Skip to main content
Log in

Online scheduling for outpatient services with heterogeneous patients and physicians

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

In outpatient services, it is critical to schedule patients for physicians to reduce both patients waiting and physicians overtime working. In this paper, we regard the problem as an online scheduling problem and based on analysis of a real data set from a big hospital in China, we develop a dynamic programming model to solve the problem. We propose a Policy Iteration Algorithm to find the optimal solution in the steady state, and obtain the structural properties of the policy. We conduct numerical experiments to compare the performance of the policy with that of the two policies used in practice by simulating various scenarios. The numerical results show that the policy has the best performance across all scenarios, especially when the system is heavily loaded. We also discuss the managerial implications of the study for practitioners. The model and solution method can be easily extended to multi-server case and can be applied to the general service scheduling problems with heterogeneous customers and service providers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahn JH, Hornberger JC (1996) Involving patients in the cadaveric kidney transplant allocation process: a decision-theoretic perspective. Manag Sci 42(5):629–641

    Article  MATH  Google Scholar 

  • Begen MA, Queyranne M (2011) Appointment scheduling with discrete random durations. Math Operat Res 36(2):240–257

    Article  MathSciNet  MATH  Google Scholar 

  • Bennett CC, Hauser K (2013) Artificial intelligence framework for simulating clinical decision-making: a markov decision process approach. Artif Intell Med 57(1):9–19

    Article  Google Scholar 

  • Breg BP, Denton BP (2017) Fast approximation methods for online scheduling of outpatient procedure centers. INFORMS J Comput 29(4):631–644

  • Cao XR (2007) Stochastic learning and optimization: a sensitivity-based approach. Springer, Berlin

    Book  MATH  Google Scholar 

  • Cayirli T, Veral E (2003) Outpatient scheduling in health care: a review of literature. Prod Oper Manag 12(4):519–549

    Article  Google Scholar 

  • Cayirli T, Veral E, Rosen H (2006) Designing appointment scheduling systems for ambulatory care services. Health Care Manag Sci 9(1):47–58

    Article  Google Scholar 

  • Cayirli T, Yang KK, Quek SA (2012) A universal appointment rule in the presence of no-shows and walk-ins. Prod Oper Manag 21(4):682–697

    Article  Google Scholar 

  • Chen G, Shen ZJM (2007) Probabilistic asymptotic analysis of stochastic online scheduling problems. IIE Trans 39(5):525–538

    Article  Google Scholar 

  • Chou MC, Liu H, Queyranne M, Simchi-Levi D (2006) On the asymptotic optimality of a simple on-line algorithm for the stochastic single-machine weighted completion time problem and its extensions. Oper Res 54(3):464–474

    Article  MathSciNet  MATH  Google Scholar 

  • Fetter RB, Thompson JD (1966) Patients’ waiting time and doctors’ idle time in the outpatient setting. Health Serv Res 1(1):66

    Google Scholar 

  • Ge X (2016) Personal communication, October 14, 2016, Shanghai General Hospital, Shanghai

  • Green LV, Savin S, Wang B (2006) Managing patient service in a diagnostic medical facility. Oper Res 54(1):11–25

    Article  MATH  Google Scholar 

  • Gupta D, Denton B (2008) Appointment scheduling in health care: challenges and opportunities. IIE Trans 40(9):800–819

    Article  Google Scholar 

  • Hassin R, Mendel S (2008) Scheduling arrivals to queues: a single-server model with no-shows. Manag Sci 54(3):565–572

    Article  MATH  Google Scholar 

  • Hu C, Lovejoy WS, Shafer SL (1996) Comparison of some suboptimal control policies in medical drug therapy. Oper Res 44(5):696–709

    Article  MATH  Google Scholar 

  • Kaandorp GC, Koole G (2007) Optimal outpatient appointment scheduling. Health Care Manag Sci 10(3):217–229

    Article  Google Scholar 

  • Kim SH, Whitt W (2014) Are call center and hospital arrivals well modeled by nonhomogeneous Poisson processes? Manuf Serv Oper Manag 16(3):464–480

    Article  Google Scholar 

  • Knowledge@Wharton (2013) ticking time bombs: Chinas health care system faces issues of access, quality and cost. http://knowledge.wharton.upenn.edu/article/ticking-time-bombs-chinas-health-care-system-faces-issues-of-access-quality-and-cost/

  • Kolesar P (1970) A Markovian model for hospital admission scheduling. Manag Sci 16(6):B-384

