
PLANAR GRAPHS WITHOUT 4-CYCLES AND CLOSE TRIANGLES ARE

(2, 0, 0)-COLORABLE

HEATHER HOSKINS1 RUNRUN LIU2 JENNIFER VANDENBUSSCHE3 GEXIN YU1,2

1Department of Mathematics, The College of William and Mary, Williamsburg, VA, 23185, USA.
2Department of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei, China.

3Department of Mathematics, Kennesaw State University, Marietta, GA, 30060, USA

Abstract. For a set of nonnegative integers c1, . . . , ck, a (c1, c2, . . . , ck)-coloring of a graph G is
a partition of V (G) into V1, . . . , Vk such that for every i, 1 ≤ i ≤ k,G[Vi] has maximum degree
at most ci. We prove that all planar graphs without 4-cycles and no less than two edges between
triangles are (2, 0, 0)-colorable.

1. Introduction

The coloring of planar graphs has a long history. The well-known Four Color Theorem, proved by
Appel and Haken (see [1]-[2]) in the 1970s, states that all planar graphs are 4-colorable. Determining
whether an arbitrary planar graph is 3-colorable is NP-complete; much attention has been given
to proving sufficient conditions under which planar graphs are 3-colorable. The classic example is
the theorem by Grötzch [9] showing that planar graphs without 3-cycles are 3-colorable.

Recently, the study of the coloring of planar graphs with 3 colors has taken a very interesting
turn. Steinberg [17] in 1976 famously conjectured that planar graphs without 4-cycles and 5-cycles
are 3-colorable. Erdős asked for the constant D such that planar graphs excluding cycles of lengths
from 4 to D are 3-colorable. Borodin, Glebov, Raspaud, and Salavatipour [4] showed that D ≤ 7.
After being open for almost 40 years, in a very recent paper [6], the Steinberg Conjecture was
disproved by a counterexample. This surprising result suggests that the property of planar graphs
being 3-colorable may be more rare than was previously thought, and spurs the search for more
classes of planar graphs that are 3-colorable.

One interesting restriction that gives rise to classes of 3-colorable planar graphs involves forbid-
ding triangles that are close together. This idea is illustrated in the famous conjecture by Havel.

Conjecture 1.1 (Havel, 1969). There is a constant C (perhaps as small as 4) such that any planar
graph whose triangles are at distance at least C from each other is 3-colorable.

This conjecture was resolved by Dvořák, Král’ and Thomas [8] by showing the truth for any
planar graph G with d∆(G) > 10100, where d∆(G) is the length of the shortest path between the
vertices of any two 3-cycles. Clearly more work is needed to understand the constant C, but in
the meantime, there have been advances that combine the hypotheses of the Steinberg and the
Havel conjectures. For example, Borodin and Glebov [3] showed that any planar graph G without
5-cycles and satisfying d4(G) ≥ 2 is 3-colorable.

With the recent counterexample to Steinberg’s conjecture showing that it may be more difficult
to find 3-colorable planar graphs than originally thought, it becomes more interesting to investigate
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“nearly” 3-colorable planar graphs. A graphG is (c1, c2, . . . , ck)-colorable if V (G) can be partitioned
into k nonempty subsets V1, V2, . . . , Vk such that the maximum degree of G[Vi] is at most ci. In
other words, there exists a k-coloring such that for each color i, each vertex colored with i has at
most ci neighbors of the same color. Clearly, a graph is properly 3-colorable if and only if it is
(0, 0, 0)-colorable. In [7], it is shown that every planar graph is (2, 2, 2)-colorable.

There are many results in this area; we refer interested readers to [16]. As an illustration, the
following is a list of results known for 5-cycle-free planar graphs.

Theorem 1.2. Let G be a planar graph without 5-cycles.

• If G also has no 4-cycles, then it is (2, 0, 0)- and (1, 1, 0)-colorable ([5, 21, 12]).
• If G has no intersecting triangles, then it is (2, 0, 0)- and (1, 1, 0)-colorable ([14, 15]).
• If G has no K−4 , then it is (1, 1, 1)- and (1, 1, 0)-colorable. ([13, 20]).

In [18], Wang and Xu proved that planar graphs without 4-cycles are (1, 1, 1)-colorable (in
fact, (1, 1, 1)-choosable), and constructed a non-3-colorable planar graph that has no 4-cycles (and
d∆ = 1). (See Figure 1.) Furthermore, although the result by Borodin and Glebov [3] (and other
likewise results) forbids 5-cycles and not 4-cycles, their proof involves showing that there are no
internal 4-cycles in a minimal counterexample.

Figure 1: A non-(0, 0, 0)-colorable planar graph without 4-cycles.

This motivates the study of the 3-colorability of planar graphs without 4-cycles (but perhaps
with 5-cycles) and satisfying d4(G) ≥ 2. We conjecture that the following is true.

Conjecture 1.3. If G is a planar graph without 4-cycles such that d4(G) ≥ 2, then G is 3-colorable.

In this paper, we prove a relaxation of Conjecture 1.3. Let G be the set of planar graphs with
d4(G) ≥ 2 and no 4-cycles.

Theorem 1.4. If G ∈ G, then G is (2, 0, 0)-colorable.

To prove Theorem 1.4, we use the idea of superextendable colorings introduced by Xu in [20].

Definition A (2, 0, 0)-coloring φ of a subgraph H of G superextends to G if there exists a (2, 0, 0)-
coloring φG of G that extends φ with the property that φ(v) 6= φ(u) whenever v ∈ H and u ∈
G ∩ N(v) − H, where N(v) is the set of neighbors of v. We say that a subgraph H ⊆ G is
superextendable to G if every (2, 0, 0)-coloring φH of H superextends to G. When we wish to
specify G, we will say (G,H) is superextendable.

We need the following definition.

Definition A 6-cycle is bad if alternating vertices along the 6-cycle are matched to the vertices of
a triangle. The triangle is called an interior triangle of a bad 6-cycle. (See Figure 2.) Otherwise,
a 6-cycle is good.

Figure 2: A bad 6-cycle.
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Our approach is to prove the following stengthening of Theorem 1.4.

Theorem 1.5. For each G ∈ G, every triangle, 5-cycle and good 6-cycle in G is superextendable.

Observe that the restriction to good 6-cycles is necessary. Otherwise, the graph in Figure 2 is a
counterexample: precolor the vertices of degree 3 on the 6-cycle with color 1.

Assuming Theorem 1.5 holds, it is easy to verify that Theorem 1.4 also holds. If G has no
triangles, then G is (2, 0, 0)-colorable (in fact, (0, 0, 0)-colorable by Grötzch’s theorem). Otherwise,
fix a (2, 0, 0)-coloring φ of some triangle; by Theorem 1.5, the coloring can be superextended to G,
which is a (2, 0, 0)-coloring of G.

In Section 2, we highlight the advantage of proving Theorem 1.5, and we present some preliminary
observations about a minimum counterexample to the theorem. The proof uses the discharging
method, so Sections 3 and 4 contain, respectively, the reducible configurations and the discharging
arguments.

