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Abstract

We investigate special cases of the quadratic minimum spanning tree
problem (QMSTP) on a graph G = (V,E) that can be solved as a linear
minimum spanning tree problem. Characterization of such problems on
graphs with special properties are given. This include complete graphs,
complete bipartite graphs, cactuses among others. Our characterization
can be verified in O(|E|2) time. In the case of complete graphs and when
the cost matrix is given in factored form, we show that our characterization
can be verified in O(|E|) time. Related open problems are also indicated.

Keywords: Minimum spanning tree, quadratic 0-1 problems, quadratic
minimum spanning tree, polynomially solvable cases, linearization.

1 Introduction

The minimum spanning tree problem (MSTP) is well studied in the combi-
natorial optimization literature. A generalization of this problem, called the
quadratic minimum spanning tree problem (QMSTP), recently received consid-
erable attention from the research community. Some of these papers focus on
exact algorithms [2, 23] while the majority of published works deal with heuristic
algorithms [5, 9, 16, 20, 21, 27, 31]. Isolated results on some theoretical prop-
erties of the problem are also available. Special cases of QMSTP studied in the
literature include multiplicative objective functions [11, 14, 19], spanning trees
with conflict constraints [7, 30], and spanning tree problems with one quadratic
term [3, 8]. Some polynomially solvable special cases of QMSTP are discussed
in [29] along with various complexity results.

Let G = (V,E) be a graph such that |V | = n and E = {1, 2, . . . ,m}. For
each (e, f) ∈ E × E a cost q(e, f) is prescribed. Let F be the family of all
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spanning trees of G and Q be the m × m matrix with its (i, j)-th element as
q(i, j). For each T ∈ F its cost Q(T ) is given by

Q(T ) =
∑
e∈T

∑
f∈T

q(e, f).

Note that the notation e ∈ T means e belongs to the edge set of T . Then
the QMSTP is to find a spanning tree T in F such that Q(T ) is as small as
possible. Similarly, for each T ∈ F , let C(T ) =

∑
e∈T c(e), where c(e) is a

prescribed cost of edge e ∈ E. Given a cost matrix Q, the quadratic spanning
tree linearization problem (QST-LP) is to determine if there exists a linear cost
vector C = (c(1), c(2), . . . , c(m)) such that Q(T ) = C(T ) for all T ∈ F . If the
answer to this decision problem is ‘yes’, the quadratic cost matrix Q is said to
be linearizable and C is called a linearization of Q. Note that |F| could be as
large as nn−2 and hence QST-LP is a non-trivial problem. In fact, there is no
immediate direct way to test if QST-LP belongs to NP.

The linearization problem for the quadratic assignment problem (QAP) was
considered by Kabadi and Punnen [13], Adams and Wadell [1], and Çela et
al. [4]. The special case of Koopmans-Beckman QAP linearization problem
was studied by Punnen and Kabadi [24] and Çela et al. [4]. In this paper, we
provide a characterization of linearizable instances of QMSTP on a wide class
of graphs, including the complete graph, complete bipartite graph, cactus etc.
Our characterization can be tested in O(m2) time. Also an O(n) algorithm for
recognizing an n × n sum matrix represented in factored form is given. In the
case of complete (bipartite) graphs, this leads to an O(m) algorithm to test if
symmetric matrix Q is linearizable when represented in factored form. As a
byproduct of these results, we have new polynomially solvable special cases of
the QMSTP.

2 Preliminaries

QMSTP is well known to be strongly NP-hard. In fact, it is NP-hard even if
Q is of rank one [25]. A special case of the rank one QMSTP is called the
multiplicative minimum spanning tree problem (MMSTP) considered by various
authors [11, 14, 15, 19, 20, 25, 26, 28]. The MMSTP on the graph G can be
stated as

Minimize

(∑
e∈T

d1e + δ1

)(∑
e∈T

d2e + δ2

)
Subject to T ∈ F ,

where d1e, d
2
e are two prescribed weights of the edge e ∈ E and δ1, δ2 are con-

stants. If
(∑

e∈T d
1
e + δ1

)
> 0 and

(∑
e∈T d

2
e + δ2

)
> 0 for all T ∈ F , MMSTP

can be solved in polynomial time using the parametric minimum spanning tree
problem [15, 20, 25, 26, 28]. If d1e, d

2
e are allowed to take any real values, then
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MMSTP is known to be NP-hard [25]. We now observe that MMSTP is NP-hard
even if d1e, d

2
e ≥ 0 but δ1 and δ2 are arbitrary.

Theorem 1. The MMSTP is NP-hard even if d1e, d
2
e ≥ 0 for all e ∈ E.

