elements of L2 the buffer contains b S

1/m2+ε
c < Sm2 elements. So, the algorithm

has to pack n(mk − 1)− Sm2 items, m2 − 1 pieces in each bin. So, the algorithm
uses at least

n(mk − 1)− Sm2

m2 − 1
=

n(mk − 1)

m2 − 1
− Sm2

m2 − 1
>

n(mk − 1)

m2 − 1
− 2S

Tight Bounds for NF-based Bounded-Space Online Bin Packing Algorithms 5

bins. Since at most one active bin exits, therefore at least n(mk−1)
m2−1 − 2S − 1 new

bins were opened while the algorithm packed the elements of L2.

Following this train of thought while the algorithm packs the items of Li,

3 ≤ i ≤ k − 1, it will open n(mk−1)
m2−1 − 2S − 1 new bin for each list.

In the end the algorithm packs the items of Lk. Each bin contains (mk − 1)
items from this list, so the algorithm opens (n−1) new bins. Therefore, the number
of bins used by the algorithm A is at least

A(L) ≥ n(mk − 1)− 2S +
k∑

i=2

mk − 1

mi − 1
n− (2k − 1)S − (k − 1).

It is easy to check that (m1−1) pieces of L1, and one item from each Li, 1 ≤ i ≤ k

can be packed into one bin, therefore OPT(L) ≤ n(mk − 1). So,

A(L)

OPT(L)
≥ 1 +

k∑
i=2

1

mi − 1
− (2k − 1)S − (k − 1)

(mk − 1)n

and so,

R∞(A) ≥ lim
k→∞

lim
n→∞

A(L)

OPT(L)
= 1 +

∞∑
i=2

1

mi − 1
= h∞(r).

ut

For the problem considered in [14] and [13] the given best lower bound is
1.4230, and since h∞(2) = 1.423117 . . . our lower bound gives an improvement for
the case r = 2.

Investigating online bounded-space algorithms in [5] a weighting function was
defined for the items. Generalizing the idea we define the following weighting
function.

W (x) =


x +

1

mi(mi − 1)
, if 1

mi
< x ≤ 1

mi−1

mi + 1

mi
x, if 1

mi+1−1 < x ≤ 1
mi

The weight of a bin is defined as the weight of all elements in it, and generally,
the weight of a set is the weight of all items in the set. It is easy to see that the
following statements are true.

Fact 2

(i) W (x) is nondecreasing in (0, 1].

(ii) For i ≥ 1, W (x)
x ≤ mi+1

mi
if x ≤ 1

mi
,

(iii) For i ≥ 1, W (x)
x ≥ mi+1

mi
if x ≥ 1

mi+1−1 .

Lemma 1 Let us consider the r-parametric problem. Then any packing of a list L, the

weight of any bin is at most h∞(r).

6 József Békési, Gábor Galambos

Proof Let us suppose that a bin contains the items x1, x2, . . . , xt, where x1 ≥ x2 ≥
. . . ≥ xt.

Case A. First we suppose that there are exactly r items from the interval (1
m1

, 1
m1−1]

in an arbitrary bin B. We denote the remaining items by p1, . . . , pt−r.

Case A.1. Now, we suppose that each pi is in the interval (1
mi+1

, 1
mi+1−1] for

i = 1, . . . , (t−r). Taking into account that r = m1−1, m1 = m2−1, and 1
mi(mi−1) =

1
mi+1−1 we get

W (B) =
∑r

i=1 W (xi) +
∑t−r

i=1 W (pi)

=
∑r

i=1 xi + r
m1(m1−1) +

∑t−r
i=1 pi +

∑t−r
i=1

1
mi+1(mi+1−1)

≤ 1 + 1
m2−1 +

∑t−r+2
i=3

1
mi−1

= 1 +
∑t−r+2

i=2
1

mi−1 < h∞(r).

Case A.2. Let us suppose that B contains s < t−r pieces of pi items, each of them
in the interval (1

mi
, 1
mi−1], i = 2, 3, . . . , s + 1.

Let us denote the remaining (t− r− s) items by ql, l = 1, 2, . . . , t− r− s. Then
Q =

∑t−r−s
i=1 q(i) ≤ 1

ms+2−1 , and
∑r

i=1 xi +
∑s+1

i=2 pi ≤ 1 − Q. Because of the Fact

2 (ii), we get
t−r−s∑
i=1

W (q(i)) ≤ Q
ms+2 + 1

ms+2
.