2. Preliminaries and Definitions

The advantage of proving the stronger theorem involving superextendable colorings was noted
by Xu in [20]. Let a cycle C in a plane graph G be a separating cycle if the deletion of C results
in a disconnected graph. Let int(C) denote the interior of C, and similarly ext(C) the exterior,
when the vertices of C are deleted. If a proper coloring of a separating cycle C can be extended to
int(C) and ext(C) individually, then the union of the two colorings is a proper coloring. However,
this property would not hold for (2, 0, 0)-colorings of the two subgraphs; a vertex of C precolored
with color 1 may have two neighbors of color 1 in both int(C) and ext(C), so the union of the two
colorings would contain a vertex of color 1 with four neighbors of color 1. The superextendable
property allows us to combine colorings of int(C) and ext(C) into a (2, 0, 0)-coloring of the entire
graph.

In order to illustrate this more clearly, we must introduce some notation that will be used for
the remainder of the paper. Our proof of Theorem 1.5 is by contradiction, so we will let (G,C)
for G ∈ G be a counterexample to the theorem of minimum order. That is, some fixed precoloring
φ of a cycle C of length 3 or 5 or a good cycle of length 6 in G cannot be superextended to G,
and G is the smallest graph with this property. Let V (C) denote the vertices of the cycle, and let
|V (C)| = r.

We first observe that C cannot be a separating cycle, analogous to Lemma 1 in [20]. Otherwise,
φ can be superextended individually to int(C) and ext(C) by the minimality of G, and then the
union of these two colorings would be a superextension of φ to G, a contradiction. Hence we may
assume that G is drawn with C as the exterior face.

Lemma 2.1. G does not contain separating triangles, 5-cycles or good 6-cycles.

Proof. Suppose otherwise that G contains a separating cycle C ′, where the length of C ′ is 3 or 5,
or C ′ is a good 6-cycle. Let G1 be the subgraph of G induced by C ′ together with ext(C ′), and
G2 the subgraph of G induced by C ′ together with int(C ′). Note that C is contained in G1. By
the minimality of G, φ superextends to a (2, 0, 0)-coloring φG1 of G1. Now φG1 restricted to C ′ is
a (2, 0, 0) precoloring of C ′, and again applying the minimality of G, it superextends to a (2, 0, 0)-
coloring of G2. The union of these two colorings is a superextension of φ to G, a contradiction. �

The lack of separating short cycles provides additional information about the structure of C.
The next lemma follows [20].

Lemma 2.2. The cycle C is chordless, and for nonadjacent x, y ∈ C, N(x) ∩N(y) ⊆ V (C).

Proof. The conclusion is trivial if r = 3; suppose that r = 5 or r = 6.
3



If C has a chord and r = 5, then the chord separates C into a 3-cycle and a 4-cycle, contradicting
G ∈ G. If r = 6, then the chord would create either a 4-cycle and a 5-cycle, again contradicting
G ∈ G, or a 3-cycle and a 5-cycle. In the second case, since V (C) 6= V (G), one of these cycles
would have to be a separating cycle, contradicting Lemma 2.1.

Now consider nonadjacent x, y in V (C). Suppose that there exists v ∈ N(x) ∩ N(y) where
v 6∈ V (C). If r = 5, then C together with xvy forms a 4-cycle and a 5-cycle, which is impossible.
If r = 6, then C together with xvy forms either a 6-cycle and a 4-cycle, which is impossible, or
two 5-cycles. Neither of the 5-cycles can be separating, but then V (G) = C ∪ {v}, and it is easy to
verify that such a graph is not a counterexample. Therefore x and y can have no such neighbor. �

Now we introduce some definitions we use in the rest of the paper. In a (2, 0, 0)-coloring of G,
a vertex v is 1-saturated if it is colored with 1 and has two neighbors of color 1; otherwise, it is
called nicely colored (i.e., it is colored with 2 or 3, or it is colored with 1 but not 1-saturated). If
v is nicely colored, then a neighbor of v can be (re)colored with 1. If v has at most three colored
neighbors, then nicely recoloring v means v is either recolored with color 2 or 3 (if one of those
colors is available), or v has at most one neighbor with color 1, and v remains color 1.

Lemma 2.3. Suppose φG′ is a superextension of φ to G′ ⊂ G, and v ∈ V (G′). If v is nicely
recolored, then the extension remains a superextension.

Proof. Since the color of v is not changed to 1, v can be color 1 only if φG′(v) = 1, in which case v
must not have a neighbor of color 1 on C. �

Suppose that x is a vertex of a face f . A neighbor v of x is an outer neighbor (with respect to
f) if v is not on f . A k+-vertex (or k−-vertex) in G is a vertex of degree at least (or at most) k.
A (k1, k2, . . . , kt)-cycle is a t-cycle whose vertices’ degrees are k1, . . . , kt, respectively. A vertex is
triangular if it lies on a 3-face, otherwise it is called nontriangular.

Let f be a 3-face in int(C). If v 6∈ V (f) is adjacent to a 3-vertex x on f , then f is called a
pendant face to v, and x and v are pendant neighbors to each other.

A 3-vertex v on a 5-face in int(C) is called special if its two neighbors on the face are 4−-vertices.
If x is a 5+-vertex with a special neighbor v, we call the pendant 5-face containing v a pendant
special 5-face to x. (See Figure 3.) A 3-vertex in int(C) is potentially special if two of its neighbors
are 4−-vertices in int(C). Note that a special vertex is also potentially special.

Figure 3: Special vertex v and a pendant special 5-face to x.

3. Reducible Configurations

Lemma 3.1. There are no 2−-vertices in int(C).

Proof. Let v be a 2−-vertex in int(C). Then φ superextends to G− v by the minimality of G. Now
v can be properly colored, a contradiction. �

The following lemma is a foundational one for our paper, and similar lemmas appear in other
related results (see for example [14]). We include the proof for completeness.

Lemma 3.2. Every 3-vertex in int(C) is adjacent to at least one 5+-vertex or a vertex on C.
4



Proof. Let v ∈ int(C) be a 3-vertex not adjacent to a vertex of C. By the minimality of G, φ
superextends to G − v. Since this coloring cannot extend to G, the colors 1, 2, 3 must appear in
N(v), and the vertex u ∈ N(v) colored with 1 is neither nicely colored, nor can it be recolored with
2 or 3. Hence u is adjacent to vertices colored with 2 and 3 and to two vertices of color 1, thus
d(u) ≥ 5. �

Lemma 3.3. Suppose φ has been superextended to some subgraph of G, and let v ∈ int(C) be a
vertex that has exactly two colored neighbors, v1 and v2, both in int(C). Then v can be recolored
with color 1, unless one of the following holds:

(1) v1 and v2 are adjacent and d(v1) + d(v2) ≥ 9, or
(2) v1 and v2 are nonadjacent and one is a 5+-vertex.

Proof. Suppose that v cannot be recolored with 1. Then if we recolor v with 1, some neighbor of
v (say v1) that is colored with 1 will have three neighbors of color 1. Note that color 2 and 3 must
appear in N(v1), for otherwise we recolor v1 with the absent color, so the degree of v1 is at least 5.
Assume further that v1v2 ∈ E(G). If d(v1) + d(v2) ≤ 8, then d(v1) = 5 and d(v2) = 3. As there are
at most two different colors in N(v2), we can properly recolor v2 (if its color is 1) or remove the
color of v2 and then properly recolor v1 and v2 in order(if its color is 2 or 3). Now in both cases,
we can recolor v with 1. �

Observation 3.4. Let v be a special or potentially special vertex with N(v) in int(C). By Lemma 3.2,
v must be adjacent to a 5+-vertex. By Lemma 3.3, in any precoloring of G in which the 5+-neighbor
v has not been colored, v can be recolored with 1.