Proof. We reduce the subset sum problem to the MMSTP. The subset sum
problem can be stated as follows. Given non-negative numbers a1, a2, . . . , an
and a constant K, determine if there exists a subset S of {1, 2, . . . , n} such
that

∑
i∈S ai = K. From an instance of subset sum problem, we construct an

instance of MMSTP as follows. For each i = 1, 2, . . . , n create a 3-cycle on nodes
vi1, v

i
2, v

i
3. Link these 3-cycles using the path v11 − v21 − · · · − vn1 . For the edge

ei12 = (vi1, v
i
2) assign cost d1

ei12
= ai, i = 1, 2, . . . , n. For any other edge e, we

set d1e = 0. Choose the vector d2 = d1 and δ1 = δ2 = −K. It can be verified
that the resulting MMSTP has an optimal spanning tree with objective function
value zero if and only if the subset sum problem has a solution. The result now
follows from the NP-completeness of the subset sum problem.

We continue this section by presenting some useful basic facts about the
QMSTP.

Let Mm×m be the vector space of all real valued m×m matrices. The set of
linearizable quadratic cost matrices for QMSTP on a given graph with m edges
forms a subspace of Mm×m. As a consequence we have the following.

Observation 2. Let Q1 and Q2 be two cost matrices for the QMSTP on a
graph G. If Q1 and Q2 are linearizable, then αQ1 + βQ2 is also linearizable for
any scalars α and β. Furthermore, if C1 is a linearization of Q1 and C2 is a
linearization of Q2, then αC1 + βC2 is a linearization of αQ1 + βQ2.

A square matrix A is said to be a skew-symmetric matrix if AT = −A.

Observation 3. If Q is a cost matrix for the QMSTP on a graph G, A is any
skew-symmetric matrix and D is a diagonal matrix, all of the same size, then
Q is linearizable if and only if Q+A+D is linearizable.

It may be noted that if Q is skew-symmetric then Q(T ) = 0 for any spanning
tree T . Thus a skew-symmetric matrix is linearizable for any graph G.

Observation 4. If Q is a cost matrix for the QMSTP on a graph G. Then
Q is linearizable if and only if 1

2 (Q + QT ) is linearizable. Furthermore, C is a
linearization of Q if and only if C is a linearization of 1

2 (Q+QT ).

Proof. Note that Q = 1
2 (Q−QT )+ 1

2 (Q+QT ). As 1
2 (Q−QT ) is skew-symmetric,

the result follows from Observation 2, Observation 3 and the fact that the null-
vector is a linearization of a skew-symmetric matrix.

As noted earlier, any skew-symmetric matrix is linearizable regardless the
structure of the underlaying graph. We now observe that if the underlying graph
is a cycle, then the resulting QMSTP is linearizable regardless the structure of
the cost matrix Q.
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Theorem 5. QMSTP on a cycle is linearizable for any cost matrix Q. Further,
the linearization C = (c(1), c(2), . . . , c(n)) is given by

c(e) = q(e, e) +
∑

i∈E\{e}

(q(i, e) + q(e, i))−
∑

i∈E
∑

j∈E,j 6=i q(i, j)

n− 1
. (1)

Proof. Let G be a cycle with edges e1, e2, . . . , en. Then the spanning trees of
G are precisely T1, T2, . . . , Tn where Ti = G \ {ei}. We need to find a vector
C = (c(1), c(2), . . . , c(n)) such that∑

e∈Ti

c(e) = Q(Ti)

for all i = 1, . . . , n. Equivalently, we want to find a solution to the linear system
above, where the variables being c(1), c(2), . . . , c(n). It can be verified that the
coefficient matrix is invertible and hence the system has a unique solution. The
formula for the linearization can be verified by simple algebra.

The following is an immediate corollary of Theorem 5.

Corollary 6. The QMSTP is linearizable for any cost matrix Q on the graph
T ∪ {e} where T is a tree and e is an edge (not necessarily in T ) joining two
vertices of T .

Note that the result of Theorem 5 can be extended to any real valued objec-
tive function for a spanning tree, not simply the quadratic objective function.

We conclude this section with few more definitions and observations that we
make use later in this paper.

Definition 7. An n1 × n2 matrix H = (h(i, j)) is called a sum matrix if there
exist vectors a = (a(1), a(2), . . . , a(n1)) and b = (b(1), b(2), . . . , b(n2)) such that
h(i, j) = a(i)+b(j) for all i = 1, . . . , n1, j = 1, . . . , n2. A square matrix is called
a weak sum matrix if the relation above is not mandatory for the elements on
the diagonal.

Note that if an n × n square sum matrix H = (h(i, j)) is symmetric, then
h(i, j) = a(i)+a(j) for all i, j = 1, 2, . . . , n, for some vector a = (a(1), . . . , a(n)).
Similarly, if an n × n square weak sum matrix H = (h(i, j)) is symmetric,
then h(i, j) = a(i) + a(j) for all i, j = 1, 2, . . . , n, i 6= j, for some vector a =
(a(1), . . . , a(n)).

Definition 8. A maximal biconnected subgraph of a simple graph G is called a
biconnected component of G.

The following fact is straightforward to prove, for example see [6, Ch. 5, p.
101].

Proposition 9. An instance of the MSTP on a graph G has the property that
every spanning tree has the same cost, if and only if all edges from the same
biconnected component of G have the same cost.
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Note that 1
2 (Q + QT ) is a symmetric matrix. Thus in view of Observa-

tion 4 hereafter we assume without loss of generality that the cost matrix Q is
symmetric.

