Skip to main content
Log in

On residual approximation in solution extension problems

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

The solution extension variant of a problem consists in, being given an instance and a partial solution, finding the best solution comprising the given partial solution. Many problems have been studied with a similar approach. For instance the Pre-Coloring Extension problem, the clustered variant of the Travelling Salesman problem, or the General Routing Problem are in a way typical examples of solution extension variant problems. Motivated by practical applications of such variants, this work aims to explore different aspects around extension on classical optimization problems. We define residue-approximations as algorithms whose performance ratio on the non-prescribed part can be bounded, and corresponding complexity classes. Using residue-approximation, we classify problems according to their residue-approximability, exhibit distinct behaviors and give several examples and first interesting results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Steps 1, 2, 3 are equivalent to contract the connected component of the forest \({\mathcal {F}}\) by taking the minimum of all edges with a common end-point in \(\mathcal {{\bar{F}}}\).

  2. The Exponential-time hypothesis (Impagliazzo and Paturi 2001; Impagliazzo et al. 2001) states that there is a constant \(c>1\) such that no algorithm solves \(\ell \)-variable 3-Satisfiability in \(O(c^\ell )\) time.

References

  • Ahuja R, Magnanti T, Orlin J (1993) Network flows: theory, algorithms, and applications. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Anily S, Bramel J, Hertz A (1999) A 5/3-approximation algorithm for the clustered traveling salesman tour and path problems. Oper Res Lett 24(1–2):29–35

    Article  MathSciNet  Google Scholar 

  • Applegate DL, Bixby RM, Chvátal V, Cook WJ (2006) The traveling salesman problem. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Arkin EM, Hassin R, Klein L (1997) Restricted delivery problems on a network. Networks 29(4):205–216

    Article  MathSciNet  Google Scholar 

  • Avidor A, Zwick U (2005) Approximating MIN 2-SAT and MIN 3-SAT. Theory Comput Syst 38(3):329–345. ISSN 1433-0490

    Article  MathSciNet  Google Scholar 

  • Bafna V, Berman P, Fujito T (1999) A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J Discrete Math 12(3):289–297

    Article  MathSciNet  Google Scholar 

  • Bar-Yehuda R, Even S (1981) A linear-time approximation algorithm for the weighted vertex cover problem. J Algorithms 2(2):198–203

    Article  MathSciNet  Google Scholar 

  • Bellman R (1962) Dynamic programming treatment of the travelling salesman problem. J ACM 9(1):61–63

    Article  MathSciNet  Google Scholar 

  • Berman P, Karpinski M (2006) 8/7-approximation algorithm for (1, 2)-tsp. In: Proceedings of the 17th annual ACM-SIAM symposium on discrete algorithms, (SODA 2006), pp 641–648. ACM Press

  • Biró M, Hujter M, Tuza Z (1992) Precoloring extension. I. Interval graphs. Discrete Math 100(1–3):267–279

    Article  MathSciNet  Google Scholar 

  • Björklund A, Husfeldt T, Taslaman N (2012) Shortest cycle through specified elements. In: Proceedings of the 23rd annual ACM-SIAM symposium on discrete algorithms (SODA 2012), pp 1747–1753

  • Böckenhauer H, Mömke T, Steinová M (2013) Improved approximations for TSP with simple precedence constraints. J Discrete Algorithms 21:32–40

    Article  MathSciNet  Google Scholar 

  • Cherkassky B, Goldberg AV, Radzik T (1993) Shortest paths algorithms: theory and experimental evaluation. Math Program 73:129–174

    MathSciNet  MATH  Google Scholar 

  • Christofides N (1976) Worst-case analysis of a new heuristic for the travelling salesman problem. TR 388, Graduate School of Industrial Administration, Carnegie Mellon University

  • Gabow HN (1983) An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In: Proceedings of the 15th annual ACM symposium on theory of computing (STOC 1983), pp 448–456. ACM

  • Gabow HN (1990) Data structures for weighted matching and nearest common ancestors with linking. In: Proceedings of the 1st annual ACM-SIAM symposium on discrete algorithms (SODA 1990), pp 434–443. SIAM

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman and Company, San Francisco

    MATH  Google Scholar 

  • Gendreau M, Laporte G, Hertz A (1997) An approximation algorithm for the traveling salesman problem with backhauls. Oper Res 45(4):639–641

    Article  MathSciNet  Google Scholar 

  • Goemans MX, Williamson DP (1994) New 3/4-approximation algorithms for the maximum satisfiability problem. SIAM J Discrete Math 7(4):656–666