    Article  Google Scholar 

  • Kong Q, Lee CY, Teo CP, Zheng Z (2013) Scheduling arrivals to a stochastic service delivery system using copositive cones. Oper Res 61(3):711–726

    Article  MathSciNet  MATH  Google Scholar 

  • Kopach R, DeLaurentis PC, Lawley M, Muthuraman K, Ozsen L, Rardin R, Wan H, Intrevado P, Qu X, Willis D (2007) Effects of clinical characteristics on successful open access scheduling. Health Care Manag Sci 10(2):111–124

    Article  Google Scholar 

  • LaGanga LR, Lawrence SR (2012) Appointment overbooking in health care clinics to improve patient service and clinic performance. Prod Oper Manag 21(5):874–888

    Article  Google Scholar 

  • Li J, Dong M, Ren Y, Yin K (2015) How patient compliance impacts the recommendations for colorectal cancer screening. J Comb Optim 30(4):920–937

    Article  MathSciNet  MATH  Google Scholar 

  • Magni P, Quaglini S, Marchetti M, Barosi G (2000) Deciding when to intervene: a markov decision process approach. Int J Med Inform 60(3):237–253

    Article  Google Scholar 

  • Megow N, Vredeveld T (2006) Approximation in preemptive stochastic online scheduling. Springer, Berlin

    Book  MATH  Google Scholar 

  • Megow N, Uetz M, Vredeveld T (2006) Models and algorithms for stochastic online scheduling. Math Oper Res 31(3):513–525

    Article  MathSciNet  MATH  Google Scholar 

  • Patrick J (2012) A markov decision model for determining optimal outpatient scheduling. Health Care Manag Sci 15(2):91–102

    Article  MathSciNet  Google Scholar 

  • Puterman ML (1990) Markov decision processes. Handb Oper Res Manag Sci 2:331–434

    MathSciNet  MATH  Google Scholar 

  • Qu X, Peng Y, Shi J, LaGanga L (2015) An MDP model for walk-in patient admission management in primary care clinics. Int J Prod Econ 168:303–320

    Article  Google Scholar 

  • Rising EJ, Baron R, Averill B (1973) A systems analysis of a university-health-service outpatient clinic. Oper Res 21(5):1030–1047

    Article  Google Scholar 

  • Schaefer AJ, Bailey MD, Shechter SM, Roberts MS (2005) Modeling medical treatment using Markov decision processes. In: Operations research and health care. Springer, pp 593–612

  • Schulz AS (2008) Stochastic online scheduling revisited. In: Combinatorial Optimization and Applications. Springer, pp 448–457

  • Sevcik KC (1974) Scheduling for minimum total loss using service time distributions. J ACM (JACM) 21(1):66–75

    Article  MathSciNet  MATH  Google Scholar 

  • Sloan TW (2007) Safety-cost trade-offs in medical device reuse: a Markov decision process model. Health Care Manag Sci 10(1):81–93

    Article  Google Scholar 

  • Swartzman G (1970) The patient arrival process in hospitals: statistical analysis. Health Serv Res 5(4):320–9

    Google Scholar 

  • Tan Z, Zhang A (2013) Online and semi-online scheduling. Springer, New York

    Book  MATH  Google Scholar 

  • Wang S, Liu N, Wan G (2016) Managing appointment-based services in the presence of walk-in customers. In: Working paper. Columbia University, New York

  • Weiss G (1995) On almost optimal priority rules for preemptive scheduling of stochastic jobs on parallel machines. Adv Appl Probab 27:821–839

    Article  MathSciNet  MATH  Google Scholar 

  • Wiesche L, Schacht M, Werners B (2016) Strategies for interday appointment scheduling in primary care. Health Care Manag Sci. https://doi.org/10.1007/s10729-016-9361-7

  • Zacharias C, Pinedo M (2014) Appointment scheduling with no-shows and overbooking. Prod Oper Manag 23(5):788–801

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Shanghai General Hospital for providing data and help with this research. The authors are listed alphabetically and they contribute equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Wan.

Additional information

This research work is supported in part by NSF of China (Grant Nos. 71520107003 and 71421002).

Appendix: Proofs

Appendix: Proofs

1.1 A.1 Proof of Proposition 1

If \(h(\cdot )\) is a linear function, then in the minimization problem of each iteration, the objective function in is also a linear function of \(a({\varvec{s}})\), then the optimal solution must be achieved among extreme points, which is either 1 or 0.