Lemma 3.5. Let v be a vertex in int(C). If v is adjacent to m special vertices and t pendant
(3, 3, 5−)- or (3, 4, 4)-faces, then m+ t ≤ d(v)− 2.

Proof. Suppose to the contrary, that there exists some vertex v ∈ int(C) with m + t > d(v) − 2.
Consider G′ = G\{v}. We know that G′ ∈ G, so φ superextends to a coloring φG′ of G′. By
Lemma 3.3, the m + t pendant or special vertices in N(v) can be recolored with color 1, leaving
at most one vertex in N(v) with a different color. Now either color 2 or 3 is available to properly
color v, superextending φ to G, a contradiction. �

Lemma 3.6. Let (v1, . . . , v6) be an internal 6-cycle with chord v1v3. Let d(v1) = d(v3) = 3, and
v4 be adjacent to k internal pendant (3, 3, 5−)-, (3, 4, 4)-faces and special vertices. If d(v2) ≤ 5 and
f = v1v2v3 is not the interior triangle of any bad 6-cycle, then d(v5) ≥ 5, and k ≤ d(v4)− 3.

Proof. Suppose the statement is not true. Consider the graph G′ formed by deleting v1 and v3 and
identifying v4 and v6 into a single vertex X.

We claim that G′ ∈ G. First of all, we do not create chords in C of G since both v4 and v6 are
in int(C). The only path of length 3 from v6 to v4 in G goes through v1 and v3, else there would
be a separating 5-cycle in G or a triangle at vertex v4 or v6. Hence no new triangles are created
by identifying v4 and v6. Further, since v1 and v3 are triangular in G, neither v4 nor v6 can be
triangular. Thus d4(G′) ≥ 2. It remains to show that G′ has no 4-cycles; such a 4-cycle could be
created by a path of length 4 in G from v4 to v6. For such a path to exist, there must be a 4-cycle
containing v5, which does not exist, or a separating 6-cycle in G. Since G does not contain good
separating 6-cycles and f = v1v2v3 is not the interior triangle of any bad 6-cycle, G must contain a
6-cycle containing v4, v5, v6 with a triangle inside, pendant to v5. Let x be the pendant neighbor to
v5. But since there are no separating triangles or 5-cycles in G, v5 and the two triangular neighbors
of x are all degree 3, contradicting Lemma 3.2. Hence there is no such bad 6-cycle, and G′ ∈ G.

By the minimality of G, we know that there exists a superextension φG′ of φ to G′. We claim
we can extend φG′ to a coloring φG that superextends φ to G, a contradiction. Let φG(x) = φG′(x)
for x ∈ V (G′)\{X} and φG(v4) = φG(v6) = φG′(X) = α. Recolor v2 so that it is nicely colored. It
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remains to color v1 and v3, and to verify that v5 is adjacent to at most two neighbors of color 1
when it is colored with 1.

If α = 2 (or symmetrically 3), then we can properly color v3. Since v1 has three nicely colored
neighbors, it can be colored, completing the superextension to G. Hence we may assume α = 1.

Suppose that either φG(v5) 6= 1, or φG(v5) = 1 and v4 and v6 are the only neighbors of v5 that
are colored with 1. At least one of {v4, v6} is nicely colored with 1; assume by symmetry that v4 is
nicely colored. Properly color v1, and now there is a color available for v3, again a contradiction.
If d(v5) < 5, then v5 can be recolored in this way, hence d(v5) ≥ 5.

Now suppose that φG(v5) = 1 and v5 has a third neighbor colored with 1. (Since X was adjacent
to v5 in G′, v5 cannot have more than three neighbors with color 1.) Observe that v3 is a pendant
neighbor of v4. Remove the color of v4, and by Lemma 3.3, recolor with color 1 the k − 1 other
neighbors of v4 that are special vertices or pendant neighbors on (3, 3, 5−)- or (3, 4, 4)-faces. Since
d(v4) ≤ k + 2, v4 has at most one neighbor colored from {2, 3}. Hence v4 can be properly colored.
If v2 is not colored with 1, then we can color v3 with 1 and properly color v1. If v2 is colored with
1, then v3 and v1 can be consecutively colored properly. Therefore d(v4) > k + 2. �

Lemma 3.7. Let v ∈ int(C) be a 5-vertex with N(v) = {vi : 1 ≤ i ≤ 5} ⊆ int(C). Let fi be the
face containing vivvi+1 for i = 1, 2. If v1 and v3 are both 3-vertices that are on internal (3, 3, 5−)-
or (3, 4, 4)-faces and both f1 and f2 are 5-faces in int(C), then d(v2) ≥ 4.

Proof. Suppose otherwise, that d(v2) = 3. Then we discuss the following two cases.
Case 1: One of v1 and v3 (say v1, by symmetry) is not on the interior triangle of a bad 6-cycle.

Let G′ be the graph formed by identifying v2 and v5 in G − v into vertex X. First of all, we do
not create chords of C, for otherwise, the chord must be incident with X, conradicting v2 and v5

in
∫

(C). Note that no new triangles can be created, else there would be a separating 5-cycle in
G, contradicting Lemma 2.1. Since d4(G) ≥ 2, v2 and its neighbors are all nontriangular, hence
d4(G′) ≥ 2. Also, G′ contains no 4-cyces, else there would be a 4-path between v2 and v5 which
implies a separating good 6-cycle in G, contradicting Lemma 2.1. Therefore, G′ ∈ G. By the
minimality of G, we know that there exists a superextension φG′ of φ to G′. We show that φG′ can
be extended to a coloring φG of G. Let φG(v2) = φG(v5) = φG′(X), and let φG(x) = φG′(x) for
x ∈ V (G) − {v, v2, v5}. It remains to color v to arrive at a contradiction. Recolor v1 and v3 with
1 by Lemma 3.3. If φG′(X) = 1, then v can be properly colored. If φG′(X) = 2 or 3 (say 2), then
v4 must be colored 3, else we can color v properly. In this case, we can properly recolor v1 and v3,
and then color v with 1.

Case 2: Both v1 and v3 are on the interior (3, 3, 3)-faces of bad 6-cycles. Let N(vi) = {v, ui, wi}
for i = 1, 2, 3 such that w1 and w2 are on f1 and u2 and u3 are on f2. Let G′ = G − {v3, u3, w3}.
By the minimality of G, there exists a superextension φG′ of φ to G′. We first claim that v is
1-saturated. For otherwise, color v3 with 1, and then either φG′(u2) 6= 1 and we color u3 with 1 and
then w3 properly, or φG′(u2) = 1 and we color w3, u3 properly in order, a contradiction. Similarly,
u2 is also 1-saturated. Furthermore, neither v nor u2 can be recolored, so their neighborhoods must
have color set {1, 1, 2, 3}. Further, v1 must be colored with 1, or we could recolor it by Lemma 3.3.
We claim that w2 must also be colored with 1. For otherwise, we can recolor w1 with 1 and then
recolor v1 properly, a contradiction. But since all neighbors of v2 are colored with 1, v2 can be
recolored with a different color so that v can be nicely recolored, a contradiction again. �

Lemma 3.8. Given a (3, 3, 5−)-face f in int(C), the pendant neighbors of the 3-vertices on f either
are in V (C) or have degree at least 5.