3 Characterization of Linearizable QMSTP

In this section we investigate characterizations of linearizable QMSTP instances
on various graph classes. Our findings are summarized in Theorem 17. We begin
with a sufficient condition.

Lemma 10. Let Q be a symmetric cost matrix of the QMSTP on a graph
G = (V,E) such that for every pair I, J of biconnected components of G, the
submatrix of Q defined by rows I and columns J is a sum matrix if I 6= J , or a
symmetric weak sum matrix if I = J . Then Q is linearizable and a linearization
of Q can be computed in O(|E|2) time.

Proof. Let Q be a symmetric matrix that satisfies the hypothesis of the lemma.
Then Q can be expressed as

Q = A+AT +D, (2)

where D = (d(i, j)) is a diagonal matrix, and matrix A = (a(i, j)) has the
property that a(i, j) = a(i, k) if j and k are edges from the same biconnected
component. Note that matrices A and D can be found in O(|E|2) time. From
Proposition 9 it follows that an MSTP instance defined by any row of A (i.e.
for some fixed row i we define the length of an edge j to be a(i, j)) has the
property that every spanning tree has the same cost. Let r(i) denotes the
constant objective function value of the MSTP corresponding to the i-th row of
A. Then the objective value of the QMSTP for some spanning tree T is

Q(T ) =
∑
e∈T

∑
f∈T

(a(e, f) + a(f, e) + d(e, f))

=
∑
e∈T

∑
f∈T

(a(e, f) + a(f, e)) +
∑
e∈T

d(e, e)

=
∑
e∈T

(r(e) + r(e)) +
∑
e∈T

d(e, e)

=
∑
e∈T

(2r(e) + d(e, e)).

Hence, by setting
c(i) := 2r(i) + d(i, i) (3)

we obtain a linearization of Q. Note that the choice of matrix A is not always
uniquely determined, hence a linearization is not necessarily unique.

Next, we present characterizations of linearizable instances of QMSTP for
some special types of graphs. We start with the complete graph. In this case,
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the linearization characterization shows that Q must be a weak sum matrix,
which, according to Lemma 10, is the most restrictive possible characterization.

Theorem 11. A symmetric cost matrix Q of the QMSTP on a complete graph
Kn is linearizable if and only if it is a symmetric weak sum matrix. Further, a
linearization of a linearizable symmetric matrix Q is given by (3).

Proof. If Q is a weak sum matrix, then from Lemma 10 it follows that Q is
linearizable and a linearization is given by (3). Note that in the case of a
complete graph Kn, entries of the matrix A in the expression (2) are the same
for every fixed row. Hence, r(i) = (n− 1)a(i, j) for any column j.

Next we assume that Q is linearizable. For n ≤ 3 every corresponding
symmetric square cost matrix is a symmetric weak sum matrix, hence we can
assume that n ≥ 4.

Consider an
(
n
2

)
×
(
n
2

)
sum matrix M = (m(i, j)) of the form m(i, j) =

a(i) + a(j), where a(1) = 0 and a(i) = q(i, 1) for i = 2, . . . ,
(
n
2

)
. By subtracting

M and an appropriate diagonal matrix from Q, we could obtain zeros on the
first row, the first column and the diagonal. By Lemma 10 M is linearizable, and
furthermore, any diagonal matrix is linearizable. Hence, from Observation 2 it
follows that without loss of generality we can assume that elements of the first
row, the first columns and the diagonal of Q are equal to zero. In that case, Q
is a weak sum matrix if and only if all elements of Q that are not in the first
row, the first column or on the diagonal, have the same value.

Now we assume the contrary, i.e. there are two elements of Q (not in the
first row/column or on the diagonal) that have different values. Moreover, due
to the symmetry of Q, there is a row b that contains such two distinct value
elements q(b, x) and q(b, y). As any element of row b (except q(b, 1) and q(b, b))
can be a member of such pair, without loss of generality we can assume that
edges 1 and x are nonadjacent.

Next show that there exists a cycle C1 that contains edges 1 and b, and a cycle
C2 that contains edges x and y with the following property: C1 ∪ C2 \ {e, f}
does not contains a cycle for all e ∈ {1, b}, f ∈ {x, y}. Namely, in the case
when there are no two pairs of edges from {1, b} × {x, y} that are adjacent,
it is straightforward to construct C1 and C2 that are edge disjoint and satisfy
the above property, see Figure 1(a). In the case when there are at least two

b

y
x

1

(a)

x

y b

1

(b)

x

y b

1

(c)

1

y x

b

(d)

Figure 1: Configurations of {1, b, x, y} and corresponding C1 ∪ C2

pairs of edges from {1, b} × {x, y} that are adjacent, every possible 1, b, x, y

6



configuration instances can be reduced to only two cases presented in Figure 1(b)
and Figure 1(c). These reductions consist of symmetries (defined by exchanging
sets {1, b} and {x, y}, and by exchanging elements inside of those two sets), and
edge contractions (that can induce more incidences and only make the case more
complicated). These configurations in Figure 1(b) and Figure 1(c) are extended
with a (dashed) edge that constitutes feasible C1 and C2. Note that we used
the fact that 1 and x are nonadjacent, otherwise there are instance for which
C1 and C2 with the property above do not exist, see Figure 1(d).

