
ar
X

iv
:1

70
4.

05
28

6v
2

 [
cs

.D
S]

 1
2

Ja
n

20
18

Noname manuscript No.

(will be inserted by the editor)

Positive-instance driven dynamic programming for treewidth ⋆

Hisao Tamaki

Received: date / Accepted: date

Abstract Consider a dynamic programming scheme for a decision problem in which all

subproblems involved are also decision problems. An implementation of such a scheme is

positive-instance driven (PID), if it generates positive subproblem instances, but not negative

ones, building each on smaller positive instances.

We take the dynamic programming scheme due to Bouchitté and Todinca for treewidth

computation, which is based on minimal separators and potential maximal cliques, and de-

sign a variant (for the decision version of the problem) with a natural PID implementation.

The resulting algorithm performs extremely well: it solves a number of standard benchmark

instances for which the optimal solutions have not previously been known. Incorporating

a new heuristic algorithm for detecting safe separators, it also solves all of the 100 pub-

lic instances posed by the exact treewidth track in PACE 2017, a competition on algorithm

implementation.

We describe the algorithm, prove its correctness, and give a running time bound in terms

of the number of positive subproblem instances. We perform an experimental analysis which

supports the practical importance of such a bound.

Keywords treewidth · tree decomposition · dynamic programming · positive-instance

driven

1 Introduction

Suppose we design a dynamic programming algorithm for some decision problem, formu-

lating subproblems, which are decision problems as well, and recurrences among those sub-

problems. A standard approach is to list all subproblem instances and scan the list from

“small” ones to “large” , deciding the answer, positive or negative, to each instance by means

of these recurrences. When the number of positive subproblem instances are expected to be

⋆ A preliminary and an abridged version of this paper was presented at the 25th European Sysmposium on

Algorithms

H. Tamaki

Kawasaki, 214-8571, Japan, Meiji University, 1-1-1 Higashi-Mata, Tama, Kawasaki, 214-8571, Japan,

Tel.: +81-44-934-7478

E-mail: tamaki@cs.meiji.ac.jp

http://arxiv.org/abs/1704.05286v2

2 Hisao Tamaki

much smaller than the total number of subproblem instances, a natural alternative is to gen-

erate positive instances only, using recurrences to combine positive instances to generate a

“larger” positive instance. We call such a mode of dynamic programming execution positive-

instance driven or PID for short. One goal of this paper is to demonstrate that PID is not

simply a low-level implementation strategy but can be a paradigm of algorithm design for

some problems.

The decision problem we consider is that of deciding, given graph G and positive inte-

ger k, if the treewidth of G is at most k. This graph parameter was introduced by Robertson

and Seymour [17] and has had a tremendous impact on graph theory and on the design of

graph algorithms (see, for example, a survey [7]). The treewidth problem is NP-complete

[1] but fixed-parameter tractable: it has an f (k)nO(1) time algorithm for some fixed function

f (k) as implied by the graph minor theorem of Robertson and Seymour [18], and an explicit

O(f (k)n) time algorithm was given by Bodlaender [3]. A classical dynamic programming

algorithm due to Arnborg, Corneil, and Proskurowsky (ACP algorithm) [1] runs in nk+O(1)

time. Bouchitté and Todinca [9] developed a more refined dynamic programming algorithm

(BT algorithm) based on the notions of minimal separators and potential maximal cliques,

which lead to algorithms running in O(1.7549n) time or in O(n5
(⌈(2n+k+8)/3⌉

k+2

)

) time [11,

12]. Another important approach to treewidth computation is based on the perfect elimina-

tion order (PEO) of minimal chordal completions of the given graph. PEO-based dynamic

programming algorithms run in O∗(2n) time with exponential space and in O∗(4n) time with

polynomial space [4], where O∗(f (n)) means O(nc f (n)) for some constant c.

There has been a considerable amount of effort on implementing treewidth algorithms

to be used in practice and, prior to this work, the most successful implementations for exact

treewidth computation are all based on PEO. The authors of [4] implemented the O∗(2n)
time dynamic programming algorithm and experimented on its performance, showing that

it works well for small instances. For larger instances, PEO-based branch-and-bound algo-

rithms are known to work well in practice [13]. Recent proposals for reducing treewidth

computation to SAT solving are also based on PEO [19,2]. From the PID perspective, this

situation is somewhat surprising, since it can be shown that each positive subproblem in-

stance in the PEO-based dynamic programming scheme corresponds to a combination of

an indefinite number of positive subproblem instances in the ACP algorithm, and hence the

number of positive subproblem instances can be exponentially larger than that in the ACP al-

gorithm. Indeed, a PID variant of the ACP algorithm was implemented by the present author

and has won the first place in the exact treewidth track of PACE 2016 [10], a competition

on algorithm implementations, outperforming other submissions based on PEO. Given this

success, a natural next step is to design a PID variant of the BT algorithm, which is tackled

in this paper.