Proof. Consider a 3-face f = xyz in int(C), where d(z) ≤ 5 and d(y) = d(x) = 3 (see Figure 4).
Assume to the contrary that the outer neighbor y′ of y has degree at most 4, but y′ /∈ V (C).
Consider G′ = G\{x, y}. Because G′ ∈ G, we know that there exists a superextension φG′ of φ to
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G′. Since z and y′ have degree at most 3 in G′, they can be nicely recolored. But now we extend
φG to G by properly coloring x and then coloring y, a contradiction. �

Figure 4: (3, 5−, 5)-face and (3, 3, 6)-face used in Lemmas 3.8, 3.10 and 3.11

Lemma 3.9. Let v ∈ int(C) be a 4-vertex with N(v) = {vi|1 ≤ i ≤ 4} in the clockwise order. If
f = v1vv2 is an internal (3, 3, 4)-face, then neither v3 nor v4 can be a 3-vertex in int(C).

Proof. Without loss of generality, let v3 be a 3-vertex in int(C). Let G′ be the graph formed
by identifying v2 and v4 into X in G − v. First of all, we do not create chords in C of G, for
otherwise, the chord must be at X, thus there is a 3-path connecting two vertices on C, which will
create a separating 5 or good 6-cycle, a contradiction to Lemma 2.1. Note that no new triangles
can be created, else there would be a separating 5-cycle in G, contradicting Lemma 2.1. Since
d4(G) ≥ 2, both v2 and v4 are nontriangular in G − v, hence d4(G′) ≥ 2. None of v2, v, v4 is on
a bad 6-cycle, thus G′ contains no 4-cycles, else there would be a separating good 6-cycle in G,
contradicting Lemma 2.1. Therefore, G′ ∈ G. By the minimality of G, we know that there exists
a superextension φG′ of φ to G′. We show that φG′ can be extended to a coloring φG of G. Let
φG(v2) = φG(v4) = φG′(X), and let φG(x) = φG′(x) for x ∈ V (G) − {v, v2, v4}. We claim this
coloring extends to v, a contradiction.

If φG′(X) = 2 (or 3), then we properly recolor v1 and v3 and color v with 1. If φG′(X) = 1, then
N(v) has color set {1, 1, 2, 3}, else we can color v with the missing color. By symmetry, let v1 be
colored with 2 and v3 be colored with 3. We can recolor v1 with either 3 if the outer neighbor of
v1 is colored with 1, or 1 otherwise. In either case, v can be colored with 2, a contradiction. �

Lemma 3.10. Suppose that f = xyz is a (3, 5−, 5)-face in int(C), with d(x) ≤ 5, d(y) = 3, and
d(z) = 5. Let the outer neighbors of z be z1, z2, z3 in clockwise order so that x and z1 are on the
same face. Let y′ be the outer neighbor of y(See Figure 4).

(1) At most one of {z1, z2, y} (and symmetrically {z1, z3, y}) is potentially special (and hence
at most one is special).

(2) If z2 and z3 are potentially special, then either y′ ∈ V (C), or d(z1) ≥ 5.

Proof. Consider the graph G′ formed by identifying vertices x and z3 into vertex X, and deleting
the vertex z. Note all 3-cycles in G′ were 3-cycles in G, else there would be a separating 5-cycle in
G, contradicting Lemma 2.1. Also, since z was incident to a 3-face, z3 cannot be triangular, and
hence d4 ≥ 2 is maintained in G′. We also claim that G′ does not contain any 4-cycles. Any such
4-cycle would correspond to a path of length 4 in G between x and z3, and such a path would imply
a separating 6-cycle in G; such a 6-cycle must be bad. But since x is triangular, the 6-cycle could
not have another interior triangle, a contradiction. Hence G′ ∈ G, and by the minimality of G, φ
superextends to a (2, 0, 0) coloring φG′ of G′. We show that φG′ can be extended to a coloring φG
of G when the hypotheses fail. Let φG(x) = φG(z3) = φG′(X) = α, and let φG(v) = φG′(v) for all
other v ∈ V (G)− z. It remains to color z to arrive at a contradiction.

(1) Assume first that z1 and z2 are both potentially special. Properly recolor y, and properly
recolor z1 and z2. If α = 2 (or symmetrically 3), then z can be colored with 1, unless z1, z2, and
y are all colored with 1, in which case z can be colored with 3; even if z3 ∈ V (C), this would be
a superextension of φ to G, a contradiction. If α = 1, then z1 and z2 can be recolored with 1 by
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Lemma 3.3, and z can be properly colored. Hence at most one of {z1, z2} is potentially special.
Repeating the proof with z3 in place of z2 shows that at most one of {z1, z3} is potentially special.

Now suppose one of {z1, z2} is potentially special (assume z1 by symmetry), and y is, as well.
Properly recolor y and z1. If α = 2 and z2 is colored with 2 or 3, then z can be colored with 1.
Otherwise, y and z1 can be recolored with 1, and either 2 or 3 is available for z.

(2) Now assume that z2 and z3 are potentially special, y′ /∈ V (C), and d(z1) ≤ 4.
If α = 1, then recolor z2 with 1. Now z can be colored with 2 or 3 unless φG′(z1) 6= φG′(y) and

neither is color 1. If z2, z3, or x are not nicely colored with 1, then properly recolor them, and
color 1 is now available for z. If they are all nicely colored with 1, then y can be recolored 1, unless
φG′(y′) = 1, in which case y can be recolored with φG′(z1). In either case, φG′(y) becomes available
for z, a contradiction.

If α = 2 (or symmetrically 3), consider the color on z1. If φG′(z1) 6= 1, then properly recolor z2

and y, and now color 1 is available for z. If φG′(z1) = 1, then recolor z2 with 1 by Lemma 3.3. So
z can be colored with 3, unless y is given color 3. In this case, consider z1. Since d(z1) ≤ 4, the
vertex z1 can be nicely recolored, and we can color z with 1, a contradiction. �

Lemma 3.11. Let f be a (3, 3, 6)-face in int(C) with vertices x, y, z such that d(z) = 6. Then
either a neighbor of z is in V (C), or z has at most two potentially special neighbors.

Proof. Suppose that no neighbors of z are in V (C). Let z1, z2, z3, and z4 be the outer neighbors of
z, labeled as in Figure 4. Let H1 be the graph formed by identifying x, z2, and z4 in G−{z, y} into
a single vertex X1, and H2 be graph formed by identifying y, z1, and z3 in G− {z, x} into a single
vertex X2. Let S1 = {x, z2, z4} and let S2 = {y, z1, z3}. Assume by symmetry that the number of
potentially special vertices in S1 is at most the number of potentially special vertices in S2. This
implies that we will consider H1 for this proof, but a similar argument would hold for H2 if S2 had
more potentially special vertices.

Note that all 3-cycles in H1 were 3-cycles in G, else there would be a separating 5-cycle in G,
contradicting Lemma 2.1. Also, since z was incident to a 3-face, d4 ≥ 2 is maintained in H1.
We also claim that H1 does not contain any 4-cycles. Any 4-cycle in H1 would correspond to the
contraction of the edges between two vertices in {x, z2, z4}, and that would imply a separating
6-cycle in G; such a 6-cycle must be good, since the outer neighbors of z cannot be triangular,
but no such separating cycle exists. Thus H1 ∈ G, and by the minimality of G, we know that φ
superextends to a (2, 0, 0)-coloring φH1 of H1.