Let T be a minimum cardinality set of edges of a tree connected to both C1

and C2 that spans the remaining vertices. Then we define B to be T ∪C1∪C2 \
{1, b, x, y}. It is easy to see that B extended by any two edges e ∈ {1, b} and
f ∈ {x, y} forms a spanning tree.

Let C = (c(i)) be a cost vector that linearizes Q. Since both B ∪ {b, x} and
B ∪ {1, x} form a spanning tree, we have that

C(B ∪ {b, x})− C(B ∪ {1, x}) =
∑

e∈B∪{b,x}

c(e)−
∑

e∈B∪{1,x}

c(e) = c(b)− c(1).

Analogously, C(B ∪ {b, y})− C(B ∪ {1, y}) = c(b)− c(1), hence

Q(B ∪ {b, x})−Q(B ∪ {1, x}) = Q(B ∪ {b, y})−Q(B ∪ {1, y}). (4)

Now let us express the cost of the spanning tree B ∪ {b, x} in terms of the
quadratic cost matrix Q. Since q(e, e) = 0 ∀e, we have

Q(B ∪ {b, x}) =
∑

e∈B∪{b,x}

∑
f∈B∪{b,x}

q(e, f)

=
∑
e∈B

∑
f∈B

q(e, f) +
∑
e∈B

2q(b, e) +
∑
e∈B

2q(x, e) + 2q(b, x).

Since q(1, e) = 0 ∀e we analogously have

Q(B ∪ {1, x}) =
∑
e∈B

∑
f∈B

q(e, f) +
∑
e∈B

2q(x, e).

Therefore

Q(B ∪ {b, x})−Q(B ∪ {1, x}) =
∑
e∈B

2q(b, e) + 2q(b, x). (5)

Analogously

Q(B ∪ {b, y})−Q(B ∪ {1, y}) =
∑
e∈B

2q(b, e) + 2q(b, y). (6)

Then from (4), (5) and (6) follows that q(b, x) = q(b, y) which is a contradiction
to our choice of b, x and y.
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Next we will generalize the approach above to obtain a characterization of
linearizable cost matrices for QMSTP for a more general class of graphs (see
Theorem 17). First we present a tool which is used to prove such characteriza-
tions.

Definition 12. Let a, b, x and y be distinct edges of a simple graph G with n
vertices. We say that a set B of n−3 edges is an {a, b}-{x, y}-backbone of G if
adding any two edges e ∈ {a, b} and f ∈ {x, y} to B generates a spanning tree
of G.

Lemma 13. Let Q be a linearizable symmetric cost matrix of the QMSTP on
a simple graph G, and let a and x be two fixed distinct edges of G. If for all
additional edges b and y there exist a sequence of k ≥ 2 edges z1, z2, . . . , zk such
that x = z1, y = zk and there exists an {a, b}-{zi, zi+1}-backbone Bi for every
i = 1, . . . , k − 1, then Q is a symmetric weak sum matrix.

Proof. Let Q be linearizable and let a, b, x, y be four distinct edges such that
there exists {a, b}-{x, y}-backbone B. Since Q is linearizable it follows that

Q(B ∪ {b, x})−Q(B ∪ {a, x}) = Q(B ∪ {b, y})−Q(B ∪ {a, y}). (7)

Namely, by expressing spanning tree objective values from (7) with a lineariza-
tion costs C = (c(i)), one gets c(b)− c(a) = c(b)− c(a). However, by expressing
spanning tree objective vales from (7) with quadratic costs Q = (q(i, j)), one
gets

q(b, x)− q(a, x) = q(b, y)− q(a, y).

Now assume that a and x are fixed and there exist edges b, y and z1, . . . , zk
with z1 = x, zk = y, such that there exists {a, b}-{zi, zi+1}-backbone Bi for
every i = 1, . . . , k−1. Then by the same reasoning as above for all i = 1, . . . , k−
1, we obtain the following system of equations:

q(b, x)− q(a, x) = q(b, z2)− q(a, z2),

q(b, z2)− q(a, z2) = q(b, z3)− q(a, z3),

...

q(b, zk−1)− q(a, zk−1) = q(b, y)− q(a, y).

As the right-hand side of every i-th equation is identical to the left-hand side
of (i + 1)-th equation, it follows that q(b, x) − q(a, x) = q(b, y)− q(a, y), which
can be rearranged to

q(b, y) = q(b, x) + q(a, y)− q(a, x). (8)

Note that (8) is satisfied also for b = a or y = x.
By the assumption of the lemma, we can obtain (8) for all b and y, therefore

it follows that q(b, y) is a sum of a function of b and a function of y (as a and x
are fixed), i.e.

q(i, j) = s(i) + t(j) ∀i 6= j,

8



for some vectors s = (s(i)) and t = (t(i)). As Q is symmetric it follows that

q(i, j) = w(i) + w(j) ∀i 6= j,

for some vector w = (w(i)), which proves the lemma.