Therefore

W (B) =
∑r

i=1 W (xi) +
∑s+1

i=2 W (pi) +
∑t−r−s

i=1 W (qi)

=
∑r

i=1 xi + r
m1(m1−1) +

∑s+1
i=2 pi +

∑s+1
i=2

1
mi(mi−1) + Q

ms+2+1
ms+2

≤ 1−Q + Q
ms+2+1
ms+2

+
∑s+1

i=2
1

mi−1

= 1 +
∑s+3

i=2
1

mi−1 < h∞(r).

Case B. Let us suppose that the bin B contains q ≤ r − 1 items belonging to
the interval (1

m1
, 1
m1−1]. Since W (x) is a monotone increasing function, so the

weighting function is maximal if these items have maximal sizes i.e.

q∑
i=1

xi =
q

m1 − 1
.

Then the remaining place in the bin is 1 − q
m1−1 . We know that for any item

x for which x ≤ 1
m1

the weight is W (x) ≤ xm1+1
m1

.

W (B) =
∑q

i=1 W (xi) +
∑t

i=q+1 W (xi)

≤ q
m1−1 + q

m1(m1−1) +
(
1− q

m1−1

)
m1+1
m1

= 1 + 1
m1

= 1 + 1
m2−1

< h∞(r).

Tight Bounds for NF-based Bounded-Space Online Bin Packing Algorithms 7

ut

Corollary 1 For any list L, W (L) ≤ h∞(r)OPT(L).

4 The Algorithm

In the sequel we will call a bin good bin if the sum of the weights of the items in
the bin is at least one, and a set of items is good subset if the sum of the weights of
the items is greater than or equal to one and the sum of the sizes is at most one.
We consider a buffer with capacity 3 and we will apply three virtual bins – with
capacity one – for preprocessing the items in the buffer before we pack them into
bin. Next Fit with First Fit Decreasing in Buffer-length 3 , NFFD-B3 – is as follows.

(1) Fill up the buffer with the subsequent elements of the list until the next item
cannot fit into the buffer.

(2) Order the items in the buffer in nonincreasing order, and put the items in
three virtual bins – denoted by VBIN i, i = 1, 2, 3 – each of them with capacity
1 using the FFD rule. The items that do not fit in any of the virtual bins,
remain in the buffer.

(3) Check the contents of the virtual bins. For all those virtual bins that are
good bins, open a new empty bin, put the items from the good bin into this
new-opened bin, and close the bin. Go to step (5).

(4) Find a good subset in the contents of VBIN i, i = 1, 2, 3, open a new empty
bin, put the items from the virtual bins into this new-opened bin, and close
the bin.

(5) If there is unplaced item then go to (1),
(6) Empty the contents of the virtual bins into new-opened bins. Close the bins,

and quit.

Table 4.1. The steps of the NFFD-B3 algorithm

We remark that we speak about virtual bins since after ordering the items we
do not move them from the buffer into bins, but they get two indices, where the
first one denotes which of the virtual bin belongs to the item, and the second signs
its position within the virtual bin. (Items could not be assigned to any virtual bins
that have index values 0.) The position within the virtual bin depends on the size
of the item: the larger an item the smaller its position.

Let us divide the interval (0, 1
r] into subintervals as follows.

A = (1/m1, 1/(m1 − 1)]
Bi = (1/mi, 1/(mi − 1)] for i ≥ 2.
Ci = (1/(mi + 1), 1/mi] for i ≥ 2.
Di = (1/(mi+1 − 1), 1/(mi + 1)] for i ≥ 2.

8 József Békési, Gábor Galambos

Type Interval W (x) Type Interval W (x)

A (1/2, 1] x + 1/2
B2 (1/3, 1/2] x + 1/6 B3 (1/7, 1/6] x + 1/42
C2 (1/4, 1/3] 4x/3 C3 (1/8, 1/7] 8x/7
D2 (1/6, 1/4] 4x/3 D3 (1/42, 1/8] 8x/7

Table 4.2. The weighting function W (x) for r = 1.