We claim that φH1 extends to a (2, 0, 0)-coloring φG of G that superextends φ, a contradiction.
Let φG(v) = φH1(v) for v ∈ H1\{X1}, and φG(x) = φG(z2) = φG(z4) = φH1(X1) = α. It remains
to assign colors to y and z. Let y′ be the outer neighbor of y. If S2 contains at most one potentially
special vertex, then by the minimality of S1, the result holds. Hence we may assume S2 contains
at least two potentially special vertices, and by symmetry, we may assume z1 is potentially special.

Suppose first that α = 1. Recolor z1 with 1 by Lemma 3.3. If φH1(z3) 6= φH1(y′), then y
can be colored with φH1(z3), leaving a color available for z. If φH1(z3) = φH1(y′), then y can be
colored with 1 and a color is left for z, unless φH1(z3) = φH1(y′) = 1 and y′ is improperly colored
(and cannot be nicely recolored). This implies that y is not potentially special, and hence z3 is
potentially special. Thus z3 can be recolored with 1, and y and z can be colored with 2 and 3.

Otherwise, by symmetry we may assume that α = 2. Properly color y, and then color 1 is
available for z unless either all of S2 receives color 1, or some vertex in S2 is not nicely colored with
1 and cannot be nicely recolored. In the former case, color 3 is available for z. In the latter case,
some neighbor of z in S2 is not potentially special. But then the other two vertices in S2 must be
potentially special, and they can be recolored with 1. This leaves color 3 available for z. �
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4. Discharging Procedure

We are now ready to present a discharging procedure that will complete the proof of the theorem.
Let each vertex v ∈ V (G) have an initial charge of µ(v) = 2d(v) − 6, and each face f 6= C in our
fixed plane drawing of G have an initial charge of µ(f) = d(f)− 6. Recall that the length of C is
r; let µ(C) = r + 6. By Euler’s Formula,

∑
x∈V ∪F µ(x) = 0.

Let µ∗(x) be the charge of x ∈ V ∪ F after the discharge procedure. To lead to a contradiction,
we shall prove that µ∗(x) ≥ 0 for all x ∈ V ∪ F and µ∗(C) > 0.

Let a t-face with exactly one vertex in C be an F ′t -face, and a t-face with two or more vertices
in C be an F ′′t -face for t ∈ {3, 5}. Note that by Lemma 2.2, no 3-face contains three vertices of C
and no 5-face contains four consecutive vertices of C. Observe also that since d∆ ≥ 2, a vertex can
be incident to at most one 3-face.

We call a 5-vertex v good if it contains three consecutive neighbors that are neither special
vertices on 5-faces nor on internal pendant (3, 3, 5−)- or (3, 4, 4)-faces of v, furthermore, they are
the nontriangular neighbors when v is on a 3-face. Otherwise, it is bad. Extending this, a 4+-vertex
in int(C) is good if it is a nontriangular 4-vertex, a good 5-vertex, or a 6+-vertex. We call a 5-face
in int(C) rich if it has one good 4+-vertex and two or more other 5+-vertices.

Below are the discharging rules:

(R1) If v is a 4-vertex and f is an incident face in int(C), then v:
(a) gives 2 to f when f is a (3, 3, 4)-face, and 5

4 to f when f is any other triangular face.

(b) gives 1
2 to f when f is a 5-face and v is nontriangular, and gives 1

4 to f when f is a 5-face
and v is a triangular vertex with no incident (3, 3, 4)-face.

(R2) If v ∈ int(C) is a d-vertex with d ≥ 5, then v:
(a) gives 3

8 to each incident 5-face in int(C) with exactly two 5+-vertices that are consecutive,

gives 1
3 to each incident 5-face in int(C) that is not rich and has at least three 5-vertices,

and gives 1
2 to each other incident 5-face, unless v is a bad 5-vertex and the 5-face is rich,

in which case v gives 1
4 . In addition, v gives 1

4 to each of its pendant special 5-faces in
int(C).

(b) gives 1, 5
8 ,

1
2 to pendant (3, 3, 3)-, (3, 3, 5)-faces, and (3, 4−, 4)-faces in int(C), respectively.

(c) gives 7
4 ,

3
2 , 1 to incident (3, 4−, 5)-, (3, 5, 5)- and other incident 3-faces in int(C), respec-

tively (when d = 5).
(d) gives 3, 2, 1 to incident (3, 3, d)-, (3, 4+, d)-, and (4+, 4+, d)-faces in int(C), respectively

(when d > 5).
(R3) The initial charge of r + 6 on C is distributed as follows:

(a) C gets 2d(v)− 6 from each vertex v ∈ C, 1 from each 7+-face.
(b) C gives 3 to each 3-face in F ′3 ∪ F ′′3 , 1 to each 5-face in F ′5 ∪ F ′′5 , 1 to pendant (3, 3, 5−)-

and (3, 4, 4)-faces in int(C), and 1
4 to its pendant special 5-faces.

Lemma 4.1. The face C has a positive final charge.

Proof. Let t3, t5 be the number of pendant 3-faces and pendant special 5-faces at C, respectively.
Assume that C gets a from 7+-faces. Let E(C, V (G) − C) be the set of edges between C and
V (G)− C and let e(C, V (G)− C) be its size. Then by (R3),

µ∗(C) = r + 6 +
∑
v∈C

(2d(v)− 6)− 3(|F ′3 ∪ F ′′3 |)− |F ′5 ∪ F ′′5 | − t3 −
t5
4

+ a

= r + 6 + 2
∑
v∈C

(d(v)− 2)− 2r − 3(|F ′3 ∪ F ′′3 |)− |F ′5 ∪ F ′′5 | − t3 −
t5
4

+ a

= 6− r + 2e(C, V (G)− C)− 3(|F ′3 ∪ F ′′3 |)− |F ′5 ∪ F ′′5 | − t3 −
t5
4

+ a.(1)
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We aim to balance the charge of 2 on each e ∈ E(C, V (G)−C) with the charge distributed to the
incident and pendant faces; we can view this as sharing a charge of 2 for each e ∈ E(C, V (G)−C)
with the faces.

(a) If e is on a 3-face f ∈ F ′3 ∪ F ′′3 , then e can give 3
2 to f , 1

4 to a potential pendant 5-face, and 1
4

to a potential incident 5-face.
(b) If e is adjacent to a pendant 3-face, then it can give 1 to the 3-face and 1

2 to each potential
incident 5-face.

(c) If e is neither on a 3-face f ∈ F ′3 ∪ F ′′3 nor adjacent to any 3-face, then it can give 3
4 to each

potential incident 5-face and 1
4 to a potential pendant 5-face. In this case, e would have a

surplus of at least 1
4 .