Note that Theorem 11 can be proven using Lemma 13 and the fact that if a
and x are two nonadjacent edges of a complete graph, then for any other pair
of edges b and y there exists an {a, b}-{x, y}-backbone.

Corollary 14. Let Q be a linearizable symmetric cost matrix of the QMSTP
on a simple graph G. Let I and J be two disjoint sets of edges of G, and let
a ∈ I and x ∈ J be two fixed edges. Let QIJ be the submatrix of Q defined by
rows I and columns J . If for all additional edges b ∈ I and y ∈ J there exist a
sequence of k ≥ 2 edges z1, z2, . . . , zk such that x = z1, y = zk and there exists
an {a, b}-{zi, zi+1}-backbone Bi for every i = 1, . . . , k − 1, then QIJ is a sum
matrix.

Proof. The proof is similar as that of Lemma 13.

In the majority of cases we use Lemma 13 and Corollary 14, k will be equal
to 2, i.e. we will not need additional edges zi.

Given the edges a, b, x and y, usually we try to build an {a, b}-{x, y}-
backbone in the following way. We aim to find a cycle C1 that contains a and
b and a cycle C2 that contains x and y, such that if intersection of C1 and C2

is nonempty, then it is connected and does not contains a pair of edges from
{a, b} × {x, y}. We call such C1 and C2 as feasible backbone cycles for a, b, x,
and y. For feasible backbone cycles C1 and C2, (C1 \ {a, b}) ∪ (C2 \ {x, y})
extended by a tree which is connected to C1 and C2 and spans the remaining
set of vertices, forms an {a, b}-{x, y}-backbone.

Lemma 15. A symmetric cost matrix Q of the QMSTP on a complete bipartite
graph Kn1,n2

with min{n1, n2} ≥ 3, is linearizable if and only if Q is a sym-
metric weak sum matrix. A linearization of a lineariable symmetric matrix Q
is given by (3).

Proof. If Q is a weak sum matrix, then from Lemma 10 it follows that Q is
linearizable and a linearization is given by (3). Note that in the case of the
complete bipartite graph Kn1,n2 , entries of the matrix A in the expression (2)
are the same for every fixed row. Hence, r(i) = (n1 + n2 − 1)a(i, j) for any
column j.

Let min{n1, n2} ≥ 3 and assume that Q is linearizable. We fix two arbitrary
nonadjacent edges a and x. We will show that for any two additional edges b
and y, (b 6= y) conditions of Lemma 13 are satisfied, which completes the proof.

In Figure 2 all possible essentially different configurations of incidences be-
tween a, b, x and y, up to symmetries, are presented. (The symmetries are
defined by exchanging sets {a, b} and {x, y}, and by exchanging elements in-
side of those two sets.) Configurations in Figure 2 are of two types. In the
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b y

x

(a)

a

b

y

x

(b)

a

b

y

x

(c)

a

y

b

x

(d)

a

y

b

x

z

(e)

a

y

x

b

(f)

a

x

b

y

(g)

a
y

b

x

z

(h)

a

b

y

x

(i)

a

by

x

z

(j)

a

b
y

x

(k)

a

y
b

x

(l)

a

x

b

y

(m)

Figure 2: The a, b, x, y configurations

cases where we apply Lemma 13 with k = 2, the configurations are extended by
(dashed) edge(s) that form feasible backbone cycles. In other cases we use one
auxiliary edge of Lemma 13 (k = 3), therefore configurations are extended by
the edge z which plays the role of z2 in Lemma 13.

In the previous lemma, linearization characterization only for min{n1, n2} ≥
3 is given. Note that for configurations in Figure 2(e), 2(h), 2(i), 2(j), 2(k), 2(e)
and 2(m), we actually use the fact that min{n1, n2} ≥ 3. If min{n1, n2} < 3,
linearizable cost matrix Q is not necessary a weak sum matrix. Namely, if n1
or n2 equals to 1, Kn1,n2

is a tree, and if n1 = n2 = 2, Kn1,n2
is a cycle. In

both cases arbitrary Q is linearizable. For the remaining case of n1 = 2 and
n2 ≥ 3, we present the following counterexample of a symmetric matrix Q that
is linearizable but not a weak sum matrix. For i 6= j, cost element q(i, j) is equal
to 1 if edges i and j are adjacent through an n2-set vertex, and 0 otherwise.
Then the linearization costs are given by c(i) = q(i, i) + 2/(n2 + 1).

Lemma 16. Let Q be a linearizable symmetric cost matrix of the QMSTP on
a graph G. Then for every two distinct biconnected components I, J of G,
submatrix of costs q(i, j), i ∈ I, j ∈ J is a sum matrix.

Proof. If I or J is just one edge, i.e. a bridge, then there is nothing to prove,
as every 1× n matrix is a sum matrix. In the rest of the proof we assume that
min{|I|, |J |} ≥ 3.

We will again make use of backbones. First we fix two edges a ∈ I and
x ∈ J . It is easy to see that for every pair of additional edges b ∈ I and
y ∈ J there exist an {a, b}-{x, y}-backbone. Namely, in every biconnected
component, there exist a cycle that contains any pair of edges. Hence, there
exist a cycle in I that contains a and b, and a cycle in J that contains x and
y. As their intersection contains at most one vertex, they are feasible backbone
cycles. Hence, by Corollary 14, the lemma follows.