The resulting algorithm performs extremely well, as reported in Section 8. It is tested on

DIMACS graph-coloring instances [14], which have been used in the literature on treewidth

computation as standard benchmark instances [13,5,15,19,4,2]. Our implementation of the

algorithm solves all the instances that have been previously solved (that is, with match-

ing upper and lower bounds known) within 10 seconds per instance on a typical desktop

computer and solves 13 out of the 42 previously unsolved instances. For nearly half of the

instances which it leaves unsolved, it significantly reduces the gap between the lower and

upper bounds. It is interesting to note that this is done by improving the lower bound. Since

the number of positive subproblem instances are much smaller when k < tw(G) than when

k = tw(G), the PID approach is particularly good at establishing strong lower bounds.

We also adopt the notion of safe separators due to Bodlaender and Koster [5] in our

preprocessing and design a new heuristic algorithm for detecting safe separators. With this

Positive-instance driven dynamic programming for treewidth ⋆ 3

preprocessing, our implementation also solves all of the 100 public instances posed by PACE

2017 [16], the successor of PACE 2016. It should be noted that these test instances of PACE

2017 are much harder than those of PACE 2016: the winning implementation of PACE 2016

mentioned above, which solved 199 of the 200 instances therein, solves only 62 of these 100

instances of PACE 2017 in the given time of 30 minutes per instance.

Adapting the BT algorithm to work in PID mode has turned out non-trivial. Each sub-

problem instance in the BT algorithm for given graph G and positive integer k takes the

form of a connected set C of G such that NG(C), the open neighborhood of C in G, is a

minimal separator of G with cardinality at most k. For each such C, we ask if C is feasible,

in the sense that there is a tree decomposition of the subgraph of G induced by C∪NG(C)
of width at most k that has a bag containing NG(C) (see Section 2 for the definition of a

tree decomposition of a graph). The difficulty of making the BT algorithm PID comes from

the fact that the recurrence for deciding if C is feasible may involve an indefinite number of

connected sets C′ such that C′ ⊂C. Thus, even if the number of positive instances is small,

there is a possibility that the running time is exponential in that number. We approach this

issue by introducing an auxiliary structure we call O-blocks (see Section 3) and formulate a

recurrences that are binary: a combination of a feasible connected set and a feasible O-block

may yield either a larger feasible connected set or a larger feasible O-block. Due to this

binary recurrence, we obtain an upper bound on the running time of our algorithm which

is sensitive to the number of subproblem instances (Observation 1 in Section 5). To support

the significance of such a bound, we perform an experimental analysis which shows the ex-

istence of huge gaps between the actual number of combinatorial objects corresponding to

subproblems and the known theoretical upper bounds.

The rest of this paper is organized as follows. In Section 2, we introduce notation, define

basic concepts and review facts in the literature. In Section 3, we precisely define the sub-

problems in our dynamic programming algorithm and formulate recurrences. We describe

our algorithm and prove its correctness in Section 4 and then analyze its running time in

Section 5. In Section 6, we describe our experimental analysis. In Section 7, we describe

some implementation details. Finally, in Section 8, we give details of the performance re-

sults sketched above.

2 Preliminaries

In this paper, all graphs are simple, that is, without self loops or parallel edges. Let G be

a graph. We denote by V (G) the vertex set of G and by E(G) the edge set of G. For each

v ∈V (G), NG(v) denote the set of neighbors of v in G: NG(v) = {u ∈V (G) | {u,v} ∈ E(G).
For U ⊆ V (G), the open neighborhood of U in G, denoted by NG(U), is the set of vertices

adjacent to some vertex in U but not belonging to U itself: NG(U) = (
⋃

v∈U NG(v))\U . The

closed neighborhood of U in G, denoted by NG[U], is defined by NG[U] =U ∪NG(U). We

also write NG[v] for NG[{v}] = NG(v)∪{v}. We denote by G[U] the subgraph of G induced

by U : V (G[U]) = U and E(G[U]) = {{u,v} ∈ E(G) | u,v ∈ U}. In the above notation, as

well as in the notation further introduced below, we will often drop the subscript G when

the graph is clear from the context.

