PLANAR GRAPHS WITHOUT 4-CYCLES AND CLOSE TRIANGLES ARE (2, 0, 0)-COLORABLE

HEATHER HOSKINS ${ }^{1}$ RUNRUN LIU ${ }^{2}$ JENNIFER VANDENBUSSCHE ${ }^{3}$ GEXIN YU ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, The College of William and Mary, Williamsburg, VA, 23185, USA.
${ }^{2}$ Department of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei, China.
${ }^{3}$ Department of Mathematics, Kennesaw State University, Marietta, GA, 30060, USA

Abstract

For a set of nonnegative integers c_{1}, \ldots, c_{k}, a $\left(c_{1}, c_{2}, \ldots, c_{k}\right)$-coloring of a graph G is a partition of $V(G)$ into V_{1}, \ldots, V_{k} such that for every $i, 1 \leq i \leq k, G\left[V_{i}\right]$ has maximum degree at most c_{i}. We prove that all planar graphs without 4 -cycles and no less than two edges between triangles are $(2,0,0)$-colorable.

1. Introduction

The coloring of planar graphs has a long history. The well-known Four Color Theorem, proved by Appel and Haken (see [1]-[2]) in the 1970s, states that all planar graphs are 4-colorable. Determining whether an arbitrary planar graph is 3-colorable is NP-complete; much attention has been given to proving sufficient conditions under which planar graphs are 3-colorable. The classic example is the theorem by Grötzch [9] showing that planar graphs without 3 -cycles are 3-colorable.

Recently, the study of the coloring of planar graphs with 3 colors has taken a very interesting turn. Steinberg [17] in 1976 famously conjectured that planar graphs without 4-cycles and 5 -cycles are 3-colorable. Erdős asked for the constant D such that planar graphs excluding cycles of lengths from 4 to D are 3 -colorable. Borodin, Glebov, Raspaud, and Salavatipour [4] showed that $D \leq 7$. After being open for almost 40 years, in a very recent paper [6], the Steinberg Conjecture was disproved by a counterexample. This surprising result suggests that the property of planar graphs being 3 -colorable may be more rare than was previously thought, and spurs the search for more classes of planar graphs that are 3 -colorable.

One interesting restriction that gives rise to classes of 3-colorable planar graphs involves forbidding triangles that are close together. This idea is illustrated in the famous conjecture by Havel.

Conjecture 1.1 (Havel, 1969). There is a constant C (perhaps as small as 4) such that any planar graph whose triangles are at distance at least C from each other is 3-colorable.

This conjecture was resolved by Dvořák, Král' and Thomas [8 by showing the truth for any planar graph G with $d_{\Delta}(G)>10^{100}$, where $d_{\Delta}(G)$ is the length of the shortest path between the vertices of any two 3 -cycles. Clearly more work is needed to understand the constant C, but in the meantime, there have been advances that combine the hypotheses of the Steinberg and the Havel conjectures. For example, Borodin and Glebov [3] showed that any planar graph G without 5 -cycles and satisfying $d_{\Delta}(G) \geq 2$ is 3 -colorable.

With the recent counterexample to Steinberg's conjecture showing that it may be more difficult to find 3 -colorable planar graphs than originally thought, it becomes more interesting to investigate

[^0]"nearly" 3 -colorable planar graphs. A graph G is $\left(c_{1}, c_{2}, \ldots, c_{k}\right)$-colorable if $V(G)$ can be partitioned into k nonempty subsets $V_{1}, V_{2}, \ldots, V_{k}$ such that the maximum degree of $G\left[V_{i}\right]$ is at most c_{i}. In other words, there exists a k-coloring such that for each color i, each vertex colored with i has at $\operatorname{most} c_{i}$ neighbors of the same color. Clearly, a graph is properly 3 -colorable if and only if it is $(0,0,0)$-colorable. In [7], it is shown that every planar graph is $(2,2,2)$-colorable.

There are many results in this area; we refer interested readers to [16. As an illustration, the following is a list of results known for 5 -cycle-free planar graphs.

Theorem 1.2. Let G be a planar graph without 5 -cycles.

- If G also has no 4 -cycles, then it is $(2,0,0)$ - and $(1,1,0)$-colorable ([5, [21, 12]).
- If G has no intersecting triangles, then it is $(2,0,0)$ - and ($1,1,0$)-colorable (14,15).
- If G has no K_{4}^{-}, then it is $(1,1,1)$ - and ($1,1,0$)-colorable. (13, 20]).

In [18, Wang and Xu proved that planar graphs without 4 -cycles are ($1,1,1$)-colorable (in fact, ($1,1,1$)-choosable), and constructed a non-3-colorable planar graph that has no 4 -cycles (and $d_{\Delta}=1$). (See Figure 1.) Furthermore, although the result by Borodin and Glebov [3] (and other likewise results) forbids 5 -cycles and not 4 -cycles, their proof involves showing that there are no internal 4 -cycles in a minimal counterexample.

Figure 1: A non- $(0,0,0)$-colorable planar graph without 4-cycles.
This motivates the study of the 3 -colorability of planar graphs without 4 -cycles (but perhaps with 5 -cycles) and satisfying $d_{\Delta}(G) \geq 2$. We conjecture that the following is true.
Conjecture 1.3. If G is a planar graph without 4 -cycles such that $d_{\Delta}(G) \geq 2$, then G is 3-colorable.
In this paper, we prove a relaxation of Conjecture 1.3. Let \mathcal{G} be the set of planar graphs with $d_{\triangle}(G) \geq 2$ and no 4-cycles.

Theorem 1.4. If $G \in \mathcal{G}$, then G is $(2,0,0)$-colorable.
To prove Theorem 1.4, we use the idea of superextendable colorings introduced by Xu in [20].
Definition A $(2,0,0)$-coloring ϕ of a subgraph H of G superextends to G if there exists a $(2,0,0)$ coloring ϕ_{G} of G that extends ϕ with the property that $\phi(v) \neq \phi(u)$ whenever $v \in H$ and $u \in$ $G \cap N(v)-H$, where $N(v)$ is the set of neighbors of v. We say that a subgraph $H \subseteq G$ is superextendable to G if every ($2,0,0$)-coloring ϕ_{H} of H superextends to G. When we wish to specify G, we will say (G, H) is superextendable.

We need the following definition.
Definition A 6-cycle is bad if alternating vertices along the 6-cycle are matched to the vertices of a triangle. The triangle is called an interior triangle of a bad 6 -cycle. (See Figure 2.) Otherwise, a 6 -cycle is good.

Figure 2: A bad 6-cycle.

Our approach is to prove the following stengthening of Theorem 1.4.
Theorem 1.5. For each $G \in \mathcal{G}$, every triangle, 5 -cycle and good 6 -cycle in G is superextendable.
Observe that the restriction to good 6-cycles is necessary. Otherwise, the graph in Figure 2 is a counterexample: precolor the vertices of degree 3 on the 6 -cycle with color 1 .

Assuming Theorem 1.5 holds, it is easy to verify that Theorem 1.4 also holds. If G has no triangles, then G is $(2,0,0)$-colorable (in fact, $(0,0,0)$-colorable by Grötzch's theorem). Otherwise, fix a $(2,0,0)$-coloring ϕ of some triangle; by Theorem 1.5, the coloring can be superextended to G, which is a $(2,0,0)$-coloring of G.

In Section 2, we highlight the advantage of proving Theorem 1.5, and we present some preliminary observations about a minimum counterexample to the theorem. The proof uses the discharging method, so Sections 3 and 4 contain, respectively, the reducible configurations and the discharging arguments.

2. Preliminaries and Definitions

The advantage of proving the stronger theorem involving superextendable colorings was noted by Xu in [20]. Let a cycle C in a plane graph G be a separating cycle if the deletion of C results in a disconnected graph. Let $\operatorname{int}(C)$ denote the interior of C, and similarly $\operatorname{ext}(C)$ the exterior, when the vertices of C are deleted. If a proper coloring of a separating cycle C can be extended to $\operatorname{int}(C)$ and $\operatorname{ext}(C)$ individually, then the union of the two colorings is a proper coloring. However, this property would not hold for ($2,0,0$)-colorings of the two subgraphs; a vertex of C precolored with color 1 may have two neighbors of color 1 in both $\operatorname{int}(C)$ and $\operatorname{ext}(C)$, so the union of the two colorings would contain a vertex of color 1 with four neighbors of color 1 . The superextendable property allows us to combine colorings of $\operatorname{int}(C)$ and $\operatorname{ext}(C)$ into a $(2,0,0)$-coloring of the entire graph.

In order to illustrate this more clearly, we must introduce some notation that will be used for the remainder of the paper. Our proof of Theorem 1.5 is by contradiction, so we will let (G, C) for $G \in \mathcal{G}$ be a counterexample to the theorem of minimum order. That is, some fixed precoloring ϕ of a cycle C of length 3 or 5 or a good cycle of length 6 in G cannot be superextended to G, and G is the smallest graph with this property. Let $V(C)$ denote the vertices of the cycle, and let $|V(C)|=r$.

We first observe that C cannot be a separating cycle, analogous to Lemma 1 in [20]. Otherwise, ϕ can be superextended individually to $\operatorname{int}(C)$ and $\operatorname{ext}(C)$ by the minimality of G, and then the union of these two colorings would be a superextension of ϕ to G, a contradiction. Hence we may assume that G is drawn with C as the exterior face.