Type Interval W (x) Type Interval W (x)

A (1/3, 1/2] x + 1/3
B2 (1/4, 1/3] x + 1/12 B3 (1/13, 1/12] x + 1/156
C2 (1/5, 1/4] 5x/4 C3 (1/14, 1/13] 13x/12
D2 (1/12, 1/5] 5x/4 D3 (1/156, 1/14] 13x/12

Table 4.3. The weighting function W (x) for r = 2.

Figure 4.1. Spliting the interval (0, 1
r] into subintervals for r = 2.

We will call an item X-item if it is in the interval X, X ∈ {A,Bi, Ci, Di}, i ≥ 2. A
bin is X-homogeneous, if it only contains X-items, and there is no space for further
X-items in the bin.

Lemma 2 Any X-homogeneous bin is a good bin.

Proof Case Bi. We remind the reader that the interval A is a B1 interval. So, if B
is a Bi-homegeneous bin (i ≥ 1) then we can put mi − 1 pieces of items into this
bin, so the total size of the items is larger than mi−1

mi
. Therefore

W (B) =
∑
a∈B

s(a) + (mi − 1)
1

mi(mi − 1)
>

mi − 1

mi
+

1

mi
= 1.

Case Ci. If B is a Ci-homogeneous bin (i ≥ 2) then we can put mi pieces into
the bin, so the total size of the items is larger than mi

mi+1 . Therefore

W (B) =
mi + 1

mi

∑
a∈B

s(a) >
mi + 1

mi

mi

mi + 1
= 1.

Case Di. If B is a Di-homogeneous bin (i ≥ 2) then we can put at least mi + 1
pieces into the bin. Since we can not put further Di-item into the bin, so the total
size of the items is larger than 1− 1

mi+1 = mi
mi+1 . Therefore

W (B) ≥ mi + 1

mi

∑
a∈B

s(a) >
mi + 1

mi

mi

mi + 1
= 1.

ut

Tight Bounds for NF-based Bounded-Space Online Bin Packing Algorithms 9

Figure 4.2. The weighting function W (x) for r = 2.The breaking points of the
line are at 1

12 ,
1
4 and 1

3 .

Our main theorem is the following.

Theorem 3 If we pack the items of any list by the algorithm NFFD-B3 then in Step

(3) we either find at least one good bin, or we find a good subset in the contents of the

three virtual bins.

Proof We will assume the contrapositive. We suppose that a list L0 exists for which
the algorithm NFFD-B3 after the Step (2) neither produces at least one virtual bin
nor good subsets can be found. We can suppose that the list L0 has the following
properties.

- The total size of the items in L0 is
∑

a∈L0
s(a) > 3− 1

r .

- If mina∈L0
s(a) is an X-item, then in Step (2) no further X-items can be put

into any of the virtual bins.
- After Step (2) none of the virtual bins are empty.

During our proof we will distinguish different cases according to which interval
the smallest item belongs to.

Lemma 3 If mina∈L0
s(a) is an A-item, then VBIN 1 (and VBIN 2) is a good bin.

Proof Let us suppose that we have at least one A-item in VBIN 2 or VBIN 3. Then
VBIN 1 is an A-homogeneous bin. ut

Corollary 2 If r = 1 then maxa∈L0
s(a) ≤ 1

m1
.

Corollary 3 After Step (2) neither VBIN 2 nor VBIN 3 contains A-items, and VBIN 1

contains at most r − 1 = m1 − 2 pieces of A-item.

Lemma 4 If mina∈L0
s(a) is a B2-item, then VBIN 1 is a good bin.

10 József Békési, Gábor Galambos

Proof First we consider the case r = 1. Since VBIN 1 does not contain A-item,
therefore, B2 is the largest item in L0. If VBIN 2 or VBIN 3 contains B2 item then
VBIN 1 must be a B2-homogeneous bin. Therefore, if r = 1 then neither VBIN 2

nor VBIN 3 contains B2 item.
Since VBIN 2 does not contain A-item, VBIN 2 is a B2-homogeneous bin, and

therefore it is a good bin. ut

Corollary 4 If r = 1 then neither VBIN 2 nor VBIN 3 contains B2-item.

Lemma 5 If mina∈L0
s(a) is a C2-item, then either at least one of VBIN 1 and

VBIN 2 is a good bin, or the algorithm can collect a good subset from the items in

the virtual bins.