We say that vertex set C ⊆V (G) is connected in G if, for every u,v ∈C, there is a path

in G[C] between u and v. It is a connected component of G if it is connected and is inclusion-

wise maximal subject to this condition. A vertex set C in G is a component associated with

S ⊆ G, if C is a connected component of G[V (G) \ S]. For each S ⊆ V (G), we denote by

CG(S) the set of all components associated with S. A vertex set S ⊆ V (G) is a separator of

4 Hisao Tamaki

G if |CG(S)|> CG(/0)|, that is, if its removal increases the number of connected components

of G. A component C associated with separator S of G is a full component if NG(C) = S. A

separator S is a minimal separator if there are at least two full components associated with

S. This term is justified by this fact: if S is a minimal separator and a, b vertices belonging

to two distinct full components associated with S, then for every proper subset S′ of S, a

and b belong to the same component associated with S′; S is a minimal set of vertices that

separates a from b. A block is a pair (S,C), where S is a separator and C is a component

associated with S; it is a full block if C is a full component, that is, S = N(C).
Graph H is chordal if every induced cycle of H has length exactly three. H is a minimal

chordal completion of G if it is chordal, V (H) =V (G), E(G)⊆ E(H), and E(H) is minimal

subject to these conditions. A vertex set Ω ⊆V (G) is a potential maximal clique of G, if Ω

is a clique in some minimal chordal completion of G.

A tree-decomposition of G is a pair (T,X) where T is a tree and X is a family

{Xi}i∈V (T) of vertex sets of G such that the following three conditions are satisfied. We

call members of V (T) nodes of T and each Xi the bag at node i.

1.
⋃

i∈V (T) Xi =V (G).
2. For each edge {u,v} ∈ E(G), there is some i ∈V (T) such that u,v ∈ Xi.

3. The set of nodes Iv = {i ∈V (T) | v ∈ Xi} of V (T) induces a connected subtree of T .

The width of this tree-decomposition is maxi∈V (T) |Xi|−1. The treewidth of G, denoted by

tw(G) is the minimum width of all tree-decompositions of G. We may assume that the bags

Xi and X j are distinct from each other for i 6= j and, under this assumption, we will often

regard a tree-decomposition as a tree T in which each node is a bag.

We call a tree-decomposition T of G canonical if each bag of T is a potential maximal

clique of G and, for every pair X , Y of adjacent bags in T , X ∩Y is a minimal separator of

G. The following fact is well-known. It easily follows, for example, from Proposition 2.4 in

[8].

Lemma 1 Let G be an arbitrary graph. There is a tree-decomposition T of G of width

tw(G) that is canonical.

The following local characterization of a potential maximal clique is crucial. We say

that a vertex set S ⊆ V (G) is cliquish in G if, for every pair of distinct vertices u and v in S,

either u and v are adjacent to each other or there is some C ∈ C (S) such that u,v ∈ N(C).
In other words, S is cliquish if completing N(C) for every C ∈ C (S) into a clique makes S a

clique.

Lemma 2 (Theorem 3.15 in [8]) A separator S of G is a potential maximal clique of G if

and only if (1) S has no full-component associated with it and (2) S is cliquish.

It is also shown in [8] that if Ω is a potential maximal clique of G and S is a minimal sep-

arator contained in Ω , then there is a unique component CS associated with S that contains

Ω \S. We need an explicit way of forming CS from Ω and S.

Let K ⊆ V (G) be an arbitrary vertex set and S an arbitrary proper subset of K. We say

that a component C ∈ C (K) is confined to S if N(C) ⊆ S; otherwise it is unconfined to S.

Let unconf(S,K) denote the set of components associated with K that are unconfined to S.

Define the crib of S with respect to K, denoted by crib(S,K), to be (K \S)∪
⋃

C∈unconf(S,K)C:

it is the union of K \S and all those components associated with K that have neighborhoods

intersecting K \S.

The following lemma relies only on the second property of potential maximal cliques,

namely that they are cliquish, and will be applied not only to potential maximal cliques but

also to separators with full components, which are trivially cliquish.

Positive-instance driven dynamic programming for treewidth ⋆ 5

Lemma 3 Let K ⊆V (G) be a cliquish vertex set. Let S be an arbitrary proper subset of K.

Then, crib(S,K) is a full component associated with S.