1.2 A.2 Proof of Proposition 2

If \(f({\varvec{s}}|{\varvec{a}})\) only depends on \(a({\varvec{s}})\) and is a linear function of \(a({\varvec{s}})\), and under policy \({\varvec{a}}\), \(a(n_G-1,n_S)=1\), \(a(n_G+1,n_S)=1\), \(a(n_G,n_S-1)=1\) and \(a(n_G,n_S+1)=1\), then we have, \(g((n_G,n_S)|{\varvec{a}})\ge g((n_G-1,n_S+1)|{\varvec{a}})\), \(g((n_G+2,n_S)|{\varvec{a}})\ge g((n_G+1,n_S+1)|{\varvec{a}})\), \(g((n_G+1,n_S-1)|{\varvec{a}})\ge g((n_G,n_S)|{\varvec{a}})\) and \(g((n_G+1,n_S+1)|{\varvec{a}})\ge g((n_G,n_S+2)|{\varvec{a}})\). Since \(g((n_G+1,n_S)|{\varvec{a}})=\frac{1-p_1-p_2}{2}(g((n_G,n_S)|{\varvec{a}})+g((n_G+1,n_S-1)|{\varvec{a}}))+p_1\min (g((n_G+2,n_S)|{\varvec{a}}),g((n_G+1,n_S+1)|{\varvec{a}}))+p_2g((n_G+1,n_S+1)|{\varvec{a}})\) and \(g((n_G,n_S+1)|{\varvec{a}})=\frac{1-p_1-p_2}{2}(g((n_G,n_S)|{\varvec{a}})+g((n_G-1,n_S+1)|{\varvec{a}}))+p_1\min (g((n_G,n_S+2)|{\varvec{a}}),g((n_G+1,n_S+1)|{\varvec{a}}))+p_2g((n_G,n_S+2)|{\varvec{a}})\), where \(p_1=\frac{\lambda _G}{\lambda _G+\lambda _C+2\mu }\) and \(p_2=\frac{\lambda _C}{\lambda _G+\lambda _C+2\mu }\), thus we have \(g((n_G+1,n_S)|{\varvec{a}})\ge g((n_G,n_S+1)|{\varvec{a}})\), which means that \(a(n_G,n_S)=1\).

If \(f({\varvec{s}}|{\varvec{a}})\) only depends on \(a({\varvec{s}})\) and is a linear function of \(a({\varvec{s}})\), and under policy \({\varvec{a}}\), \(a(n_G-1,n_S)=0\), \(a(n_G+1,n_S)=0\), \(a(n_G,n_S-1)=0\) and \(a(n_G,n_S+1)=0\), then we have, \(g((n_G,n_S)|{\varvec{a}})\le g((n_G-1,n_S+1)|{\varvec{a}})\), \(g((n_G+2,n_S)|{\varvec{a}})\le g((n_G+1,n_S+1)|{\varvec{a}})\), \(g((n_G+1,n_S-1)|{\varvec{a}})\le g((n_G,n_S)|{\varvec{a}})\) and \(g((n_G+1,n_S+1)|{\varvec{a}})\le g((n_G,n_S+2)|{\varvec{a}})\). Since \(g((n_G+1,n_S)|{\varvec{a}})=\frac{1-p_1-p_2}{2}(g((n_G,n_S)|{\varvec{a}})+g((n_G+1,n_S-1)|{\varvec{a}}))+p_1\min (g((n_G+2,n_S)|{\varvec{a}}),g((n_G+1,n_S+1)|{\varvec{a}}))+p_2g((n_G+1,n_S+1)|{\varvec{a}})\) and \(g((n_G,n_S+1)|{\varvec{a}})=\frac{1-p_1-p_2}{2}(g((n_G,n_S)|{\varvec{a}})+g((n_G-1,n_S+1)|{\varvec{a}}))+p_1\min (g((n_G,n_S+2)|{\varvec{a}}),g((n_G+1,n_S+1)|{\varvec{a}}))+p_2g((n_G,n_S+2)|{\varvec{a}})\), where \(p_1=\frac{\lambda _G}{\lambda _G+\lambda _C+2\mu }\) and \(p_2=\frac{\lambda _C}{\lambda _G+\lambda _C+2\mu }\), thus we have \(g((n_G+1,n_S)|{\varvec{a}})\le g((n_G,n_S+1)|{\varvec{a}})\), which means that \(a(n_G,n_S)=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Wan, G. & Wang, S. Online scheduling for outpatient services with heterogeneous patients and physicians. J Comb Optim 37, 123–149 (2019). https://doi.org/10.1007/s10878-017-0216-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-017-0216-z

Keywords

Navigation