Lemma 2.1. G does not contain separating triangles, 5 -cycles or good 6 -cycles.
Proof. Suppose otherwise that G contains a separating cycle C^{\prime}, where the length of C^{\prime} is 3 or 5 , or C^{\prime} is a good 6 -cycle. Let G_{1} be the subgraph of G induced by C^{\prime} together with $\operatorname{ext}\left(C^{\prime}\right)$, and G_{2} the subgraph of G induced by C^{\prime} together with $\operatorname{int}\left(C^{\prime}\right)$. Note that C is contained in G_{1}. By the minimality of G, ϕ superextends to a $(2,0,0)$-coloring $\phi_{G_{1}}$ of G_{1}. Now $\phi_{G_{1}}$ restricted to C^{\prime} is a $(2,0,0)$ precoloring of C^{\prime}, and again applying the minimality of G, it superextends to a $(2,0,0)$ coloring of G_{2}. The union of these two colorings is a superextension of ϕ to G, a contradiction.

The lack of separating short cycles provides additional information about the structure of C. The next lemma follows [20].
Lemma 2.2. The cycle C is chordless, and for nonadjacent $x, y \in C, N(x) \cap N(y) \subseteq V(C)$.
Proof. The conclusion is trivial if $r=3$; suppose that $r=5$ or $r=6$.

If C has a chord and $r=5$, then the chord separates C into a 3-cycle and a 4 -cycle, contradicting $G \in \mathcal{G}$. If $r=6$, then the chord would create either a 4 -cycle and a 5 -cycle, again contradicting $G \in \mathcal{G}$, or a 3 -cycle and a 5 -cycle. In the second case, since $V(C) \neq V(G)$, one of these cycles would have to be a separating cycle, contradicting Lemma 2.1 .

Now consider nonadjacent x, y in $V(C)$. Suppose that there exists $v \in N(x) \cap N(y)$ where $v \notin V(C)$. If $r=5$, then C together with $x v y$ forms a 4 -cycle and a 5 -cycle, which is impossible. If $r=6$, then C together with $x v y$ forms either a 6 -cycle and a 4 -cycle, which is impossible, or two 5 -cycles. Neither of the 5 -cycles can be separating, but then $V(G)=C \cup\{v\}$, and it is easy to verify that such a graph is not a counterexample. Therefore x and y can have no such neighbor.

Now we introduce some definitions we use in the rest of the paper. In a $(2,0,0)$-coloring of G, a vertex v is 1 -saturated if it is colored with 1 and has two neighbors of color 1 ; otherwise, it is called nicely colored (i.e., it is colored with 2 or 3 , or it is colored with 1 but not 1 -saturated). If v is nicely colored, then a neighbor of v can be (re)colored with 1 . If v has at most three colored neighbors, then nicely recoloring v means v is either recolored with color 2 or 3 (if one of those colors is available), or v has at most one neighbor with color 1 , and v remains color 1 .

Lemma 2.3. Suppose $\phi_{G^{\prime}}$ is a superextension of ϕ to $G^{\prime} \subset G$, and $v \in V\left(G^{\prime}\right)$. If v is nicely recolored, then the extension remains a superextension.

Proof. Since the color of v is not changed to $1, v$ can be color 1 only if $\phi_{G^{\prime}}(v)=1$, in which case v must not have a neighbor of color 1 on C.

Suppose that x is a vertex of a face f. A neighbor v of x is an outer neighbor (with respect to f) if v is not on f. A k^{+}-vertex (or k^{-}-vertex) in G is a vertex of degree at least (or at most) k. A $\left(k_{1}, k_{2}, \ldots, k_{t}\right)$-cycle is a t-cycle whose vertices' degrees are k_{1}, \ldots, k_{t}, respectively. A vertex is triangular if it lies on a 3 -face, otherwise it is called nontriangular.

Let f be a 3 -face in $\operatorname{int}(C)$. If $v \notin V(f)$ is adjacent to a 3 -vertex x on f, then f is called a pendant face to v, and x and v are pendant neighbors to each other.

A 3 -vertex v on a 5 -face in $\operatorname{int}(C)$ is called special if its two neighbors on the face are 4^{-}-vertices. If x is a 5^{+}-vertex with a special neighbor v, we call the pendant 5 -face containing v a pendant special 5 -face to x. (See Figure 3.) A 3 -vertex in $\operatorname{int}(C)$ is potentially special if two of its neighbors are 4^{-}-vertices in $\operatorname{int}(C)$. Note that a special vertex is also potentially special.

Figure 3: Special vertex v and a pendant special 5 -face to x.

3. Reducible Configurations

Lemma 3.1. There are no 2^{-}-vertices in int (C).
Proof. Let v be a 2^{-}-vertex in $\operatorname{int}(C)$. Then ϕ superextends to $G-v$ by the minimality of G. Now v can be properly colored, a contradiction.

The following lemma is a foundational one for our paper, and similar lemmas appear in other related results (see for example [14]). We include the proof for completeness.
Lemma 3.2. Every 3-vertex in $\operatorname{int}(C)$ is adjacent to at least one 5^{+}-vertex or a vertex on C.

Proof. Let $v \in \operatorname{int}(C)$ be a 3-vertex not adjacent to a vertex of C. By the minimality of G, ϕ superextends to $G-v$. Since this coloring cannot extend to G, the colors $1,2,3$ must appear in $N(v)$, and the vertex $u \in N(v)$ colored with 1 is neither nicely colored, nor can it be recolored with 2 or 3 . Hence u is adjacent to vertices colored with 2 and 3 and to two vertices of color 1, thus $d(u) \geq 5$.
Lemma 3.3. Suppose ϕ has been superextended to some subgraph of G, and let $v \in \operatorname{int}(C)$ be a vertex that has exactly two colored neighbors, v_{1} and v_{2}, both in int (C). Then v can be recolored with color 1 , unless one of the following holds:
(1) v_{1} and v_{2} are adjacent and $d\left(v_{1}\right)+d\left(v_{2}\right) \geq 9$, or
(2) v_{1} and v_{2} are nonadjacent and one is a 5^{+}-vertex.

Proof. Suppose that v cannot be recolored with 1. Then if we recolor v with 1 , some neighbor of v (say v_{1}) that is colored with 1 will have three neighbors of color 1 . Note that color 2 and 3 must appear in $N\left(v_{1}\right)$, for otherwise we recolor v_{1} with the absent color, so the degree of v_{1} is at least 5 . Assume further that $v_{1} v_{2} \in E(G)$. If $d\left(v_{1}\right)+d\left(v_{2}\right) \leq 8$, then $d\left(v_{1}\right)=5$ and $d\left(v_{2}\right)=3$. As there are at most two different colors in $N\left(v_{2}\right)$, we can properly recolor v_{2} (if its color is 1) or remove the color of v_{2} and then properly recolor v_{1} and v_{2} in order(if its color is 2 or 3). Now in both cases, we can recolor v with 1 .

Observation 3.4. Let v be a special or potentially special vertex with $N(v)$ in int (C). By Lemma 3.2, v must be adjacent to a 5^{+}-vertex. By Lemma 3.3. in any precoloring of G in which the 5^{+}-neighbor v has not been colored, v can be recolored with 1 .

Lemma 3.5. Let v be a vertex in $\operatorname{int}(C)$. If v is adjacent to m special vertices and t pendant $\left(3,3,5^{-}\right)$- or $(3,4,4)$-faces, then $m+t \leq d(v)-2$.
Proof. Suppose to the contrary, that there exists some vertex $v \in \operatorname{int}(C)$ with $m+t>d(v)-2$. Consider $G^{\prime}=G \backslash\{v\}$. We know that $G^{\prime} \in \mathcal{G}$, so ϕ superextends to a coloring $\phi_{G^{\prime}}$ of G^{\prime}. By Lemma 3.3, the $m+t$ pendant or special vertices in $N(v)$ can be recolored with color 1, leaving at most one vertex in $N(v)$ with a different color. Now either color 2 or 3 is available to properly color v, superextending ϕ to G, a contradiction.

Lemma 3.6. Let $\left(v_{1}, \ldots, v_{6}\right)$ be an internal 6 -cycle with chord $v_{1} v_{3}$. Let $d\left(v_{1}\right)=d\left(v_{3}\right)=3$, and v_{4} be adjacent to k internal pendant $\left(3,3,5^{-}\right)$-, $(3,4,4)$-faces and special vertices. If $d\left(v_{2}\right) \leq 5$ and $f=v_{1} v_{2} v_{3}$ is not the interior triangle of any bad 6 -cycle, then $d\left(v_{5}\right) \geq 5$, and $k \leq d\left(v_{4}\right)-3$.

Proof. Suppose the statement is not true. Consider the graph G^{\prime} formed by deleting v_{1} and v_{3} and identifying v_{4} and v_{6} into a single vertex X.

We claim that $G^{\prime} \in \mathcal{G}$. First of all, we do not create chords in C of G since both v_{4} and v_{6} are in $\operatorname{int}(C)$. The only path of length 3 from v_{6} to v_{4} in G goes through v_{1} and v_{3}, else there would be a separating 5 -cycle in G or a triangle at vertex v_{4} or v_{6}. Hence no new triangles are created by identifying v_{4} and v_{6}. Further, since v_{1} and v_{3} are triangular in G, neither v_{4} nor v_{6} can be triangular. Thus $d_{\triangle}\left(G^{\prime}\right) \geq 2$. It remains to show that G^{\prime} has no 4 -cycles; such a 4 -cycle could be created by a path of length 4 in G from v_{4} to v_{6}. For such a path to exist, there must be a 4 -cycle containing v_{5}, which does not exist, or a separating 6 -cycle in G. Since G does not contain good separating 6 -cycles and $f=v_{1} v_{2} v_{3}$ is not the interior triangle of any bad 6 -cycle, G must contain a 6 -cycle containing v_{4}, v_{5}, v_{6} with a triangle inside, pendant to v_{5}. Let x be the pendant neighbor to v_{5}. But since there are no separating triangles or 5 -cycles in G, v_{5} and the two triangular neighbors of x are all degree 3 , contradicting Lemma 3.2 . Hence there is no such bad 6 -cycle, and $G^{\prime} \in \mathcal{G}$.