Proof First we consider the case r = 1. From the Corollary 4 it follows that neither
VBIN 2 nor VBIN 3 can contain A- and B2-items. Therefore, if there is a C2-item
that does not fit in VBIN 1 then VBIN 2 must be a C2-homogeneous bin.

Now, we can suppose that r ≥ 2. Because of the Lemma 3 and Lemma 4,
VBIN 3 contains only C2-items. Since

∑
a∈VBIN 1

s(a) +
∑

a∈VBIN 2
s(a) ≤ 2, and

the buffer was at least to the level 3r−1
r full after Step (1), in the VBIN 3 there is

at least 3r−1
r − 2 = r−1

r place which contains C2-items only. Therefore, there are
at least r pieces of C2-items in the VBIN 3.

Case A. Let us suppose that we have r − 1 A-items in the VBIN 1, and we
denote the total sum of the sizes of A-items and the B2-items in VBIN 1 by xA
and xB2

, respectively. Then

W (VBIN 1) = xA +
r − 1

r(r + 1)
+ xB +

1

(r + 1)(r + 2)
.

Since xA + xB2
> r+1

r+2 , therefore

W (VBIN 1) > (xA + xB2
) +

r − 1

r(r + 1)

1

(r + 1)(r + 2)
= 1 +

r − 2

r3 + 3r2 + 2r
.

Since r ≥ 2, the right hand side is greater than 1, so VBIN 1 is a good bin.
Case B. Now, we suppose that there are at most (r − 2) A-items in the bin

VBIN 1. In this case at least 2 pieces of B2-items are in the VBIN 1. From the
Corollary 3 there is no A-item in VBIN 2.

Case B.1. If VBIN 2 contains r−1 pieces of B2-items then these items together
with the 2 pieces of B2-items in VBIN 1 give a good subset.

Case B.2. Since the VBIN 2 is at least to the level r+1
r+2 level full, if it contains

at most (r − 2) pieces of B2-items then the bin must contain at least 2 pieces of
C2-items. So, there are at least r+2 pieces of C2-items together in the VBIN 3 and
VBIN 3, and so, they can form a good subset. ut

Corollary 5 If r = 1 then neither VBIN 2 nor VBIN 3 contains C2-item.

Lemma 6 If mina∈L0
s(a) is a Di-item, i ≥ 2, then VBIN 1 is a good bin.

Tight Bounds for NF-based Bounded-Space Online Bin Packing Algorithms 11

Proof When the algorithm NFFD-B3 puts the first Di item into VBIN j , j = 2, 3,
then VBIN 1 is at least mi

mi+1 full. By the fact 2 (iii) W (x) ≥ x(mi + 1)/mi, so the
total weight in the VBIN 1 is at least 1, so VBIN 1 is a good bin. ut

Corollary 6 If r = 1 then neither VBIN 2 nor VBIN 3 contains Di-item, i ≥ 2.

We introduce the following notations. Let S(X+, j) denote the sum of the sizes
of all items in the virtual bin VBIN j , j = 1, 2, 3, that are larger than the X-
elements, where X ∈ {Bi, Ci}, i ≥ 3. Furthermore, let N(X, j) and S(X, j) denote
the number and the overall sizes of X-elements in VBIN j , respectively.

Lemma 7 Let mina∈L0
s(a) be a Bi-item, i ≥ 3. Then the number of Bi-items in the

VBIN 1 is

N(Bi, 1) > mi −
2mi

mi −mi−1
.

Proof By the assumption L0 is a counterexample, so – using the Fact 2 (iii) – we
get

W (VBIN 1) =
mi−1 + 1

mi−1
S(B+

i , 1) + S(Bi, 1) +
N(Bi, 1)

mi+1 − 1
< 1. (1)

Let x be the first Bi-item that has not fit into the bin VBIN 1. Since x did not fit
into VBIN 1 and x ≤ 1

mi−1 the total sizes of the items in VBIN 1 is

S(B+
i , 1) + S(Bi, 1) >

mi − 2

mi − 1
(2)

Let us eliminate S(B+
i , 1) from the inequalities (1)and (2) multiplying (1) by mi−1

and (2) by −(mi−1 + 1). Adding these two inequalities we get

N(Bi, 1)
mi−1

mi+1 − 1
− S(Bi, 1) < mi−1 −

mi − 2

mi − 1
(mi−1 + 1). (3)