Observe first that pendant faces are collectively allocated t3 + t5
4 from E(C, V (G) − C). Since

each face in F ′3 ∪F ′′3 contains two edges in E(C, V (G)−C), it is allocated a charge of 3. Each face
in F ′5 ∪ F ′′5 contains two edges in E(C, V (G) − C), and it is allocated at least 1

2 · 2 = 1, unless it
shares an edge with a 3-face in F ′3 ∪ F ′′3 . In that case, it is not adjacent to pendant 3-face, so it
gains 1

4 + 3
4 = 1. This implies that

2e(C, V (G)− C)− 3(|F ′3 ∪ F ′′3 |)− |F ′5 ∪ F ′′5 | − t3 −
t5
4
≥ 0.

Hence from (1), µ∗(C) > 0 if C is a 3- or 5-cycle. When r = 6, µ∗(C) ≥ 0, with equality only if
a = 0 and

2e(C, V (G)− C)− 3(|F ′3 ∪ F ′′3 |)− |F ′5 ∪ F ′′5 | − t3 −
t5
4

= 0.

This implies that each edge must be as in (a) or (b), and it is either the common edge of two
5-faces and adjacent to a pendant 3-face or the common edge of a 3-face and a 5-face and adjacent
to a pendant 5-face. Note that edges on 3-faces in F ′′3 cannot be adjacent to pendant 5-faces, so
F ′′3 = ∅.

Let C = u1u2u3u4u5u6. Suppose that u1 is on a 3-face in F ′3. Then ui must be a 2-vertex for
2 ≤ i ≤ 6; otherwise u1 and ui must be on the same 5-face and thus d∆ ≥ 2 implies ui cannot be on
a 3-face or adjacent to a pendant 3-face in int(C). But in this case there is a 7+-face, contradicting
a = 0. Therefore F ′3 ∪ F ′′3 = ∅.

Now if u1, u2 are 3+-vertices and in the same 5-face u1u2v2vv1, then both v1, v2 are in pendant
triangles, and v must be in both, contradicting d∆ ≥ 2. Hence C contains no consecutive 3+-
vertices. Let d(u1) ≥ 3 and d(ui) = 2 for 2 ≤ i ≤ s− 1 and d(us) ≥ 3. Note that u1, us are in the
same 5-face. Then u1, us have the same pendant 3-face. This implies that us = u3. Again, there is
no 7+-faces, so one of u4, u5, u6 must be 3+-vertex. Therefore, by the above argument, it must be
d(u5) ≥ 3 and d(u4) = d(u6) = 2. But then C is a bad 6-cycle, contrary to our assumption that C
is good. �

Lemma 4.2. Each face other than C has nonnegative final charge.

Proof. Observe first that (R3a) is the only rule applied to 7+-faces; therefore all such faces have a
nonnegative final charge.

Suppose next that f is a face with d(f) = 3; the initial charge on f is −3.
If f ∈ F ′3, then f gets 3 from the vertex in V (C) incident to f by (R3). If f ∈ F ′′3 , then f gets 3

2
from the two 3+-vertices in V (C) incident to f , again by (R3). In either case, µ∗(f) ≥ −3 + 3 = 0.

Next, suppose f ∈ int(C).

• If f is a (3, 3, 3)-face, then by Lemma 3.8, its outer neighbors either have degree at least 5
or lie on C. Hence by (R2b) and (R3), f gets 1 from each outer neighbor, and µ∗(f) ≥ 0.
• If f is a (3, 3, 4)-face, then f gets 2 from the incident 4-vertex by (R1a). Lemma 3.8 again

guarantees that the outer neighbors of the 3-vertices on f either have degree at least 5 or
10



lie on C, and hence f gets at least 1
2 from the outer neighbors of its 3-vertices by either

(R2b) or (R3b). Hence µ∗(f) ≥ −3 +
(
2 + 1

2 · 2
)

= 0.

• If f is a (3, 3, 5)-face, then by (R2c) and (R2b), it gets 7
4 from the 5-vertex and at least 5

8 ·2
from the two outer neighbors, so µ∗(f) ≥ −3 +

(
7
4 + 5

8 · 2
)

= 0.

• If f is a (3, 4, 5)-face, then f gets 5
4 from its 4-vertex by (R1a) and 7

4 from its 5-vertex by
(R2c), hence µ∗(f) ≥ 0.
• If f is a (3, 4, 4)-face, then f gets 5

4 from each incident 4-vertex by (R1a) and at least 1
2

from the pendant vertex , and µ∗(f) = 0.
• If f is a (3, 5, 5)-face or a (3, 3, 6+)-face, then (R2c) or (R2d), respectively, imply that f

receives a charge of 3 from its incident vertices.
• If f is a (3, 4+, 6+)-face, then f receives 2 from the 6+-vertex by (R2d) and at least 5

4 from
the 4+-vertex by (R1a), (R2c) or (R2d), and again, the final charge on f is nonnegative.
• If f is a (4+, 4+, 4+)-face, then by (R1) and (R2), f gets at least 1 from each incident vertex.

Therefore the final charge on all 3-faces is nonnegative.
Assume now that d(f) = 5, so the initial charge on f is −1. If f is an F ′5- or F ′′5 -face, then by

(R3b), f gets 1 from the incident vertices on C. Hence we let f be a 5-face in int(C).
Suppose f contains at least three 5+-vertices. If f is rich, then by (R2a), f receives 1

2 from

the good 5+-vertex and at least 1
4 from each of the other two (or more) 5+-vertices, and µ∗(f) ≥

−1 + 1
2 + 1

4 · 2 = 0. If f is not rich, then f receives 1
3 from each and µ∗(f) ≥ −1 + 1

3 · 3 = 0.

Suppose f contains exactly two non-consecutive 5+-vertices; then by (R2), f gets 1
2 from each,

and µ∗(f) ≥ 0. Similarly, since f receives 1
2 from each nontriangular 4-vertex, µ∗(f) ≥ 0 when f

has at least such 4-vertices, or one such 4-vertex and one 5+-vertex. Hence we may assume that
f contains at most two 5+- and nontriangular 4-vertices, and when it has exactly two, they are
consecutive 5+-vertices on f .

Let f = v1v2v3v4v5. By d∆(G) ≥ 2 and Lemma 3.9, if vi is 4-vertex on f on an internal
(3, 3, 4)-face in int(C) (that is, vi is a 4-vertex that does not give 1

4 to f), then either vi−1 or
vi+1 is a nontriangular 4+-vertex. Hence when f has no 5+- or nontriangular 4-vertices, f also
contains no 4-vertex on an internal (3, 3, 4)-face. Since any 3-vertex on f must be a special vertex,
µ∗(f) ≥ −1 + 1

4 · 5 = 5
4 > 0 by (R1b) and (R2a). When v1 is the only 5+- or nontriangular 4-vertex

on f , neither v3 nor v4 is a 4-vertex on an internal (3, 3, 4)-face, and f gets 1
4 through each of

v3, v4 and 1
2 from v1. Thus µ∗(f) ≥ −1 + 1

2 + 1
4 · 2 = 0. When v1 and v2 are the only 5+- or

nontriangular 4-vertices on f , they must be 5+-vertices. Further, v4 cannot be a 4-vertex on an
internal (3, 3, 4)-face, and by (R1b) and (R2a), µ∗(f) ≥ −1 + 3

8 · 2 + 1
4 = 0. �

Clearly, each vertex on C has final charge 0, since all its (positive or negative) charges are given
to C. Now we consider the vertices in int(C). By Lemma 3.1, if v ∈ int(C), then d(v) ≥ 3. If
d(v) = 3, then the initial charge on v is 2d(v) − 6 = 0, and v does not distribute charge during
discharging. Hence we consider d(v) ≥ 4.