By the minimality of G, we know that there exists a superextension $\phi_{G^{\prime}}$ of ϕ to G^{\prime}. We claim we can extend $\phi_{G^{\prime}}$ to a coloring ϕ_{G} that superextends ϕ to G, a contradiction. Let $\phi_{G}(x)=\phi_{G^{\prime}}(x)$ for $x \in V\left(G^{\prime}\right) \backslash\{X\}$ and $\phi_{G}\left(v_{4}\right)=\phi_{G}\left(v_{6}\right)=\phi_{G^{\prime}}(X)=\alpha$. Recolor v_{2} so that it is nicely colored. It
remains to color v_{1} and v_{3}, and to verify that v_{5} is adjacent to at most two neighbors of color 1 when it is colored with 1 .

If $\alpha=2$ (or symmetrically 3), then we can properly color v_{3}. Since v_{1} has three nicely colored neighbors, it can be colored, completing the superextension to G. Hence we may assume $\alpha=1$.

Suppose that either $\phi_{G}\left(v_{5}\right) \neq 1$, or $\phi_{G}\left(v_{5}\right)=1$ and v_{4} and v_{6} are the only neighbors of v_{5} that are colored with 1 . At least one of $\left\{v_{4}, v_{6}\right\}$ is nicely colored with 1 ; assume by symmetry that v_{4} is nicely colored. Properly color v_{1}, and now there is a color available for v_{3}, again a contradiction. If $d\left(v_{5}\right)<5$, then v_{5} can be recolored in this way, hence $d\left(v_{5}\right) \geq 5$.

Now suppose that $\phi_{G}\left(v_{5}\right)=1$ and v_{5} has a third neighbor colored with 1. (Since X was adjacent to v_{5} in G^{\prime}, v_{5} cannot have more than three neighbors with color 1.) Observe that v_{3} is a pendant neighbor of v_{4}. Remove the color of v_{4}, and by Lemma 3.3, recolor with color 1 the $k-1$ other neighbors of v_{4} that are special vertices or pendant neighbors on $\left(3,3,5^{-}\right)$- or $(3,4,4)$-faces. Since $d\left(v_{4}\right) \leq k+2, v_{4}$ has at most one neighbor colored from $\{2,3\}$. Hence v_{4} can be properly colored. If v_{2} is not colored with 1 , then we can color v_{3} with 1 and properly color v_{1}. If v_{2} is colored with 1 , then v_{3} and v_{1} can be consecutively colored properly. Therefore $d\left(v_{4}\right)>k+2$.

Lemma 3.7. Let $v \in \operatorname{int}(C)$ be a 5 -vertex with $N(v)=\left\{v_{i}: 1 \leq i \leq 5\right\} \subseteq \operatorname{int}(C)$. Let f_{i} be the face containing $v_{i} v v_{i+1}$ for $i=1,2$. If v_{1} and v_{3} are both 3 -vertices that are on internal $\left(3,3,5^{-}\right)$or $(3,4,4)$-faces and both f_{1} and f_{2} are 5 -faces in $\operatorname{int}(C)$, then $d\left(v_{2}\right) \geq 4$.
Proof. Suppose otherwise, that $d\left(v_{2}\right)=3$. Then we discuss the following two cases.
Case 1: One of v_{1} and v_{3} (say v_{1}, by symmetry) is not on the interior triangle of a bad 6 -cycle. Let G^{\prime} be the graph formed by identifying v_{2} and v_{5} in $G-v$ into vertex X. First of all, we do not create chords of C, for otherwise, the chord must be incident with X, conradicting v_{2} and v_{5} in $\int(C)$. Note that no new triangles can be created, else there would be a separating 5 -cycle in G, contradicting Lemma 2.1. Since $d_{\Delta}(G) \geq 2, v_{2}$ and its neighbors are all nontriangular, hence $d_{\triangle}\left(G^{\prime}\right) \geq 2$. Also, G^{\prime} contains no 4 -cyces, else there would be a 4 -path between v_{2} and v_{5} which implies a separating good 6 -cycle in G, contradicting Lemma 2.1. Therefore, $G^{\prime} \in \mathcal{G}$. By the minimality of G, we know that there exists a superextension $\phi_{G^{\prime}}$ of ϕ to G^{\prime}. We show that $\phi_{G^{\prime}}$ can be extended to a coloring ϕ_{G} of G. Let $\phi_{G}\left(v_{2}\right)=\phi_{G}\left(v_{5}\right)=\phi_{G^{\prime}}(X)$, and let $\phi_{G}(x)=\phi_{G^{\prime}}(x)$ for $x \in V(G)-\left\{v, v_{2}, v_{5}\right\}$. It remains to color v to arrive at a contradiction. Recolor v_{1} and v_{3} with 1 by Lemma 3.3. If $\phi_{G^{\prime}}(X)=1$, then v can be properly colored. If $\phi_{G^{\prime}}(X)=2$ or 3 (say 2), then v_{4} must be colored 3 , else we can color v properly. In this case, we can properly recolor v_{1} and v_{3}, and then color v with 1 .

Case 2: Both v_{1} and v_{3} are on the interior (3,3,3)-faces of bad 6-cycles. Let $N\left(v_{i}\right)=\left\{v, u_{i}, w_{i}\right\}$ for $i=1,2,3$ such that w_{1} and w_{2} are on f_{1} and u_{2} and u_{3} are on f_{2}. Let $G^{\prime}=G-\left\{v_{3}, u_{3}, w_{3}\right\}$. By the minimality of G, there exists a superextension $\phi_{G^{\prime}}$ of ϕ to G^{\prime}. We first claim that v is 1 -saturated. For otherwise, color v_{3} with 1 , and then either $\phi_{G^{\prime}}\left(u_{2}\right) \neq 1$ and we color u_{3} with 1 and then w_{3} properly, or $\phi_{G^{\prime}}\left(u_{2}\right)=1$ and we color w_{3}, u_{3} properly in order, a contradiction. Similarly, u_{2} is also 1 -saturated. Furthermore, neither v nor u_{2} can be recolored, so their neighborhoods must have color set $\{1,1,2,3\}$. Further, v_{1} must be colored with 1 , or we could recolor it by Lemma 3.3 . We claim that w_{2} must also be colored with 1 . For otherwise, we can recolor w_{1} with 1 and then recolor v_{1} properly, a contradiction. But since all neighbors of v_{2} are colored with $1, v_{2}$ can be recolored with a different color so that v can be nicely recolored, a contradiction again.

Lemma 3.8. Given a $\left(3,3,5^{-}\right)$-face f in int (C), the pendant neighbors of the 3-vertices on f either are in $V(C)$ or have degree at least 5 .

Proof. Consider a 3-face $f=x y z$ in $\operatorname{int}(C)$, where $d(z) \leq 5$ and $d(y)=d(x)=3$ (see Figure 4). Assume to the contrary that the outer neighbor y^{\prime} of y has degree at most 4 , but $y^{\prime} \notin V(C)$. Consider $G^{\prime}=G \backslash\{x, y\}$. Because $G^{\prime} \in \mathcal{G}$, we know that there exists a superextension $\phi_{G^{\prime}}$ of ϕ to
G^{\prime}. Since z and y^{\prime} have degree at most 3 in G^{\prime}, they can be nicely recolored. But now we extend ϕ_{G} to G by properly coloring x and then coloring y, a contradiction.

Figure 4: $\left(3,5^{-}, 5\right)$-face and $(3,3,6)$-face used in Lemmas $3.8,3.10$ and 3.11
Lemma 3.9. Let $v \in \operatorname{int}(C)$ be a 4-vertex with $N(v)=\left\{v_{i} \mid 1 \leq i \leq 4\right\}$ in the clockwise order. If $f=v_{1} v v_{2}$ is an internal (3,3,4)-face, then neither v_{3} nor v_{4} can be a 3 -vertex in int (C).
Proof. Without loss of generality, let v_{3} be a 3 -vertex in $\operatorname{int}(C)$. Let G^{\prime} be the graph formed by identifying v_{2} and v_{4} into X in $G-v$. First of all, we do not create chords in C of G, for otherwise, the chord must be at X, thus there is a 3 -path connecting two vertices on C, which will create a separating 5 or good 6 -cycle, a contradiction to Lemma 2.1. Note that no new triangles can be created, else there would be a separating 5 -cycle in G, contradicting Lemma 2.1. Since $d_{\Delta}(G) \geq 2$, both v_{2} and v_{4} are nontriangular in $G-v$, hence $d_{\triangle}\left(G^{\prime}\right) \geq 2$. None of v_{2}, v, v_{4} is on a bad 6 -cycle, thus G^{\prime} contains no 4 -cycles, else there would be a separating good 6 -cycle in G, contradicting Lemma 2.1. Therefore, $G^{\prime} \in \mathcal{G}$. By the minimality of G, we know that there exists a superextension $\phi_{G^{\prime}}$ of ϕ to G^{\prime}. We show that $\phi_{G^{\prime}}$ can be extended to a coloring ϕ_{G} of G. Let $\phi_{G}\left(v_{2}\right)=\phi_{G}\left(v_{4}\right)=\phi_{G^{\prime}}(X)$, and let $\phi_{G}(x)=\phi_{G^{\prime}}(x)$ for $x \in V(G)-\left\{v, v_{2}, v_{4}\right\}$. We claim this coloring extends to v, a contradiction.