Since every Bi-item has size at most 1
mi−1 and there are N(Bi, 1) items in VBIN 1,

therefore S(Bi, 1) ≤ N(Bi,1)
mi−1 . Substituting this into the inequality (3) we get

N(Bi, 1)
(1

mi − 1
− mi − 1

mi+1 − 1

)
>

mi − 2

mi − 1
(mi−1 + 1)−mi−1, (4)

and so

N(Bi, 1) >
mi −mi−1 − 2

mi − 1
· mi(mi − 1)

mi −mi−1
=

mi(mi −mi−1 − 2)

mi −mi−1
, (5)

which yields the desired result. ut

Lemma 8 Having packed the list L0 by the algorithm NFFD-B3 there is at most one

Bi-item, i ≥ 3 in the VBIN 2 and VBIN 3 together.

12 József Békési, Gábor Galambos

Proof Let x be the first Bi-item that has not fit into the bin VBIN 1.

Case A. Let r = 1.
Case A.1. If i = 3 then the Lemma 7 states that N(B3, 1) > 7

2 . Therefore
N(B3, 1) ≥ 4. If there are at least two B3 items in VBIN 2 and VBIN 3, we have at
least 6 = m3 − 1 pieces of B3 elements. These items can fit into one bin, so their
total weight is at least 1. So, they form a good subset, which is a contradiction.

Case A.2. Let i ≥ 4. Then 2mi
mi−mi−1

≤ 3, therefore N(Bi, 1) ≥ mi − 2. Together
with x these mi−1 pieces of Bi items form a good subset, which is a contradiction.

Case B. Let r ≥ 2. Now, for every i ≥ 3 we get 2mi
mi−mi−1

< 3, and therefore

N(Bi) ≥ mi − 2. So, we can use the same argument as in Case A.2. ut

Corollary 7 After the Step(2) the bin VBIN 2 and VBIN 3 may contain at most one

B3 item if r = 1.

Lemma 9 If r = 1 then after Step (2) VBIN 3 does not contain any B3-items.

Proof If r = 1 then from the Corollaries 2, 4, 5, 6 follows that in VBIN 2 and
VBIN 3 a B3-item is the largest item. We also know – see Corollary 7 – that at
most one B3-item is in bins VBIN 2 and VBIN 3. So, the B3-item must be placed
in the VBIN 2. ut

Lemma 10 If mina∈L0
s(a) is a Ci-item, i ≥ 3, then either VBIN 2 is a good bin, or

the algorithm can collect a good subset from the Ci-items in the virtual bins.

Proof Let x be the first Ci-item in VBIN 3. If there is no larger item in L0 then x

then both virtual bins, VBIN 1 and VBIN 2, are Ci-homogeneous bins. So, we can
suppose that there are larger items in VBIN 1 and VBIN 2.

Since L0 is a counterexample, using the Fact 2 (iii) for the total weight of the
items in the VBIN 2 we get

mi−1 + 1

mi−1
S(C+

i , 2) + S(Ci, 2)
mi + 1

mi
< 1. (6)

Since x did not fit into VBIN 2 and x ≤ 1
mi

the total size of the items in VBIN 2

S(C+
i , 2) + S(Ci, 2) >

mi − 1

mi
(7)

Let us eliminate S(C+
i , 2) from the inequality system (7) and (6) by multiplying

7 by −(mi−1 + 1) and 6 by mi−1. Adding these two inequalities we get

S(Ci, 2) >
mi −mi−1 − 1

mi −mi−1
= 1− 1

mi −mi−1
. (8)

Since every Ci-item has size at most 1
mi

and there are N(Ci, 2) items in VBIN 2,

therefore N(Ci, 2) > mi − mi
mi−mi−1

= mi − 1− mi−1

mi−mi−1
> mi − 2. So, there are at

least mi − 1 pieces of Ci items in VBIN 2, and at least one Ci-item in VBIN 3. The
sum of the sizes of these items is at most one, and the total weight of these items
is at least one. So, we can construct a good subset again. ut

Tight Bounds for NF-based Bounded-Space Online Bin Packing Algorithms 13

With the help of the above Lemmas we have shown that if L0 is a counterex-
ample, ie. packing the items of L0 by the algorithm NFFD-B3 there is neither a
good bin among the virtual bins nor a good subset, then L0 may not contain items
from any of the interval X, where X ∈ {A,Bi, Ci, Di}, i ≥ 2. Therefore L0 must
be an empty list, which completes the proof our main theorem. ut

The algorithm NFFD-B3 opens at least one bin in each iteration step, fills up
the new opened bin(s) with items with total weight of at least one, and closes it.
At the end the three virtual bins will be added to the number of used bins. So the
following theorem is valid.