Suppose d(v) = 4. Vertex v distributes charge according to rule (R1). If v is triangular, then it
gives 2 if it is incident with a (3, 3, 4)-face in int(C), and at most 5

4 + 1
4 · 3 = 2 otherwise. If v is

nontriangular, then it gives at most 1
2 · 4 = 2. Hence the charge of all 4-vertices after the discharge

procedure is at least 0.

Lemma 4.3. Triangular 5+-vertices in int(C) have nonnegative final charge.

Proof. Let v be a triangular d-vertex in int(C) with d ≥ 5. Let f0 be the 3-face incident with v.
If f0 ∩ C 6= ∅, then v does not send charge to f0. Since v gives at most 1

2 to its other incident

faces and 1
4 to each of the special pendant 5-faces, µ∗(v) ≥ (2d− 6)− 1

2 · (d− 1)− 1
4 · d > 0. Now

assume f0 ∈ int(C).
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Let d = 5.

• f0 is a (3, 4−, 5)-face. By Lemmas 3.8 and 3.10, one of the following must hold: (1) v
is adjacent to at most one special vertex, (2) v is adjacent to two special vertices and
incident with a face that contains a vertex in C, or (3) v is adjacent to two special vertices
and a nontriangular 5+-vertex, which implies v has at most two incident 5-faces with non-
consecutive 5+-vertices. In all cases, (R2) governs the distribution of charge: in case (1),
µ∗(v) ≥ 4− 7

4 −
1
2 · 4−

1
4 = 0; in case (2), µ∗(v) ≥ 4− 7

4 −
1
2 · 3−

1
4 · 2 > 0; and in case (3),

if v is a bad 5-vertex, then µ∗(v) ≥ 4− 7
4 −

1
2 · 2−

3
8 · 2−

1
4 · 2 = 0; note that v cannot be a

good 5-vertex, for otherwise, f0 must be a (3, 3, 5)-face and the two 3-vertices are special,
but Lemma 3.8 tells that they must be adjacent to a pendant 5+-vertices, a contradiction.
• f0 is a (3, 5, 5)-face. By Lemma 3.10, v is adjacent to at most two special vertices, and by

(R2), µ∗(v) ≥ 4− 3
2 −

1
2 · 4−

1
4 · 2 = 0.

• f0 is any other 3-face. By (R2c), v gives 1 to f0. Lemma 3.5 implies that v has a maximum
of three adjacent special vertices, so by (R2), µ∗(v) ≥ 4− 1− 1

2 · 4−
1
4 · 3 > 0.

Let d = 6. First assume that f0 is a (3+, 4+, 6)-face. By Lemma 3.5 and (R2), v gives 1
4 to

up to four adjacent special vertices. By (R2a), v gives at most 1
2 to each incident 5-face, and by

(R2d), v gives at most 2 to the incident 3-face. Thus µ∗(v) ≥ 6 − (2 + 1
4 · 5 + 1

2 · 5) > 0. So we
may assume that f0 is a (3, 3, 6)-face. By Lemma 3.11, v is adjacent to no more than two special
vertices or one of its neighbors is in V (C) (this implies that v has at most three incident 5-faces
in int(C)). By (R2), in the former case, µ∗(v) ≥ 6 − 3 − 1

2 · 5 −
1
4 · 2 = 0, and in the latter case,

µ∗(v) ≥ 6− 3− 1
2 · 3−

1
4 · 4 > 0.

Finally, let d ≥ 7. Then v is incident with at most d− 1 faces of length 5, and by Lemma 3.5, at
most d−2 special vertices. By (R2), µ∗(v) ≥ 2d−6−3− 1

2 ·(d−1)− 1
4 ·(d−2) = 1

4(5d−32) > 0. �

In the rest of the paper, whenever mentioned, (3, 3, 5−)-faces, (3, 4, 4)-faces, and 5-faces are in
int(C).

Lemma 4.4. Nontriangular 6+-vertices in int(C) have nonnegative final charge.

Proof. Let v ∈ int(C) be a nontriangular 6+-vertex and let t be the number of pendant (3, 3, 5−) or
(3, 4, 4)-faces of v. By Lemma 3.5, v has at most (d−t−2) pendant special 5-faces. By (R2), v gives
at most 1 to each pendant 3-face, at most 1

2 to each incident 5-face, and 1
4 to each pendant special

5-face. So if t ≤ d−4, then µ∗(v) ≥ 2d−6− t− 1
2d−

1
4(d− t−2) = 1

4(5d−22−3t) ≥ 1
4(2d−10) > 0.

If t = d − 2, then v has no pendant special 5-faces, and d4(G) ≥ 2 implies that v has at most 4

incident 5-faces. So µ∗(v) ≥ 2d− 6− (d− 2)− 1
2(4) = d− 3 ≥ 0. Since t ≤ d− 2 by Lemma 3.5, it

remains only to check t = d− 3.
If d ≥ 7, then µ∗(v) ≥ (2d − 6) − (d − 3) − 1

2d −
1
4(d − t − 2) = 1

2d −
13
4 > 0. If d = 6 and

at least one of the three pendant 3-faces of v is not a (3, 3, 3)-face, then v gives at most 5
8 to this

3-face by (R2), so µ∗(v) ≥ 6 − 1 · 2 − 5
8 −

1
2 · 6 −

1
4 = 1

8 > 0. So we may assume that the 6-vertex
v is adjacent to exactly three pendant (3, 3, 3)-faces. If v has at most five incident 5-faces, then
µ∗(v) ≥ 6− 1 · 3− 1

2 · 5−
1
4 = 1

4 > 0. If v has six incident 5-faces, then v is adjacent to no pendant
special 5-faces since by Lemma 3.8, the outer neighbors of the 3-vertices on a (3, 3, 3)-face either
are in V(C) or have degree at least 5. So µ∗(v) ≥ 6− 1 · 3− 1

2 · 6 = 0. �

Lemma 4.5. Nontriangular 5-vertices in int(C) have nonnegative final charge.

Proof. Let v ∈ int(C) be a nontriangular 5-vertex that is adjacent to t pendant (3, 3, 5−)- or
(3, 4, 4)-faces. Let N(v) = {vi : 1 ≤ i ≤ 5}. Let fi be the incident face of v containing vi, v, vi+1

for 1 ≤ i ≤ 5 (index modulo 5). By Lemma 3.5, v has at most d − t − 2 pendant special 5-faces.
By (R2), v gives at most 1 to each pendant 3-face, at most 5

8 to each pendant 3-face that is not a
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(3, 3, 3)-face, at most 1
2 to each incident 5-face, and 1

4 to each pendant special 5-face. If t ≤ 1, then

v has at most two pendant special 5-faces, and µ∗(v) ≥ 4 − 1 − 1
2 · 5 − 2 · 1

4 = 0. Since t ≤ 3 by
Lemma 3.5, we may assume that t = 2 or t = 3.

