Skip to main content
Log in

Minimizing the total cost of barrier coverage in a linear domain

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Barrier coverage, as one of the most important applications of wireless sensor network (WSNs), is to provide coverage for the boundary of a target region. We study the barrier coverage problem by using a set of n sensors with adjustable coverage radii deployed along a line interval or circle. Our goal is to determine a range assignment \(\mathbf {R}=({r_{1}},{r_{2}}, \ldots , {r_{n}})\) of sensors such that the line interval or circle is fully covered and its total cost \(C(\mathbf {R})=\sum _{i=1}^n {r_{i}}^\alpha \) is minimized. For the line interval case, we formulate the barrier coverage problem of line-based offsets deployment, and present two approximation algorithms to solve it. One is an approximation algorithm of ratio 4 / 3 runs in \(O(n^{2})\) time, while the other is a fully polynomial time approximation scheme (FPTAS) of computational complexity \(O(\frac{n^{2}}{\epsilon })\). For the circle case, we optimally solve it when \(\alpha = 1\) and present a \(2(\frac{\pi }{2})^\alpha \)-approximation algorithm when \(\alpha > 1\). Besides, we propose an integer linear programming (ILP) to minimize the total cost of the barrier coverage problem such that each point of the line interval is covered by at least k sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andrews AM, Wang H (2017) Minimizing the aggregate movements for interval coverage. Algorithmica 78(1):47–85

    Article  MathSciNet  MATH  Google Scholar 

  • Arora A, Dutta P, Bapat S, Kulathumani V, Zhang H, Naik V, Mittal V, Cao H, Demirbas M, Gouda M et al (2004) A line in the sand: a wireless sensor network for target detection, classification, and tracking. Comput Netw 46(5):605–634

    Article  Google Scholar 

  • Bar-Noy A, Baumer B (2011) Maximizing network lifetime on the line with adjustable sensing ranges. In: Proceedings of the 7th international workshop on algorithms for sensor systems, wireless ad hoc networks, and autonomous mobile entities. Springer, pp 28–41

  • Bar-Noy A, Rawitz D, Terlecky P (2017) Maximizing barrier coverage lifetime with mobile sensors. SIAM J Discrete Math 31(1):573–596

    Article  MathSciNet  MATH  Google Scholar 

  • Carmi P, Katz M, Lev-Tov N (2007) Covering points by unit disks of fixed location. In: Proceedings of 18th international symposium algorithms and computation. Springer, pp 644–655

  • Chen D, Gu Y, Li J, Wang H (2013) Algorithms on minimizing the maximum sensor movement for barrier coverage of a linear domain. Discrete Comput Geom 50:374–408

    Article  MathSciNet  MATH  Google Scholar 

  • Chen DZ, Tan X, Wang H, Wu G (2015) Optimal point movement for covering circular regions. Algorithmica 72(2):379–399

    Article  MathSciNet  MATH  Google Scholar 

  • Czyzowicz J, Kranakis E, Krizanc D, Lambadaris I, Narayanan L, Opatrny J, Stacho L, Urrutia J, Yazdani M (2010) On minimizing the sum of sensor movements for barrier coverage of a line segment. In: Proceedings of the 9th international conference on ad-hoc, mobile and wireless networks, pp 29–42

  • de Rezende P, Miyazawa F, Sasaki A (2013) A ptas for the disk cover problem of geometric objects. Oper Res Lett 41(5):552–555

    Article  MathSciNet  MATH  Google Scholar 

  • Dobrev S, Kranakis E, Krizanc D, Lafond M, Maňuch J, Narayanan L, Opatrny J, Shende S, Stacho L (2017) Weak coverage of a rectangular barrier. In: International conference on algorithms and complexity. Springer, pp 196–208

  • Fan H, Lee VC, Li M, Zhang X, Zhao Y (2014a) Barrier coverage using sensors with offsets. In: International conference on wireless algorithms, systems, and applications. Springer, pp 389–400

  • Fan H, Li M, Sun X, Wan PJ, Zhao Y (2014b) Barrier coverage by sensors with adjustable ranges. ACM Trans Sensor Netw 11(1):14

    Article  Google Scholar 

  • Huang Y, Gao X, Zhang Z, Wu W (2009) A better constant-factor approximation for weighted dominating set in unit disk graph. J Comb Optim 18(2):179–194

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar S, Lai T, Arora A (2005) Barrier coverage with wireless sensors. In: Proceedings of the 11th international conference on mobile computing and networking. ACM, pp 284–298

  • Kumar S, Lai T, Arora A (2007) Barrier coverage with wireless sensors. Wirel Netw 13(6):817–834

    Article  Google Scholar 

  • Pananjady A, Bagaria VK, Vaze R (2017) Optimally approximating the coverage lifetime of wireless sensor networks. IEEE/ACM Trans Netw 25(1):98–111

    Article  Google Scholar 

  • Saipulla A, Westphal C, Liu B, Wang J (2009) Barrier coverage of line-based deployed wireless sensor networks. In: Proceedings of the 28th IEEE international conference on computer communications. IEEE, pp 127–135

  • Wan PJ, Yi CW (2006) Coverage by randomly deployed wireless sensor networks. IEEE/ACM Trans Netw 14(SI):2658–2669

    MathSciNet  MATH  Google Scholar 

  • Wan PJ, Xu X, Wang Z (2011) Wireless coverage with disparate ranges. In: Proceedings of the 12th ACM international symposium on mobile ad hoc networking and computing. ACM, pp 1–8

  • Wan PJ, Chen D, Dai G, Wang Z, Yao F (2012) Maximizing capacity with power control under physical interference model in duplex mode. In: Proceedings of the 31st IEEE international conference on computer communications. IEEE, pp 415–423

  • Wang B, Xu H, Liu W, Liang H (2013) A novel node placement for long belt coverage in wireless networks. IEEE Trans Comput 62(12):2341–2353

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Zhang X (2015) Minimizing the maximum moving cost of interval coverage. In: Proceedings of the 26th international symposium on algorithms and computation, pp 188–198

  • Xie K, Ning X, Wang X, He S, Ning Z, Liu X, Wen J, Qin Z (2017) An efficient privacy-preserving compressive data gathering scheme in wsns. Inf Sci 390:82–94

    Article  Google Scholar 

  • Zou F, Wang Y, Xu XH, Li X, Du H, Wan PJ, Wu W (2011) New approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit disk graphs. Theor Comput Sci 412(3):198–208

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work described in this paper was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. UGC/FDS11/E04/15) and National Natural Science Foundation of China (No. 61772154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Fan, H., Lee, V.C.S. et al. Minimizing the total cost of barrier coverage in a linear domain. J Comb Optim 36, 434–457 (2018). https://doi.org/10.1007/s10878-018-0306-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-018-0306-6

Keywords

Navigation