Theorem 4 Let r be a positive integer, and Lr be an arbitrary list with items ai ≤ 1
r .

Let us pack the items of L by the algorithm NFFD-B3. Then

NFFD-B3(L) ≤W (L) + 3.

The Theorem 1 and Corollary 1 together yield that

R∞(NFFD-B3) = h∞(r).

Our algorithm needs maximum O(n log n) operations to order the contents of
the buffer, and O(n) operations to find a good subset among the items in the
buffer in each iteration step. Since the number of iterations is maximum O(n), the
time-complexity of the algorithm is O(n2 log n).

5 Conclusions

In two earlier papers a bounded-space semi-online bin packing problem was con-
sidered. In papers [14] and [13] lower and upper bounds were given for the online
algorithms for this problem. Both of the papers investigated the case r = 2. The
best lower- and upper-bound was 1.4230 and 1.4243, respectively.

In this paper we defined an algorithm with asymptotic competitive ratio of
h∞(r) for any r ≥ 1 integer. We also proved that these upper bounds are sharp
for every r. Especially, for r = 2 this value is h∞(2) = 1.423117

We used a buffer with capacity 3 in our algorithm. It is an open question
whether the upper bound given in [14] is improvable if the buffer capacity is 2,
since our algorithm does not work in this case. It is also a possibility for the further
study, if we ask what kind of other preprocessing results in a better ACR for the
NF-based algorithm?

References

1. J. Balogh, J. Békési, G. Galambos, New Lower Bounds for Certain Classes of Bin Packing
Algorithms, Theoretical Comp. Sci., 440-441, 1–13, 2012.

2. J. Balogh, J. Békési, G. Galambos, G. Reinelt, Online bin packing with restricted re-
packing, J. of Comb. Opt., 27(1), 115–131, 2014.

3. L. Epstein, E. Kleiman, Resource augmented semi-online bounded space bin packing.
Discrete Appl. Math., 157, 2785-2798, 2009.

4. G. Galambos, Parametric Lower Bound for online Bin Packing, SIAM J. on Alg. and Discr.
Meth., 7, 362–367, 1986.

14 József Békési, Gábor Galambos

5. G. Galambos, G. J. Woeginger, Repacking helps in bounded space online bin packing,
Computing, 49, 329–338, 1993.

6. E.F. Grove: Online bin packing with lookahead. In: Proceedings of the sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, 430–436, 1995.

7. G. Gutin, T. Jensen, A. Yeo: Batched bin packing, Discrete Optimization, 2(1), 71–82,
2005.

8. S. Heydrich, R. van Stee: Beating the Harmonic Lower Bound for Online Bin Packing. In:
Y. Rabani, I. Chatzigiannakis, M. Mitzenmacher and D. Sangiorgi, editors, ICALP 2016,
vol. 55 of Leibniz International Proceedings in Informatics, pages 41:1-41:14, 2016.

9. D.S. Johnson: Near-optimal bin-packing algorithms. Doctoral Thesis, MIT, Cambridge,
1973.

10. S. Seiden, On the online bin packing problem, Journal of ACM, 49, 640–671, 2002.
11. J. Sylvester, On a Point in the Theory of Vulgar Fractions, American Journal of Mathe-

matics, 3, 332–335, 1880.
12. A. van Vliet, An Improved Lower Bound for online Bin Packing Algorithms, Inf. Proc.

Letters, 43, 274–284, 1992.
13. M. Zhang, X. Han, Y. Lan, H-F. Ting, Online bin packing problem with buffer and bounded

size revisited, Journal of Combinatorial Optimization, 33(2),530–542, 2017.
14. F. Zheng, L. Huo, E. Zhang, NF-based algorithms for online bin packing with buffer and

bounded item size. Journal of Combinatorial Optimization, 30(2),360–369, 2015.

	Introduction
	Preliminaries
	An improved lower bound
	The Algorithm
	Conclusions