    Article  MathSciNet  Google Scholar 

  • Gusfield D, Pitt L (1992) A bounded approximation for the minimum cost 2-SAT problem. Algorithmica 8(2):103–117

    Article  MathSciNet  Google Scholar 

  • Guttmann-Beck N, Hassin R, Khuller S, Raghavachari B (2000) Approximation algorithms with bounded performance guarantees for the clustered traveling salesman problem. Algorithmica 28(4):422–437

    Article  MathSciNet  Google Scholar 

  • Hartvigsen DB (September 1984) Extensions of matching theory. Ph.D. thesis, Department of Mathematics, Carnegie-Mellon University, Pittsburgh

  • Held M, Karp RM (1965) The construction of discrete dynamic programming algorithms. IBM Syst J 4(2):136–147

    Article  Google Scholar 

  • Hujter M, Tuza Z (1993) Precoloring extension. II. Graphs classes related to bipartite graphs. Acta Math Univ Comenian (NS) 62(1):1–11

    MathSciNet  MATH  Google Scholar 

  • Impagliazzo R, Paturi R (2001) On the complexity of \(k\)-SAT. J Comput Syst Sci 62(2):367–375

    Article  MathSciNet  Google Scholar 

  • Impagliazzo R, Paturi R, Zane F (2001) Which problems have strongly exponential complexity? J Comput Syst Sci 63(4):512–530

    Article  MathSciNet  Google Scholar 

  • Jansen K (1992) An approximation algorithm for the general routing problem. Inf Process Lett 41(6):333–339

    Article  MathSciNet  Google Scholar 

  • Karp RM (1975) On the complexity of combinatorial problems. Networks 5:45–68

    Article  Google Scholar 

  • Knauer M, Spoerhase J (2015) Better approximation algorithms for the maximum internal spanning tree problem. Algorithmica 71(4):797–811

    Article  MathSciNet  Google Scholar 

  • Korte B, Vygen J (2008) Combinatorial optimization: theory and algorithms. Chapter the traveling salesman problem, pp 527–562. Springer

  • Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7:48–50

    Article  MathSciNet  Google Scholar 

  • Lokshtanov D, Marx D, Saurabh S (2011) Lower bounds based on the exponential time hypothesis. Bull EATCS 105:41–72

    MathSciNet  MATH  Google Scholar 

  • Marx D (2006) Precoloring extension on unit interval graphs. Discrete Appl Math 154(6):995–1002

    Article  MathSciNet  Google Scholar 

  • Orloff CS (1974) A fundamental problem in vehicle routing. Networks 4(1):35–64

    Article  MathSciNet  Google Scholar 

  • Papadimitriou C, Yannakakis M (1993) The travelling salesman problem with distances one and two. Math Oper Res 18:1–11

    Article  MathSciNet  Google Scholar 

  • Papadimitriou CM (1994) Computational complexity. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Robins G, Zelikovsky A (2000) Improved steiner tree approximation in graphs. In: Proceedings of the 11th annual ACM-SIAM symposium on discrete algorithms (SODA 2000), pp 770–779

  • Sahni S, Gonzalez T (1976) P-complete approximation problems. J ACM 23(3):555–565

    Article  MathSciNet  Google Scholar 

  • Simchi-Levi D (1994) New worst-case results for the bin packing problem. Naval Res Logist 41:579–585

    Article  MathSciNet  Google Scholar 

  • Vazirani VV (2001) Approximation algorithms. Springer, Berlin

    MATH  Google Scholar 

  • Weller M, Chateau A, Giroudeau R (2015a) Exact approaches for scaffolding. BMC Bioinform 16(Suppl 14):S2

    Article  Google Scholar 

  • Weller M, Chateau A, Giroudeau R (2015b) On the complexity of scaffolding problems: From cliques to sparse graphs. In: Proceedings of the 9th international conference on combinatorial optimization and applications (COCOA 2015), vol 9486 of LNCS, pp 409–423. Springer

  • Weller M, Chateau A, Giroudeau R, König J, Pollet V (2016) On residual approximation in solution extension problems. In: Proceedings of the 10th international conference on combinatorial optimization and applications (COCOA 2016), pp 463–476

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Chateau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weller, M., Chateau, A., Giroudeau, R. et al. On residual approximation in solution extension problems. J Comb Optim 36, 1195–1220 (2018). https://doi.org/10.1007/s10878-017-0202-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-017-0202-5

Keywords

Navigation