If $\phi_{G^{\prime}}(X)=2$ (or 3), then we properly recolor v_{1} and v_{3} and color v with 1 . If $\phi_{G^{\prime}}(X)=1$, then $N(v)$ has color set $\{1,1,2,3\}$, else we can color v with the missing color. By symmetry, let v_{1} be colored with 2 and v_{3} be colored with 3 . We can recolor v_{1} with either 3 if the outer neighbor of v_{1} is colored with 1 , or 1 otherwise. In either case, v can be colored with 2 , a contradiction.

Lemma 3.10. Suppose that $f=x y z$ is a $\left(3,5^{-}, 5\right)$-face in int (C), with $d(x) \leq 5, d(y)=3$, and $d(z)=5$. Let the outer neighbors of z be z_{1}, z_{2}, z_{3} in clockwise order so that x and z_{1} are on the same face. Let y^{\prime} be the outer neighbor of y (See Figure 4).
(1) At most one of $\left\{z_{1}, z_{2}, y\right\}$ (and symmetrically $\left\{z_{1}, z_{3}, y\right\}$) is potentially special (and hence at most one is special).
(2) If z_{2} and z_{3} are potentially special, then either $y^{\prime} \in V(C)$, or $d\left(z_{1}\right) \geq 5$.

Proof. Consider the graph G^{\prime} formed by identifying vertices x and z_{3} into vertex X, and deleting the vertex z. Note all 3 -cycles in G^{\prime} were 3 -cycles in G, else there would be a separating 5 -cycle in G, contradicting Lemma 2.1. Also, since z was incident to a 3 -face, z_{3} cannot be triangular, and hence $d_{\triangle} \geq 2$ is maintained in G^{\prime}. We also claim that G^{\prime} does not contain any 4 -cycles. Any such 4 -cycle would correspond to a path of length 4 in G between x and z_{3}, and such a path would imply a separating 6 -cycle in G; such a 6 -cycle must be bad. But since x is triangular, the 6 -cycle could not have another interior triangle, a contradiction. Hence $G^{\prime} \in \mathcal{G}$, and by the minimality of G, ϕ superextends to a $(2,0,0)$ coloring $\phi_{G^{\prime}}$ of G^{\prime}. We show that $\phi_{G^{\prime}}$ can be extended to a coloring ϕ_{G} of G when the hypotheses fail. Let $\phi_{G}(x)=\phi_{G}\left(z_{3}\right)=\phi_{G^{\prime}}(X)=\alpha$, and let $\phi_{G}(v)=\phi_{G^{\prime}}(v)$ for all other $v \in V(G)-z$. It remains to color z to arrive at a contradiction.
(1) Assume first that z_{1} and z_{2} are both potentially special. Properly recolor y, and properly recolor z_{1} and z_{2}. If $\alpha=2$ (or symmetrically 3), then z can be colored with 1 , unless z_{1}, z_{2}, and y are all colored with 1 , in which case z can be colored with 3 ; even if $z_{3} \in V(C)$, this would be a superextension of ϕ to G, a contradiction. If $\alpha=1$, then z_{1} and z_{2} can be recolored with 1 by

Lemma 3.3, and z can be properly colored. Hence at most one of $\left\{z_{1}, z_{2}\right\}$ is potentially special. Repeating the proof with z_{3} in place of z_{2} shows that at most one of $\left\{z_{1}, z_{3}\right\}$ is potentially special.

Now suppose one of $\left\{z_{1}, z_{2}\right\}$ is potentially special (assume z_{1} by symmetry), and y is, as well. Properly recolor y and z_{1}. If $\alpha=2$ and z_{2} is colored with 2 or 3 , then z can be colored with 1 . Otherwise, y and z_{1} can be recolored with 1 , and either 2 or 3 is available for z.
(2) Now assume that z_{2} and z_{3} are potentially special, $y^{\prime} \notin V(C)$, and $d\left(z_{1}\right) \leq 4$.

If $\alpha=1$, then recolor z_{2} with 1 . Now z can be colored with 2 or 3 unless $\phi_{G^{\prime}}\left(z_{1}\right) \neq \phi_{G^{\prime}}(y)$ and neither is color 1 . If z_{2}, z_{3}, or x are not nicely colored with 1 , then properly recolor them, and color 1 is now available for z. If they are all nicely colored with 1 , then y can be recolored 1 , unless $\phi_{G^{\prime}}\left(y^{\prime}\right)=1$, in which case y can be recolored with $\phi_{G^{\prime}}\left(z_{1}\right)$. In either case, $\phi_{G^{\prime}}(y)$ becomes available for z, a contradiction.

If $\alpha=2$ (or symmetrically 3), consider the color on z_{1}. If $\phi_{G^{\prime}}\left(z_{1}\right) \neq 1$, then properly recolor z_{2} and y, and now color 1 is available for z. If $\phi_{G^{\prime}}\left(z_{1}\right)=1$, then recolor z_{2} with 1 by Lemma 3.3. So z can be colored with 3 , unless y is given color 3 . In this case, consider z_{1}. Since $d\left(z_{1}\right) \leq 4$, the vertex z_{1} can be nicely recolored, and we can color z with 1 , a contradiction.

Lemma 3.11. Let f be a $(3,3,6)$-face in int (C) with vertices x, y, z such that $d(z)=6$. Then either a neighbor of z is in $V(C)$, or z has at most two potentially special neighbors.

Proof. Suppose that no neighbors of z are in $V(C)$. Let z_{1}, z_{2}, z_{3}, and z_{4} be the outer neighbors of z, labeled as in Figure 4. Let H_{1} be the graph formed by identifying x, z_{2}, and z_{4} in $G-\{z, y\}$ into a single vertex X_{1}, and H_{2} be graph formed by identifying y, z_{1}, and z_{3} in $G-\{z, x\}$ into a single vertex X_{2}. Let $S_{1}=\left\{x, z_{2}, z_{4}\right\}$ and let $S_{2}=\left\{y, z_{1}, z_{3}\right\}$. Assume by symmetry that the number of potentially special vertices in S_{1} is at most the number of potentially special vertices in S_{2}. This implies that we will consider H_{1} for this proof, but a similar argument would hold for H_{2} if S_{2} had more potentially special vertices.

Note that all 3 -cycles in H_{1} were 3 -cycles in G, else there would be a separating 5 -cycle in G, contradicting Lemma 2.1. Also, since z was incident to a 3 -face, $d_{\triangle} \geq 2$ is maintained in H_{1}. We also claim that H_{1} does not contain any 4 -cycles. Any 4 -cycle in H_{1} would correspond to the contraction of the edges between two vertices in $\left\{x, z_{2}, z_{4}\right\}$, and that would imply a separating 6 -cycle in G; such a 6 -cycle must be good, since the outer neighbors of z cannot be triangular, but no such separating cycle exists. Thus $H_{1} \in \mathcal{G}$, and by the minimality of G, we know that ϕ superextends to a $(2,0,0)$-coloring $\phi_{H_{1}}$ of H_{1}.

We claim that $\phi_{H_{1}}$ extends to a $(2,0,0)$-coloring ϕ_{G} of G that superextends ϕ, a contradiction. Let $\phi_{G}(v)=\phi_{H_{1}}(v)$ for $v \in H_{1} \backslash\left\{X_{1}\right\}$, and $\phi_{G}(x)=\phi_{G}\left(z_{2}\right)=\phi_{G}\left(z_{4}\right)=\phi_{H_{1}}\left(X_{1}\right)=\alpha$. It remains to assign colors to y and z. Let y^{\prime} be the outer neighbor of y. If S_{2} contains at most one potentially special vertex, then by the minimality of S_{1}, the result holds. Hence we may assume S_{2} contains at least two potentially special vertices, and by symmetry, we may assume z_{1} is potentially special.

Suppose first that $\alpha=1$. Recolor z_{1} with 1 by Lemma 3.3. If $\phi_{H_{1}}\left(z_{3}\right) \neq \phi_{H_{1}}\left(y^{\prime}\right)$, then y can be colored with $\phi_{H_{1}}\left(z_{3}\right)$, leaving a color available for z. If $\phi_{H_{1}}\left(z_{3}\right)=\phi_{H_{1}}\left(y^{\prime}\right)$, then y can be colored with 1 and a color is left for z, unless $\phi_{H_{1}}\left(z_{3}\right)=\phi_{H_{1}}\left(y^{\prime}\right)=1$ and y^{\prime} is improperly colored (and cannot be nicely recolored). This implies that y is not potentially special, and hence z_{3} is potentially special. Thus z_{3} can be recolored with 1 , and y and z can be colored with 2 and 3 .

Otherwise, by symmetry we may assume that $\alpha=2$. Properly color y, and then color 1 is available for z unless either all of S_{2} receives color 1 , or some vertex in S_{2} is not nicely colored with 1 and cannot be nicely recolored. In the former case, color 3 is available for z. In the latter case, some neighbor of z in S_{2} is not potentially special. But then the other two vertices in S_{2} must be potentially special, and they can be recolored with 1 . This leaves color 3 available for z.