10



Lemma 10, 15, 16 and Theorem 5 and 11 can be combined to produce the
linearization characterization for more general class of graphs.

Theorem 17. Let G be a graph such that its every biconnected component is
either a clique, a cycle or a biclique (with vertex partition sets of sizes at least
three). Then a symmetric cost matrix Q of the QMSTP on G is linearizable if
and only if the submatrices of Q that correspond to different biconnected compo-
nents are sum matrices, and submatrices that correspond to single biconnected
components that are either a clique or a biclique are symmetric weak sum ma-
trices. Furthermore, if Q is linearizable, a linearization can be computed in
O(|E|2) time.

Proof. Let Q be of the form described in the theorem. We denote by k the num-
ber of biconnected components of G that are cycles. Then Q can be expressed
as Q = M + B1 + · · · + Bk, where M satisfies the hypothesis of Lemma 10,
and Bi is a matrix in which all entries that are not in the submatrix defined by
the i-th cycle, are equal 0. Note that matrices M and Bi, i = 1, . . . , k, can be
found in O(|E|2) time. From Lemma 10 it follows that M is linearizable and its
linearization vector CM can be computed by (3). From Theorem 5, it follows
that for every i = 1, . . . , k, Bi is linearizable and its linearization CBi is given
by (1). Therefore by Observation 2, Q is also linearizable and its linearization
vector is given by C = CM + CB1

+ · · ·+ CBk
.

Conversely, if Q is linearizable then it has to be of the form described in the
theorem. This follows directly from Lemma 16 and the proofs of Theorem 11
and Lemma 15. Namely, backbones of biconnected components can be extended
into backbones of G by adding edges that span remaining vertices.

We present an example that illustrates Theorem 17. Let G = (V,E) be the
graph presented by Figure 3(a). Graph G has four biconnected components
with its corresponding edge sets being E1 = {e1, e2, e3}, E2 = {e4}, E3 =
{e5, e6, e7, e8, e9, e10} and E4 = {e11}. Let the symmetric matrix Q = (q(i, j)),
presented in Figure 3(b), be a QMSTP cost matrix associated to G, such that
q(i, j) is the QMSTP cost associated to the edge pair (ei, ej). We denote by
QEiEj

the submatrix of Q consisting of elements q(k, `) for ek ∈ Ei and e` ∈ Ej .
In Figure 3(b), Q is divided into submatrices QEiEj

, i, j ∈ {1, . . . , 4}, using
dashed lines.

Biconnected components E1, . . . , E4 are cycles and cliques, so according to
Theorem 17, matrix Q is linearizable if and only if submatrices QEiEj

have
some specific properties. In particular, submatrices that correspond to a pair
of different biconnected components, i.e. QEiEj

with i 6= j, have to be subma-
trices. There are 12 such submatrices, and 10 of them have one row and/or
one column in which case sum matrix property is trivially satisfied. The re-
maining 2 submatrices are QE1E3 and QE3E1 . Since Q is symmetric, they are
transpose of each other, hence it is enough to check sum matrix property only
for one of them. Indeed they are sum matrices, since they are a sum of vectors
(3, 2, 4) and (1, 3, 0, 5, 2, 4). It remains to check the remaining 4 submatrices
QEiEi

, i ∈ {1, . . . , 4}. If Ei is a clique or (big enough) biclique then we need
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e1

e2 e3
e4

e5

e6

e7

e8

e9

e10

e11

(a)



1 4 8 7 4 6 3 8 5 7 9
4 2 9 2 3 5 2 7 4 6 9
8 9 3 4 5 7 4 9 6 8 0
7 2 4 8 0 9 3 6 6 3 2
4 3 5 0 5 4 5 8 3 7 3
6 5 7 9 4 2 3 6 1 5 3
3 2 4 3 5 3 1 7 2 6 4
8 7 9 6 8 6 7 5 5 9 5
5 4 6 6 3 1 2 5 8 4 6
7 6 8 3 7 5 6 9 4 7 0
9 9 0 2 3 3 4 5 6 0 2


(b)

Figure 3: A linearizable QMSTP instance

to check whether QEiEi
is a weak sum matrix. If Ei is a cycle then there are

no necessary conditions on QEiEi . Edges E1 form the complete graph on three
vertices, but in the same time E1 forms a cycle. This is not in contradiction, as
every symmetric 3 × 3 matrix is a weak sum matrix. Biconnected components
E2 and E4 are trivial cliques, hence the weak sum property of QE2E2

and QE4E4

is trivially satisfied. E3 is a complete graph, hence it remains to check whether
QE2E2 is a weak sum matrix. It is easy to see that QE2E2 is a symmetric weak
sum matrix generated by the vector a = (3, 1, 2, 5, 0, 4), i.e. for i 6= j, i-th row
and j-th column of the submatrix QE2E2

contains the value ai + aj . We see
that all submatrices satisfy necessary properties, therefore Q is linearizable.