Case 1: t = 2.
First we verify Claim A: If vi is on a (3, 3, 3)-face, both fi and fi−1 are 5-faces.
For otherwise, suppose v1 is on a (3, 3, 3)-face and f1 is not a 5-face. Since an interior triangle of

a bad 6-face must share edges with three 5-faces, the (3, 3, 3)-face at v1 is not the interior triangle
of a bad 6-cycle. If f5 is not a 5-face, then µ∗(v) ≥ 4− 2 · 1 + 1

2 · 3 + 1
4 > 0. If f5 is a 5-face, then

it shares an edge with a (3, 3, 3)-face, thus by Lemma 3.6, since v has two pendant (3, 3, 5−)- or
(3, 4, 4)-faces, it has no pendant special 5-face. By (R2), µ∗(v) ≥ 4− 2 · 1 + 1

2 · 4 = 0. Hence Claim
A is established.

Without loss of generality, we may assume that either v1 and v2 or v1 and v3 are on (3, 3, 5−)-
or (3, 4, 4)-faces. First let v1 and v2 be on (3, 3, 5−)- or (3, 4, 4)-faces. Note that f1 is a 6+-
face since d4(G) ≥ 2. By Claim A, neither v1 nor v2 is on a (3, 3, 3)-face. Hence by (R2),

µ∗(v) ≥ 4− 5
8 · 2−

1
2 · 4−

1
4 = 1

2 > 0.
Now let v1, v3 be on (3, 3, 5−)- or (3, 4, 4)-faces. Note that v is a bad 5-vertex. We first suppose

that one of f1, f2 (say f1) is not a 5-face. By Claim A, v1 is not on a (3, 3, 3)-face. So by (R2),
µ∗(v) ≥ 4− 1− 5

8 −
1
2 · 4−

1
4 = 1

8 > 0.
Now assume that both f1 and f2 are 5-faces. By Lemma 3.7, d(v2) ≥ 4. If v has no pendant

(3, 3, 3)-faces, then µ∗(v) ≥ 4− 5
8 ·2−

1
2 ·5−

1
4 = 0. Hence we may assume that v1 is on a (3, 3, 3)-face.

By Claim A, f5 is a 5-face. By Lemma 3.8, the pendant neighbors (in particular, on f1 and f5) of
the (3, 3, 3)-faces are in V (C) or have degree at least 5.

First consider the case that v3 is also on a (3, 3, 3)-face. By Claim A, f3 is also a 5-face, and
the pendant neighbors (in particular, on f2 and f3) of the (3, 3, 3)-faces are in V (C) or have degree
at least 5. Note that v2 cannot be triangular; further, three of its consecutive neighbors are 5+-
vertices. Hence v2 is a good 4+-vertex and both f1 and f3 are rich 5-faces. By (R2a), v gives 1

4 to
each of f1 and f2. Note that both v4 and v5 are next to a 5+-neighbor respectively on f3 and f5,
so they are not pendant special 3-vertices of v, and thus v has no pendent special 5-faces. So by
(R2), µ∗(v) ≥ 4− 1 · 2− 1

4 · 2−
1
2 · 3 = 0.

Finally, assume that v3 is not on a (3, 3, 3)-face. Suppose v3 is on a (3, 4−, 4)-face. If d(v2) 6= 5,
then v2 is a good 4+-vertex and f1 is rich, so by (R2), µ∗(v) ≥ 4 − 1 − 1

2 −
1
4 −

1
2 · 4 −

1
4 = 0;

if d(v2) = 5, then µ∗(v) ≥ 4 − 1 − 1
2 −

1
3 −

3
8 −

1
2 · 3 −

1
4 = 1

24 > 0. So we assume that v3 is on
a (3, 3, 5)-face. Then by Lemma 3.8, f2 contains at least three 5+- or good 4+-vertices. So v2 is
a good 4+-vertex and both f1 and f2 are rich 5-faces. By (R2a), v gives 1

4 to f1 and f2. Then

µ∗(v) ≥ 4− 1− 5
8 −

1
4 · 2−

1
2 · 3−

1
4 = 1

8 > 0.
Case 2: t = 3.
By Lemma 3.5, v has no pendant special 5-faces. Without loss of generality, we may assume

that either v1, v2, v3 or v1, v2, v4 are on pendant (3, 3, 5−)- or (3, 4, 4)-faces.
Assume first that v1, v2, v3 are on pendant (3, 3, 5−)- or (3, 4, 4)-faces. Since d4(G) ≥ 2, neither

f1 nor f2 is a 5-face; hence v has at most three incident 5-faces and is not on a bad 6-cycle. If v
has at most two incident 5-faces, then µ∗(v) ≥ 4− 1 · 3− 1

2 · 2 = 0. Thus we suppose that f3 and
f5 are 5-faces (with an incident 3-face). By Lemma 3.6, one of the neighbors of v1 on its triangular
face must have degree at least 4; the same is true for v3. Hence neither of the pendant triangles at
v1 and v3 are (3, 3, 3)-faces. By (R2), µ∗(v) ≥ 4− 1− 5

8 · 2−
1
2 · 3 = 1

4 > 0.
Now assume that v1, v2, v4 are on pendant (3, 3, 5−) or (3, 4, 4)-faces. Since d4(G) ≥ 2, f1 is

not a 5-face. Then the 3-face at v2 is not an interior triangle of a bad 6-cycle. By Lemma 3.6,
either f2 is a 5-face and v2 is not on a (3, 3, 3)-face or f2 is not a 5-face. Hence v gives at most
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max{1, 5
8 + 1

2} = 9
8 to f2 and the pendant 3-face at v2 by (R2). Similarly, v gives at most 9

8 to f5

and the pendant 3-face at v1. If v4 is not on a (3, 3, 3)-face, then µ∗(v) ≥ 4− 9
8 ·2−

1
2 ·2−

5
8 = 1

8 > 0.
Hence we may assume that v4 is on a (3, 3, 3)-face. If neither f2 nor f5 is a 5-face, then µ∗(v) ≥

4 − 1 · 3 − 1
2 · 2 = 0, so we may also assume (by symmetry) that f5 is a 5-face. If one of f3, f4 is

not a 5-face, then µ∗(v) ≥ 4 − 1 − 9
8 · 2 −

1
2 = 1

4 > 0, so we may assume that both f3 and f4 are
5-faces. Since f1 is not a 5-face, the 3-face at v1 is not the interior 3-face of a bad 6-cycle, so by
Lemma 3.6, it cannot be a (3, 3, 3)-face. Now that both f4, f5 are 5-faces, by Lemma 3.7, d(v5) ≥ 4.
By Lemma 3.8, the pendant neighbors of the (3, 3, 3)-face at v4 are in V (C) or have degree at least
5, hence f4 has at least three 4+-vertices. Since d4(G) ≥ 2, v4 cannot be a triangular 4-vertex. If

d(v5) 6= 5, then v4 is a good 4+-vertex and f4 is a rich 5-face; by (R2), µ∗(v) ≥ 4− 9
8 ·2−1− 1

4−
1
2 = 0.

So let d(v5) = 5. If v1 is on a (3, 4−, 4)-face, then µ∗(v) ≥ 4− 1− 1
2 −

9
8 −

1
2 · 2−

1
3 = 1

24 > 0. If v1

is on a (3, 3, 5)-face, then the 5-vertex must be on f5 by Lemma 3.6. So by (R2), v gives 1
3 to each

of f4 and f5. Then µ∗(v) ≥ 4− 1− 5
8 −

1
3 · 2−

9
8 −

1
2 = 1

12 > 0. �

Therefore all vertices have nonnegative charge after the discharge procedure.
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