4. Discharging Procedure

We are now ready to present a discharging procedure that will complete the proof of the theorem. Let each vertex $v \in V(G)$ have an initial charge of $\mu(v)=2 d(v)-6$, and each face $f \neq C$ in our fixed plane drawing of G have an initial charge of $\mu(f)=d(f)-6$. Recall that the length of C is r; let $\mu(C)=r+6$. By Euler's Formula, $\sum_{x \in V \cup F} \mu(x)=0$.

Let $\mu^{*}(x)$ be the charge of $x \in V \cup F$ after the discharge procedure. To lead to a contradiction, we shall prove that $\mu^{*}(x) \geq 0$ for all $x \in V \cup F$ and $\mu^{*}(C)>0$.

Let a t-face with exactly one vertex in C be an F_{t}^{\prime}-face, and a t-face with two or more vertices in C be an $F_{t}^{\prime \prime}$-face for $t \in\{3,5\}$. Note that by Lemma 2.2, no 3 -face contains three vertices of C and no 5 -face contains four consecutive vertices of C. Observe also that since $d_{\Delta} \geq 2$, a vertex can be incident to at most one 3 -face.

We call a 5 -vertex v good if it contains three consecutive neighbors that are neither special vertices on 5 -faces nor on internal pendant $\left(3,3,5^{-}\right)$- or ($3,4,4$)-faces of v, furthermore, they are the nontriangular neighbors when v is on a 3 -face. Otherwise, it is bad. Extending this, a 4^{+}-vertex in $\operatorname{int}(C)$ is good if it is a nontriangular 4 -vertex, a good 5 -vertex, or a 6^{+}-vertex. We call a 5 -face in $\operatorname{int}(C)$ rich if it has one good 4^{+}-vertex and two or more other 5^{+}-vertices.

Below are the discharging rules:
(R1) If v is a 4 -vertex and f is an incident face in $\operatorname{int}(C)$, then v :
(a) gives 2 to f when f is a $(3,3,4)$-face, and $\frac{5}{4}$ to f when f is any other triangular face.
(b) gives $\frac{1}{2}$ to f when f is a 5 -face and v is nontriangular, and gives $\frac{1}{4}$ to f when f is a 5 -face and v is a triangular vertex with no incident (3,3,4)-face.
(R2) If $v \in \operatorname{int}(C)$ is a d-vertex with $d \geq 5$, then v :
(a) gives $\frac{3}{8}$ to each incident 5 -face in $\operatorname{int}(C)$ with exactly two 5^{+}-vertices that are consecutive, gives $\frac{1}{3}$ to each incident 5 -face in $\operatorname{int}(C)$ that is not rich and has at least three 5 -vertices, and gives $\frac{1}{2}$ to each other incident 5 -face, unless v is a bad 5 -vertex and the 5 -face is rich, in which case v gives $\frac{1}{4}$. In addition, v gives $\frac{1}{4}$ to each of its pendant special 5 -faces in int (C).
(b) gives $1, \frac{5}{8}, \frac{1}{2}$ to pendant $(3,3,3)-,(3,3,5)$-faces, and $\left(3,4^{-}, 4\right)$-faces in $\operatorname{int}(C)$, respectively.
(c) gives $\frac{7}{4}, \frac{3}{2}, 1$ to incident $\left(3,4^{-}, 5\right)-,(3,5,5)$ - and other incident 3 -faces in $\operatorname{int}(C)$, respectively (when $d=5$).
(d) gives $3,2,1$ to incident $(3,3, d)-,\left(3,4^{+}, d\right)$-, and $\left(4^{+}, 4^{+}, d\right)$-faces in $\operatorname{int}(C)$, respectively (when $d>5$).
(R3) The initial charge of $r+6$ on C is distributed as follows:
(a) C gets $2 d(v)-6$ from each vertex $v \in C, 1$ from each 7^{+}-face.
(b) C gives 3 to each 3 -face in $F_{3}^{\prime} \cup F_{3}^{\prime \prime}, 1$ to each 5 -face in $F_{5}^{\prime} \cup F_{5}^{\prime \prime}, 1$ to pendant ($3,3,5^{-}$)and (3,4,4)-faces in $\operatorname{int}(C)$, and $\frac{1}{4}$ to its pendant special 5 -faces.
Lemma 4.1. The face C has a positive final charge.
Proof. Let t_{3}, t_{5} be the number of pendant 3 -faces and pendant special 5 -faces at C, respectively. Assume that C gets a from 7^{+}-faces. Let $E(C, V(G)-C)$ be the set of edges between C and $V(G)-C$ and let $e(C, V(G)-C)$ be its size. Then by (R3),

$$
\begin{align*}
\mu^{*}(C) & =r+6+\sum_{v \in C}(2 d(v)-6)-3\left(\left|F_{3}^{\prime} \cup F_{3}^{\prime \prime}\right|\right)-\left|F_{5}^{\prime} \cup F_{5}^{\prime \prime}\right|-t_{3}-\frac{t_{5}}{4}+a \\
& =r+6+2 \sum_{v \in C}(d(v)-2)-2 r-3\left(\left|F_{3}^{\prime} \cup F_{3}^{\prime \prime}\right|\right)-\left|F_{5}^{\prime} \cup F_{5}^{\prime \prime}\right|-t_{3}-\frac{t_{5}}{4}+a \\
& =6-r+2 e(C, V(G)-C)-3\left(\left|F_{3}^{\prime} \cup F_{3}^{\prime \prime}\right|\right)-\left|F_{5}^{\prime} \cup F_{5}^{\prime \prime}\right|-t_{3}-\frac{t_{5}}{4}+a . \tag{1}
\end{align*}
$$

We aim to balance the charge of 2 on each $e \in E(C, V(G)-C)$ with the charge distributed to the incident and pendant faces; we can view this as sharing a charge of 2 for each $e \in E(C, V(G)-C)$ with the faces.
(a) If e is on a 3 -face $f \in F_{3}^{\prime} \cup F_{3}^{\prime \prime}$, then e can give $\frac{3}{2}$ to $f, \frac{1}{4}$ to a potential pendant 5 -face, and $\frac{1}{4}$ to a potential incident 5 -face.
(b) If e is adjacent to a pendant 3 -face, then it can give 1 to the 3 -face and $\frac{1}{2}$ to each potential incident 5 -face.
(c) If e is neither on a 3 -face $f \in F_{3}^{\prime} \cup F_{3}^{\prime \prime}$ nor adjacent to any 3 -face, then it can give $\frac{3}{4}$ to each potential incident 5 -face and $\frac{1}{4}$ to a potential pendant 5 -face. In this case, e would have a surplus of at least $\frac{1}{4}$.
Observe first that pendant faces are collectively allocated $t_{3}+\frac{t_{5}}{4}$ from $E(C, V(G)-C)$. Since each face in $F_{3}^{\prime} \cup F_{3}^{\prime \prime}$ contains two edges in $E(C, V(G)-C)$, it is allocated a charge of 3. Each face in $F_{5}^{\prime} \cup F_{5}^{\prime \prime}$ contains two edges in $E(C, V(G)-C)$, and it is allocated at least $\frac{1}{2} \cdot 2=1$, unless it shares an edge with a 3 -face in $F_{3}^{\prime} \cup F_{3}^{\prime \prime}$. In that case, it is not adjacent to pendant 3 -face, so it gains $\frac{1}{4}+\frac{3}{4}=1$. This implies that

$$
2 e(C, V(G)-C)-3\left(\left|F_{3}^{\prime} \cup F_{3}^{\prime \prime}\right|\right)-\left|F_{5}^{\prime} \cup F_{5}^{\prime \prime}\right|-t_{3}-\frac{t_{5}}{4} \geq 0
$$

Hence from (1), $\mu^{*}(C)>0$ if C is a 3 - or 5 -cycle. When $r=6, \mu^{*}(C) \geq 0$, with equality only if $a=0$ and

$$
2 e(C, V(G)-C)-3\left(\left|F_{3}^{\prime} \cup F_{3}^{\prime \prime}\right|\right)-\left|F_{5}^{\prime} \cup F_{5}^{\prime \prime}\right|-t_{3}-\frac{t_{5}}{4}=0 .
$$

This implies that each edge must be as in (a) or (b), and it is either the common edge of two 5 -faces and adjacent to a pendant 3 -face or the common edge of a 3 -face and a 5 -face and adjacent to a pendant 5 -face. Note that edges on 3 -faces in $F_{3}^{\prime \prime}$ cannot be adjacent to pendant 5 -faces, so $F_{3}^{\prime \prime}=\emptyset$.

Let $C=u_{1} u_{2} u_{3} u_{4} u_{5} u_{6}$. Suppose that u_{1} is on a 3 -face in F_{3}^{\prime}. Then u_{i} must be a 2 -vertex for $2 \leq i \leq 6$; otherwise u_{1} and u_{i} must be on the same 5 -face and thus $d_{\Delta} \geq 2$ implies u_{i} cannot be on a 3 -face or adjacent to a pendant 3 -face in $\operatorname{int}(C)$. But in this case there is a 7^{+}-face, contradicting $a=0$. Therefore $F_{3}^{\prime} \cup F_{3}^{\prime \prime}=\emptyset$.