At this point, it is straightforward to obtain a linearization of Q. We can
express Q as Q = M + B1, where M is the matrix obtained from Q by re-
placing elements in the submatrix QE1E1 by 0. Matrix M satisfies Lemma 10,
and its linearization vector CM can be calculated as described in the proof
of Lemma 10 using vectors obtained in the analysis above. Furthermore, B1

is linearizable and its linearization vector CB can be calculated as described
in Theorem 5. Then vector C = CM + CB is a linearization of Q. And
C = (54, 41, 48, 12, 23, 42, 23, 67, 40, 45, 2) is one such vector in the case of matrix
Q.

4 Recognition of Linearizable QMSTP

Theorem 17 gives us a solution for the quadratic spanning tree linearization
problem (QST-LP) for the class of graphs in which every biconnected component
is either a clique, a biclique or a cycle. Given such graph G = (V,E), one can
find in linear time its biconnected components (see [12]), and determine which
type they are. Now for a given (not necessary symmetric) cost matrix Q, from
Observation 4 if follows that Q is linearizable if and only if the symmetric matrix
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1
2 (Q + QT ) is linearizable. According to Theorem 17, to determine whether Q
is linearizable we need to check whether appropriate submatrices of 1

2 (Q+QT )
are sum matrices or symmetric weak sum matrices. In worst case this takes
Θ(|E|2) time, since potentially every element of Q which is not on the main
diagonal has to be examined. Next we examine whether the recognition can be
done faster if the cost matrix is given in the factored form.

Let M = (m(i, j)) be an n × n matrix of rank p. Then the elements of M
are of the form

M(i, j) =

p∑
k=1

aki b
k
j , (9)

for some vectors ak and bk, k = 1, . . . , p. Hence, an n×n matrix of a rank p can
be represented with 2pn values. We say that (9) is a factored form representation
of matrix M .

Note that every sum matrix can be written as the sum of a constant row
matrix and a constant column matrix. Since rank(M1 + M2) ≤ rank(M1) +
rank(M2) for every matrices M1 and M2, it follows that every sum matrix
has the rank at most 2. Therefore, the problem of recognizing sum matrices
represented in a factored form (9) is reduced to the following question. Given
ai, bi, ci, di, i = 1, . . . , n, is it possible to decide in O(n) time whether the matrix
M = (m(i, j)) with m(i, j) = aibj+cidj is a sum matrix? An affirmative answer
to this question follows from the following theorem.

Theorem 18. Let an n × n matrix M = (m(i, j)) be of the form m(i, j) =
aibj + cidj, i, j = 1, . . . , n.

• If at least one of the vectors a, b, c, d is a constant vector, then M is a sum
matrix if and only if a or b is a constant vector, and c or d is a constant
vector.

• If none of the vectors a, b, c, d is a constant vector, then M is a sum
matrix if and only if there exist three constants K 6= 0, K1 and K2 such
that ai = Kci +K1 and di = −Kbi +K2, i = 1, . . . , n.

Proof. Let a matrix M = (m(i, j)) be of the form m(i, j) = aibj + cidj . Let
us assume M is a sum matrix, i.e. there exist two vectors e and f such that
m(i, j) = ei + fj , i, j = 1, . . . , n. Then for arbitrary i, j, k, ` ∈ {1, . . . , n}

m(i, k)−m(i, `) = fk − f` and m(j, k)−m(j, `) = fk − f`.

Hence m(i, k) −m(i, `) = m(j, k) −m(j, `). Now from m(i, j) = aibj + cidj it
follows that

aibk + cidk − aib` − cid` = ajbk + cjdk − ajb` − cjd`,

which can be rearranged to

ai(bk − b`) + ci(dk − d`) = aj(bk − b`) + cj(dk − d`).

13



Finally, we get a necessary condition that if M is a sum matrix then

(ai − aj)(bk − b`) = −(ci − cj)(dk − d`), (10)

for every i, j, k, ` ∈ {1, . . . , n}. Now we divide our investigation into two cases.
Case 1: At least one of the vectors a, b, c, d is a constant vector. Without

loss of generality we can assume that a is a constant vector. From (10) it follows
that

(ci − cj)(dk − d`) = 0 ∀i, j, k, ` ∈ {1, . . . , n}. (11)

Hence either c or d is a constant vector. Otherwise there would exist i, j for
which ci − cj 6= 0, and k, ` for which dk − d` 6= 0 which would contradict (11).

Note that this is also a sufficient condition. Let us assume ai = α and di = δ,
i = 1, . . . , n. Then,

m(i, j) = αbj + ciδ = ei + fj ∀i, j ∈ {1, . . . , n},

where ei := δci and fi := αbi, i = 1, . . . , n. In the case when c (instead of d) is
a constant vector, in a similar way one gets that M is a sum matrix.