Now if u_{1}, u_{2} are 3^{+}-vertices and in the same 5 -face $u_{1} u_{2} v_{2} v v_{1}$, then both v_{1}, v_{2} are in pendant triangles, and v must be in both, contradicting $d_{\Delta} \geq 2$. Hence C contains no consecutive 3^{+}vertices. Let $d\left(u_{1}\right) \geq 3$ and $d\left(u_{i}\right)=2$ for $2 \leq i \leq s-1$ and $d\left(u_{s}\right) \geq 3$. Note that u_{1}, u_{s} are in the same 5 -face. Then u_{1}, u_{s} have the same pendant 3 -face. This implies that $u_{s}=u_{3}$. Again, there is no 7^{+}-faces, so one of u_{4}, u_{5}, u_{6} must be 3^{+}-vertex. Therefore, by the above argument, it must be $d\left(u_{5}\right) \geq 3$ and $d\left(u_{4}\right)=d\left(u_{6}\right)=2$. But then C is a bad 6 -cycle, contrary to our assumption that C is good.

Lemma 4.2. Each face other than C has nonnegative final charge.
Proof. Observe first that (R3a) is the only rule applied to 7^{+}-faces; therefore all such faces have a nonnegative final charge.

Suppose next that f is a face with $d(f)=3$; the initial charge on f is -3 .
If $f \in F_{3}^{\prime}$, then f gets 3 from the vertex in $V(C)$ incident to f by (R3). If $f \in F_{3}^{\prime \prime}$, then f gets $\frac{3}{2}$ from the two 3^{+}-vertices in $V(C)$ incident to f, again by (R3). In either case, $\mu^{*}(f) \geq-3+3=0$.

Next, suppose $f \in \operatorname{int}(C)$.

- If f is a $(3,3,3)$-face, then by Lemma 3.8 , its outer neighbors either have degree at least 5 or lie on C. Hence by (R(2b) and (R3), f gets 1 from each outer neighbor, and $\mu^{*}(f) \geq 0$.
- If f is a $(3,3,4)$-face, then f gets 2 from the incident 4 -vertex by (R 1 a). Lemma 3.8 again guarantees that the outer neighbors of the 3 -vertices on f either have degree at least 5 or
lie on C, and hence f gets at least $\frac{1}{2}$ from the outer neighbors of its 3 -vertices by either (R2b) or (R3b). Hence $\mu^{*}(f) \geq-3+\left(2+\frac{1}{2} \cdot 2\right)=0$.
- If f is a $(3,3,5)$-face, then by $(\mathrm{R} 2 \mathrm{C})$ and (R2b), it gets $\frac{7}{4}$ from the 5 -vertex and at least $\frac{5}{8} \cdot 2$ from the two outer neighbors, so $\mu^{*}(f) \geq-3+\left(\frac{7}{4}+\frac{5}{8} \cdot 2\right)=0$.
- If f is a $(3,4,5)$-face, then f gets $\frac{5}{4}$ from its 4 -vertex by (R1a) and $\frac{7}{4}$ from its 5 -vertex by (R2c), hence $\mu^{*}(f) \geq 0$.
- If f is a $(3,4,4)$-face, then f gets $\frac{5}{4}$ from each incident 4 -vertex by (R1a) and at least $\frac{1}{2}$ from the pendant vertex, and $\mu^{*}(f)=0$.
- If f is a $(3,5,5)$-face or a $\left(3,3,6^{+}\right)$-face, then (R2c) or (R2d), respectively, imply that f receives a charge of 3 from its incident vertices.
- If f is a $\left(3,4^{+}, 6^{+}\right)$-face, then f receives 2 from the 6^{+}-vertex by $(\mathrm{R} 2 \mathrm{~d})$ and at least $\frac{5}{4}$ from

- If f is a $\left(4^{+}, 4^{+}, 4^{+}\right)$-face, then by (R1) and (R2), f gets at least 1 from each incident vertex.

Therefore the final charge on all 3 -faces is nonnegative.
Assume now that $d(f)=5$, so the initial charge on f is -1 . If f is an F_{5}^{\prime} - or $F_{5}^{\prime \prime}$-face, then by (R3b), f gets 1 from the incident vertices on C. Hence we let f be a 5 -face in $\operatorname{int}(C)$.

Suppose f contains at least three 5^{+}-vertices. If f is rich, then by (R2a), f receives $\frac{1}{2}$ from the good 5^{+}-vertex and at least $\frac{1}{4}$ from each of the other two (or more) 5^{+}-vertices, and $\mu^{*}(f) \geq$ $-1+\frac{1}{2}+\frac{1}{4} \cdot 2=0$. If f is not rich, then f receives $\frac{1}{3}$ from each and $\mu^{*}(f) \geq-1+\frac{1}{3} \cdot 3=0$. Suppose f contains exactly two non-consecutive 5^{+}-vertices; then by (R2), f gets $\frac{1}{2}$ from each, and $\mu^{*}(f) \geq 0$. Similarly, since f receives $\frac{1}{2}$ from each nontriangular 4 -vertex, $\mu^{*}(f) \geq 0$ when f has at least such 4 -vertices, or one such 4 -vertex and one 5^{+}-vertex. Hence we may assume that f contains at most two 5^{+}- and nontriangular 4 -vertices, and when it has exactly two, they are consecutive 5^{+}-vertices on f.

Let $f=v_{1} v_{2} v_{3} v_{4} v_{5}$. By $d_{\Delta}(G) \geq 2$ and Lemma 3.9, if v_{i} is 4 -vertex on f on an internal $(3,3,4)$-face in $\operatorname{int}(C)$ (that is, v_{i} is a 4 -vertex that does not give $\frac{1}{4}$ to f), then either v_{i-1} or v_{i+1} is a nontriangular 4^{+}-vertex. Hence when f has no 5^{+}- or nontriangular 4 -vertices, f also contains no 4 -vertex on an internal ($3,3,4$)-face. Since any 3 -vertex on f must be a special vertex, $\mu^{*}(f) \geq-1+\frac{1}{4} \cdot 5=\frac{5}{4}>0$ by (R1b) and (R2a). When v_{1} is the only 5^{+}- or nontriangular 4 -vertex on f, neither v_{3} nor v_{4} is a 4 -vertex on an internal ($3,3,4$)-face, and f gets $\frac{1}{4}$ through each of v_{3}, v_{4} and $\frac{1}{2}$ from v_{1}. Thus $\mu^{*}(f) \geq-1+\frac{1}{2}+\frac{1}{4} \cdot 2=0$. When v_{1} and v_{2} are the only 5^{+}- or nontriangular 4 -vertices on f, they must be 5^{+}-vertices. Further, v_{4} cannot be a 4 -vertex on an internal ($3,3,4$)-face, and by (R1b) and (R2a), $\mu^{*}(f) \geq-1+\frac{3}{8} \cdot 2+\frac{1}{4}=0$.

Clearly, each vertex on C has final charge 0 , since all its (positive or negative) charges are given to C. Now we consider the vertices in $\operatorname{int}(C)$. By Lemma 3.1, if $v \in \operatorname{int}(C)$, then $d(v) \geq 3$. If $d(v)=3$, then the initial charge on v is $2 d(v)-6=0$, and v does not distribute charge during discharging. Hence we consider $d(v) \geq 4$.

Suppose $d(v)=4$. Vertex v distributes charge according to rule (R1). If v is triangular, then it gives 2 if it is incident with a $(3,3,4)$-face in $\operatorname{int}(C)$, and at most $\frac{5}{4}+\frac{1}{4} \cdot 3=2$ otherwise. If v is nontriangular, then it gives at most $\frac{1}{2} \cdot 4=2$. Hence the charge of all 4 -vertices after the discharge procedure is at least 0 .

Lemma 4.3. Triangular 5^{+}-vertices in int (C) have nonnegative final charge.
Proof. Let v be a triangular d-vertex in $\operatorname{int}(C)$ with $d \geq 5$. Let f_{0} be the 3 -face incident with v.
If $f_{0} \cap C \neq \emptyset$, then v does not send charge to f_{0}. Since v gives at most $\frac{1}{2}$ to its other incident faces and $\frac{1}{4}$ to each of the special pendant 5 -faces, $\mu^{*}(v) \geq(2 d-6)-\frac{1}{2} \cdot(d-1)-\frac{1}{4} \cdot d>0$. Now assume $f_{0} \in \operatorname{int}(C)$.

Let $d=5$.

- f_{0} is a $\left(3,4^{-}, 5\right)$-face. By Lemmas 3.8 and 3.10 , one of the following must hold: (1) v is adjacent to at most one special vertex, (2) v is adjacent to two special vertices and incident with a face that contains a vertex in C, or (3) v is adjacent to two special vertices and a nontriangular 5^{+}-vertex, which implies v has at most two incident 5 -faces with nonconsecutive 5^{+}-vertices. In all cases, (R2) governs the distribution of charge: in case (1), $\mu^{*}(v) \geq 4-\frac{7}{4}-\frac{1}{2} \cdot 4-\frac{1}{4}=0$; in case (2), $\mu^{*}(v) \geq 4-\frac{7}{4}-\frac{1}{2} \cdot 3-\frac{1}{4} \cdot 2>0$; and in case (3), if v is a bad 5 -vertex, then $\mu^{*}(v) \geq 4-\frac{7}{4}-\frac{1}{2} \cdot 2-\frac{3}{8} \cdot 2-\frac{1}{4} \cdot 2=0$; note that v cannot be a good 5 -vertex, for otherwise, f_{0} must be a ($3,3,5$)-face and the two 3 -vertices are special, but Lemma 3.8 tells that they must be adjacent to a pendant 5^{+}-vertices, a contradiction.
- f_{0} is a $(3,5,5)$-face. By Lemma 3.10, v is adjacent to at most two special vertices, and by (R2), $\mu^{*}(v) \geq 4-\frac{3}{2}-\frac{1}{2} \cdot 4-\frac{1}{4} \cdot 2=0$.
- f_{0} is any other 3-face. By $(\mathrm{R} 2 \mathrm{c}), v$ gives 1 to f_{0}. Lemma 3.5 implies that v has a maximum of three adjacent special vertices, so by (R2), $\mu^{*}(v) \geq 4-1-\frac{1}{2} \cdot 4-\frac{1}{4} \cdot 3>0$.
Let $d=6$. First assume that f_{0} is a $\left(3^{+}, 4^{+}, 6\right)$-face. By Lemma 3.5 and (R2), v gives $\frac{1}{4}$ to up to four adjacent special vertices. By (R2a), v gives at most $\frac{1}{2}$ to each incident 5 -face, and by (R2d), v gives at most 2 to the incident 3 -face. Thus $\mu^{*}(v) \geq 6-\left(2+\frac{1}{4} \cdot 5+\frac{1}{2} \cdot 5\right)>0$. So we may assume that f_{0} is a $(3,3,6)$-face. By Lemma $3.11, v$ is adjacent to no more than two special vertices or one of its neighbors is in $V(C)$ (this implies that v has at most three incident 5 -faces in $\operatorname{int}(C)$). By (R2), in the former case, $\mu^{*}(v) \geq 6-3-\frac{1}{2} \cdot 5-\frac{1}{4} \cdot 2=0$, and in the latter case, $\mu^{*}(v) \geq 6-3-\frac{1}{2} \cdot 3-\frac{1}{4} \cdot 4>0$.

Finally, let $d \geq 7$. Then v is incident with at most $d-1$ faces of length 5 , and by Lemma 3.5, at most $d-2$ special vertices. By (R2), $\mu^{*}(v) \geq 2 d-6-3-\frac{1}{2} \cdot(d-1)-\frac{1}{4} \cdot(d-2)=\frac{1}{4}(5 d-32)>0$.

In the rest of the paper, whenever mentioned, $\left(3,3,5^{-}\right)$-faces, $(3,4,4)$-faces, and 5 -faces are in $\operatorname{int}(C)$.

Lemma 4.4. Nontriangular 6^{+}-vertices in $\operatorname{int}(C)$ have nonnegative final charge.
Proof. Let $v \in \operatorname{int}(C)$ be a nontriangular 6^{+}-vertex and let t be the number of pendant $\left(3,3,5^{-}\right)$or $(3,4,4)$-faces of v. By Lemma 3.5, v has at most $(d-t-2)$ pendant special 5 -faces. By (R2), v gives at most 1 to each pendant 3 -face, at most $\frac{1}{2}$ to each incident 5 -face, and $\frac{1}{4}$ to each pendant special 5 -face. So if $t \leq d-4$, then $\mu^{*}(v) \geq 2 d-6-t-\frac{1}{2} d-\frac{1}{4}(d-t-2)=\frac{1}{4}(5 d-22-3 t) \geq \frac{1}{4}(2 d-10)>0$. If $t=d-2$, then v has no pendant special 5 -faces, and $d_{\Delta}(G) \geq 2$ implies that v has at most 4 incident 5 -faces. So $\mu^{*}(v) \geq 2 d-6-(d-2)-\frac{1}{2}(4)=d-3 \geq 0$. Since $t \leq d-2$ by Lemma 3.5, it remains only to check $t=d-3$.

If $d \geq 7$, then $\mu^{*}(v) \geq(2 d-6)-(d-3)-\frac{1}{2} d-\frac{1}{4}(d-t-2)=\frac{1}{2} d-\frac{13}{4}>0$. If $d=6$ and at least one of the three pendant 3 -faces of v is not a $(3,3,3)$-face, then v gives at most $\frac{5}{8}$ to this 3 -face by ($\mathrm{R}(2)$, so $\mu^{*}(v) \geq 6-1 \cdot 2-\frac{5}{8}-\frac{1}{2} \cdot 6-\frac{1}{4}=\frac{1}{8}>0$. So we may assume that the 6 -vertex v is adjacent to exactly three pendant ($3,3,3$)-faces. If v has at most five incident 5 -faces, then $\mu^{*}(v) \geq 6-1 \cdot 3-\frac{1}{2} \cdot 5-\frac{1}{4}=\frac{1}{4}>0$. If v has six incident 5 -faces, then v is adjacent to no pendant special 5 -faces since by Lemma 3.8 , the outer neighbors of the 3 -vertices on a ($3,3,3$)-face either are in $\mathrm{V}(\mathrm{C})$ or have degree at least 5 . So $\mu^{*}(v) \geq 6-1 \cdot 3-\frac{1}{2} \cdot 6=0$.
Lemma 4.5. Nontriangular 5-vertices in int (C) have nonnegative final charge.
Proof. Let $v \in \operatorname{int}(C)$ be a nontriangular 5 -vertex that is adjacent to t pendant (3, 3, 5-)- or $(3,4,4)$-faces. Let $N(v)=\left\{v_{i}: 1 \leq i \leq 5\right\}$. Let f_{i} be the incident face of v containing v_{i}, v, v_{i+1} for $1 \leq i \leq 5$ (index modulo 5). By Lemma $3.5, v$ has at most $d-t-2$ pendant special 5 -faces. By (R2), v gives at most 1 to each pendant 3 -face, at most $\frac{5}{8}$ to each pendant 3 -face that is not a
$(3,3,3)$-face, at most $\frac{1}{2}$ to each incident 5 -face, and $\frac{1}{4}$ to each pendant special 5 -face. If $t \leq 1$, then v has at most two pendant special 5-faces, and $\mu^{*}(v) \geq 4-1-\frac{1}{2} \cdot 5-2 \cdot \frac{1}{4}=0$. Since $t \leq 3$ by Lemma 3.5, we may assume that $t=2$ or $t=3$.

Case 1: $t=2$.
First we verify Claim A: If v_{i} is on a $(3,3,3)$-face, both f_{i} and f_{i-1} are 5 -faces.
For otherwise, suppose v_{1} is on a $(3,3,3)$-face and f_{1} is not a 5 -face. Since an interior triangle of a bad 6 -face must share edges with three 5 -faces, the $(3,3,3)$-face at v_{1} is not the interior triangle of a bad 6 -cycle. If f_{5} is not a 5 -face, then $\mu^{*}(v) \geq 4-2 \cdot 1+\frac{1}{2} \cdot 3+\frac{1}{4}>0$. If f_{5} is a 5 -face, then it shares an edge with a $(3,3,3)$-face, thus by Lemma 3.6, since v has two pendant $\left(3,3,5^{-}\right)$- or $(3,4,4)$-faces, it has no pendant special 5 -face. By $(\mathrm{R} 2), \mu^{*}(v) \geq 4-2 \cdot 1+\frac{1}{2} \cdot 4=0$. Hence Claim A is established.

Without loss of generality, we may assume that either v_{1} and v_{2} or v_{1} and v_{3} are on $\left(3,3,5^{-}\right)$or $(3,4,4)$-faces. First let v_{1} and v_{2} be on $\left(3,3,5^{-}\right)$- or $(3,4,4)$-faces. Note that f_{1} is a 6^{+} face since $d_{\triangle}(G) \geq 2$. By Claim A, neither v_{1} nor v_{2} is on a (3,3,3)-face. Hence by (R2), $\mu^{*}(v) \geq 4-\frac{5}{8} \cdot 2-\frac{1}{2} \cdot 4-\frac{1}{4}=\frac{1}{2}>0$.

Now let v_{1}, v_{3} be on $\left(3,3,5^{-}\right)$- or $(3,4,4)$-faces. Note that v is a bad 5 -vertex. We first suppose that one of f_{1}, f_{2} (say f_{1}) is not a 5 -face. By Claim A, v_{1} is not on a $(3,3,3)$-face. So by (R2), $\mu^{*}(v) \geq 4-1-\frac{5}{8}-\frac{1}{2} \cdot 4-\frac{1}{4}=\frac{1}{8}>0$.

Now assume that both f_{1} and f_{2} are 5 -faces. By Lemma 3.7, $d\left(v_{2}\right) \geq 4$. If v has no pendant $(3,3,3)$-faces, then $\mu^{*}(v) \geq 4-\frac{5}{8} \cdot 2-\frac{1}{2} \cdot 5-\frac{1}{4}=0$. Hence we may assume that v_{1} is on a $(3,3,3)$-face. By Claim A, f_{5} is a 5 -face. By Lemma 3.8, the pendant neighbors (in particular, on f_{1} and f_{5}) of the $(3,3,3)$-faces are in $V(C)$ or have degree at least 5 .

First consider the case that v_{3} is also on a $(3,3,3)$-face. By Claim A, f_{3} is also a 5 -face, and the pendant neighbors (in particular, on f_{2} and f_{3}) of the $(3,3,3)$-faces are in $V(C)$ or have degree at least 5 . Note that v_{2} cannot be triangular; further, three of its consecutive neighbors are 5^{+} vertices. Hence v_{2} is a good 4^{+}-vertex and both f_{1} and f_{3} are rich 5 -faces. By (R2a), v gives $\frac{1}{4}$ to each of f_{1} and f_{2}. Note that both v_{4} and v_{5} are next to a 5^{+}-neighbor respectively on f_{3} and f_{5}, so they are not pendant special 3 -vertices of v, and thus v has no pendent special 5 -faces. So by $(\mathrm{R} 2), \mu^{*}(v) \geq 4-1 \cdot 2-\frac{1}{4} \cdot 2-\frac{1}{2} \cdot 3=0$.