Case 2: None of the vectors a, b, c, d is a constant vector. Assume that
there are two elements of vector a that are the same, i.e. there exist i, j, i 6= j
such that ai = aj . Then for the same i, j ci = cj holds. Assume the contrary,
i.e. ai = aj and ci 6= cj . As d is not a constant vector, there exist k, ` such
that dk 6= d`. Now for such i, j, k, `, equation (10) does not hold, which is a
contradiction. Hence, ai = aj if and only if ci = cj . Using the same logic, for
all i, j ∈ {1, . . . , n}, bi = bj if and only if di = dj .

Let N1 ⊆ {1, . . . , n} be a maximal set of indices i for which ai’s (and ci’s)
are pairwise distinct. That is, for every i, j ∈ N1, i 6= j, it follows that ai 6= aj
(and hence ci 6= cj also). Let N2 be a set of indices with the same property for
vectors b and d. Now from (10) it follows that

ai − aj
ci − cj

= −dk − d`
bk − b`

,

for every distinct i, j ∈ N1 and k, ` ∈ N2. By fixing some distinct k, ` ∈ N2, it
follows that (ai−aj)/(ci−cj) is a nonzero constant (which we denote by K) for
every distinct i, j ∈ N1. Analogously, it follows that (dk − d`)/(bk − b`) = −K
for every distinct k, ` ∈ N2. Hence

ai − aj = K(ci − cj) = Kci −Kcj ∀i, j ∈ N1,

from which it follows that ai = Kci + K1 for some constant K1 and for all
i ∈ N1. Note that from the way we defined N1, this relation can be extended
to entire {1, . . . , n}, i.e. we have that

ai = Kci +K1 i = 1, . . . , n, (12)

for some constants K 6= 0 and K1. Analogously we obtain that

di = −Kbi +K2 i = 1, . . . , n, (13)
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for some additional constant K2.
Note that (12) and (13) are sufficient conditions also. Namely

m(i, j) = aibj + cidj

= (Kci +K1)bj + ci(−Kbj +K2)

= K2ci +K1bj

is a sum matrix relation.

Corollary 19. Given ai, bi, ci, di, i = 1, . . . , n, it is possible to decide in O(n)
time whether the square matrix M = (m(i, j)) with m(i, j) = aibj + cidj is a
sum matrix.

Proof. It follows directly form the statement and the proof of Theorem 18.
Namely, the following is an O(n) time algorithm.

First we check whether any of the vectors a, b, c, d are a constant vectors. If
so, then M is a sum matrix if and only if a or b is a constant vector, and c or
d is a constant vector. Else, find i and j such that ai − aj 6= 0 and define K to
be K = (ai − aj)/(ci − cj). Furthermore, define K1,K2 to be K1 = a1 −Kc1
and K2 = d1 + Kb1. Then M is a sum matrix if and only if (12) and (13) are
satisfied.

In the case of complete graphs, the following result on the recognition of
linearizable cost matrices represented in factored form straightforwardly holds.

Corollary 20. Let G = (V,E) be a complete graph or a complete bipartite
graph. Let Q = (q(i, j)) be a symmetric cost matrix of a QMSTP on the graph
G such that q(i, j) = aibj + cidj, i, j = 1, . . . , |E|, i 6= j, for some given vectors
a, b, c, d. Then in O(|E|) time it can be decided whether Q is linearizable, and
if so, a linearization can be calculated in O(|E|) time.

Proof. If follows directly form Corollary 19 and the fact that in the case of
complete (bipartite) graphs, r(i) from (3) can be calculated in O(1) time for
every i = 1, . . . , |E|.

5 Conclusions and Future Work

We investigated the problem of characterizing linearizable QMSTP cost matri-
ces, and we resolved the problem for a broad class of graphs. The main result
is presented as Theorem 17. In particular, given a graph G, Lemma 10 gives a
sufficient condition for a cost matrix to be linearizable, and in the case of com-
plete and complete bipartite graphs, the condition is also necessary. A natural
question that imposes itself is: For which graphs the conditions of Lemma 10
is necessary? In the view of Lemma 16, this question can be rephrased as the
following open problem: For which biconnected graphs a symmetric QMSTP
cost matrix is linearizable only if it is a weak sum matrix.
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In this paper so far we have encountered two types of biconnected graphs
for which a linearizable QMSTP cost matrix does not need to be a weak sum
matrix. These graphs were cycles and complete bipartite graphs K2,n. Note
that both of these graphs classes contain a vertex with degree 2. As a matter
of fact, for every biconnected graph that contains a vertex with degree 2, the
weak sum condition is not necessary. Namely, let G = (V,E) be a biconnected
graph such that p ∈ V is of degree 2 and Ep is the set of two edges adjacent to
p. Then the following symmetric matrix Q = (q(i, j)) given by

q(e, f) =


1/2 if e, f ∈ Ep, e 6= f,

1/(2(n− 3)) if e, f ∈ E \ Ep, e 6= f,

0 otherwise,

is linearizable, but it is not a weak sum matrix. The linearization is given by
c(e) = n−3

n−1 , e ∈ E. (Note that such cost matrices have even stronger property
that the cost of every spanning tree is the same.) Therefore, an interesting
question would be to identify how dense a graph needs to be in order that lin-
earizable cost matrices are necessarily weak sum. Is it enough that the minimum
vertex degree is at least 3?
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