Finally, assume that v_{3} is not on a $(3,3,3)$-face. Suppose v_{3} is on a $\left(3,4^{-}, 4\right)$-face. If $d\left(v_{2}\right) \neq 5$, then v_{2} is a good 4^{+}-vertex and f_{1} is rich, so by $(\mathrm{R} 2), \mu^{*}(v) \geq 4-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{2} \cdot 4-\frac{1}{4}=0$; if $d\left(v_{2}\right)=5$, then $\mu^{*}(v) \geq 4-1-\frac{1}{2}-\frac{1}{3}-\frac{3}{8}-\frac{1}{2} \cdot 3-\frac{1}{4}=\frac{1}{24}>0$. So we assume that v_{3} is on a $(3,3,5)$-face. Then by Lemma $3.8, f_{2}$ contains at least three 5^{+}- or good 4^{+}-vertices. So v_{2} is a good 4^{+}-vertex and both f_{1} and f_{2} are rich 5 -faces. By (R2a), v gives $\frac{1}{4}$ to f_{1} and f_{2}. Then $\mu^{*}(v) \geq 4-1-\frac{5}{8}-\frac{1}{4} \cdot 2-\frac{1}{2} \cdot 3-\frac{1}{4}=\frac{1}{8}>0$.

Case 2: $t=3$.
By Lemma 3.5, v has no pendant special 5 -faces. Without loss of generality, we may assume that either v_{1}, v_{2}, v_{3} or v_{1}, v_{2}, v_{4} are on pendant $\left(3,3,5^{-}\right)$- or (3,4,4)-faces.

Assume first that v_{1}, v_{2}, v_{3} are on pendant $\left(3,3,5^{-}\right)$- or $(3,4,4)$-faces. Since $d_{\triangle}(G) \geq 2$, neither f_{1} nor f_{2} is a 5 -face; hence v has at most three incident 5 -faces and is not on a bad 6 -cycle. If v has at most two incident 5 -faces, then $\mu^{*}(v) \geq 4-1 \cdot 3-\frac{1}{2} \cdot 2=0$. Thus we suppose that f_{3} and f_{5} are 5 -faces (with an incident 3 -face). By Lemma 3.6, one of the neighbors of v_{1} on its triangular face must have degree at least 4 ; the same is true for v_{3}. Hence neither of the pendant triangles at v_{1} and v_{3} are $(3,3,3)$-faces. By $(\mathrm{R} 2), \mu^{*}(v) \geq 4-1-\frac{5}{8} \cdot 2-\frac{1}{2} \cdot 3=\frac{1}{4}>0$.

Now assume that v_{1}, v_{2}, v_{4} are on pendant $\left(3,3,5^{-}\right)$or $(3,4,4)$-faces. Since $d_{\triangle}(G) \geq 2$, f_{1} is not a 5 -face. Then the 3 -face at v_{2} is not an interior triangle of a bad 6 -cycle. By Lemma 3.6 , either f_{2} is a 5 -face and v_{2} is not on a $(3,3,3)$-face or f_{2} is not a 5 -face. Hence v gives at most
$\max \left\{1, \frac{5}{8}+\frac{1}{2}\right\}=\frac{9}{8}$ to f_{2} and the pendant 3 -face at v_{2} by (R2 . Similarly, v gives at most $\frac{9}{8}$ to f_{5} and the pendant 3 -face at v_{1}. If v_{4} is not on a $(3,3,3)$-face, then $\mu^{*}(v) \geq 4-\frac{9}{8} \cdot 2-\frac{1}{2} \cdot 2-\frac{5}{8}=\frac{1}{8}>0$.

Hence we may assume that v_{4} is on a (3,3,3)-face. If neither f_{2} nor f_{5} is a 5 -face, then $\mu^{*}(v) \geq$ $4-1 \cdot 3-\frac{1}{2} \cdot 2=0$, so we may also assume (by symmetry) that f_{5} is a 5 -face. If one of f_{3}, f_{4} is not a 5 -face, then $\mu^{*}(v) \geq 4-1-\frac{9}{8} \cdot 2-\frac{1}{2}=\frac{1}{4}>0$, so we may assume that both f_{3} and f_{4} are 5 -faces. Since f_{1} is not a 5 -face, the 3 -face at v_{1} is not the interior 3 -face of a bad 6 -cycle, so by Lemma 3.6, it cannot be a $(3,3,3)$-face. Now that both f_{4}, f_{5} are 5 -faces, by Lemma $3.7, d\left(v_{5}\right) \geq 4$. By Lemma 3.8, the pendant neighbors of the $(3,3,3)$-face at v_{4} are in $V(C)$ or have degree at least 5 , hence f_{4} has at least three 4^{+}-vertices. Since $d_{\triangle}(G) \geq 2, v_{4}$ cannot be a triangular 4 -vertex. If $d\left(v_{5}\right) \neq 5$, then v_{4} is a good 4^{+}-vertex and f_{4} is a rich 5 -face; by $(\mathrm{R} 2), \mu^{*}(v) \geq 4-\frac{9}{8} \cdot 2-1-\frac{1}{4}-\frac{1}{2}=0$. So let $d\left(v_{5}\right)=5$. If v_{1} is on a $\left(3,4^{-}, 4\right)$-face, then $\mu^{*}(v) \geq 4-1-\frac{1}{2}-\frac{9}{8}-\frac{1}{2} \cdot 2-\frac{1}{3}=\frac{1}{24}>0$. If v_{1} is on a $(3,3,5)$-face, then the 5 -vertex must be on f_{5} by Lemma 3.6. So by (R2), v gives $\frac{1}{3}$ to each of f_{4} and f_{5}. Then $\mu^{*}(v) \geq 4-1-\frac{5}{8}-\frac{1}{3} \cdot 2-\frac{9}{8}-\frac{1}{2}=\frac{1}{12}>0$.

Therefore all vertices have nonnegative charge after the discharge procedure.

References

[1] K. Appel, W. Haken, Every planar graph is four colorable. Part I. Discharging, Illinois J. Math, (1977), 429-490.
[2] K. Appel, W. Haken. Every planar graph is four colorable. Part II. Reducibility, Illinois J. Math, (1977), 491-567.
[3] O.V. Borodin, A. Glebov, Planar Graphs with Neither 5-Cycles Nor Close 3-Cycles Are 3-Colorable, J. Graph Theory, (2010), 1-31.
[4] O. V. Borodin, A. N. Glebov, A. R. Raspaud, and M. R. Salavatipour. Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. of Combin. Theory, Ser. B, 93 (2005), 303-311.
[5] M. Chen, Y. Wang, P. Liu, J. Xu, Planar graphs without cycles of length 4 or 5 are (2, 0, 0)-colorable, Discrete Math. 339 (2016), no. 2, 886-905.
[6] V. Cohen-Addad, M. Hebdige, D. Kral, Z. Li, E. Salgado, Steinberg's Conjecture is false, J. of Combin. Theory, Ser. B, 122 (2017), 452-456.
[7] L. J. Cowen, R. H. Cowen, D. R. Woodall, Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory 10 (1986), no. 2, 187-195.
[8] Z. Dvorak, D. Kral, R. Thomas, Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies, arXiv:0911.0885
[9] H. Grötzch, Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel. (German), Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math-Nat. (1958/1959) 109-120.
[10] I. Havel, On a Conjecture of B. Grünbaum, J. Combinatorial Theory, (1969), 184-186.
[11] O. Hill, D. Smith, Y. Wang, L. Xu, G. Yu, Planar Graphs Without Cycles of Length 4 or 5 are ($3,0,0$) colorable, Discrete Math. 313 (2013), no. 20, 2312-2317.
[12] O. Hill, G. Yu, A relaxation of Steinberg's conjecture, SIAM J. Discrete Math. 27 (2013), no. 1, 584-596.
[13] Z. Huang, X. Li and G. Yu, A relaxation of the strong Bordeaux Conjecture, J. Graph Theory, (2018) 1-18, DOI: 10.1002/jgt.22208.
[14] R. Liu, X. Li, and G. Yu, A relaxation of the Bordeaux Conjecture, European J. of Comb., 49 (2015), 240-249.
[15] R. Liu, X. Li, and G. Yu, Planar graphs without 5 -cycles and intersecting triangles are ($1,1,0$)-colorable, Discrete Math., 339 (2016) 992-1003.
[16] M. Montassier and P. Ochem, Near-colorings: non-colorable graphs and NP-completeness, Electronic J. of Comb., 22 (1) (2015) \#P1.57.
[17] R. Steinberg, The state of the three color problem, Quo Vadis, Graph Theory?, Ann. Discrete Math (1993), 211-248.
[18] Y. Wang, and L. Xu, Improper choosability of planar graphs without 4-cycles, SIAM J. Discrete Math., 27 (2013) 2029-2037.
[19] L. Xu, Z. Miao, and Y. Wang, Every planar graph with cycles of length neither 4 nor 5 is (1, 1, 0)-colorable, J Comb. Optim., 28 (2014), 774-786.
[20] B. Xu, On (3,1)*-Coloring of Plane Graphs, SIAM J. Discrete Math, (2008), 205-220.
[21] L. Xu, Z. Miao, Y. Wang, Every planar graph with cycles of length neither 4 nor 5 is (1, 1, 0)-colorable, J. Comb. Optim. 28 (2014), no. 4, 774-786.

[^0]: E-mail address: jvandenb@kennesaw.edu, gyu@wm.edu.
 The research of the last author was partially supported by NSFC (11728102) and the NSA grant H98230-16-1-0316.