Proof Let C = crib(S,K). We first show that G[C] is connected. Suppose K \ S has two

distinct vertices u and v. Since K is cliquish, either u and v are adjacent to each other or there

is some component C′ ∈ C (K) such that u,v ∈ N(C′). In the latter case, as C′ is unconfined

to S, we have C′ ⊆C. Therefore, u and v belong to the same connected component of G[C].
As this applies to every pair of vertices in K \ S, K \ S is contained in a single connected

component of G[C]. Moreover, each component C′ ∈ C (K) contained in C is unconfined to

S, by the definition of crib(S,K), and hence has a neighbor in K \S. Therefore, we conclude

that G[C] is connected. Each vertex v not in S∪C belongs to some component in C (K)
that is confined to S and hence does not have a neighbor in C. Therefore, C is a component

associated with S.

To see that C is a full component, let u ∈ S and v ∈ K \S be arbitrary. Since K is cliquish,

either u and v are adjacent to each other or there is some C′ ∈ C (K) such that u,v ∈ N(C′).
As such C′ is unconfined to S in the latter case, we conclude that u ∈ N(C) in either case.

Since this holds for arbitrary u ∈ S, we conclude that C is a full component associated with

S. ⊓⊔

Remark 1 As crib(S,K) contains K \ S, it is clear that it is the only component associated

with S that intersects K. Therefore, the above mentioned assertion on potential maximal

cliques is a corollary to this Lemma.

3 Recurrences on oriented minimal separators

In this section, we fix graph G and positive integer k that are given in the problem instance:

we are to decide if the treewidth of G is at most k. We assume that G is connected.

For connected set C ⊆ V (G), we denote by G〈C〉 the graph obtained from G[N[C]] by

completing N(C) into a clique: V (G〈C〉) = N[C] and E(G〈C〉) = E(G[N[C]])∪ {{u,v} |
u,v ∈ N(C),u 6= v}. We say C is feasible if tw(G〈C〉) ≤ k. Equivalently, C is feasible if

G[N[C]] has a tree-decomposition of width k or smaller that has a bag containing N(C).
Let us first review the BT algorithm [8] adapting it to our decision problem. We first

list all minimum separators of cardinality k or smaller and all potential maximal cliques

of cardinality k+ 1 or smaller. Then, for each pair of a potential maximal clique Ω and a

minimal separator S such that S ⊂ Ω , place a link from S to Ω . To understand the difficulty

of formulating a PID variant of the algorithm, it is important to note that the pair (Ω ,S) to

be linked is easy to find from the side of Ω , but not the other way round. Then, we scan the

full blocks (N(C),C) of minimal separators in the increasing order of |C| to decide if C is

feasible, using the following recurrence: C is feasible if and only if there is some potential

maximal clique Ω such that N(C) ⊂ Ω , C = crib(N(C),Ω), and every component D ∈
unconf(N(C),Ω) is feasible. Finally, we have tw(G) ≤ k if and only if there is a potential

maximal clique Ω with |Ω | ≤ k+1 such that every component associated with Ω is feasible.

To facilitate the PID construction, we orient minimal separators as follows. We assume a

total order < on V (G). For each vertex set U ⊆V (G), the minimum element of U , denoted by

min(U), is the smallest element of U under <. For vertex sets U and W , we say U precedes

W and write U ≺W if min(U)< min(W).
We say that a connected set C is inbound if there is some full block associated with

N(C) that precedes C; otherwise, it is outbound. Observe that if C is inbound then N(C) is

6 Hisao Tamaki

a minimal separator, since N(C) has another full component associated with it and, contra-

positively, if N(C) is not a minimal separator then C is necessarily outbound. We say a full

block (N(C),C) is inbound (outbound) if C is inbound (outbound, respectively).

Lemma 4 Let K be a cliquish vertex set and let A1,A2 be two components associated with

K. Suppose that A1 and A2 are outbound. Then, either N(A1)⊆ N(A2) or N(A2)⊆ N(A1).

Proof Let K, A1, and A2 be as above and suppose neither of N(A1) and N(A2) is a subset

of the other. For i = 1,2, let Ci = crib(N(Ai),K). Since N(A2) \N(A1) is non-empty and

contained in K \N(A1), A2 is contained in C1. We have A1 ≺C1 as A1 is outbound and hence

A1 ≺ A2. A contradiction, since similarly we have A2 ≺ A1. ⊓⊔

Let K be a cliquish vertex set. Based on the above lemma, we define the outlet of

K, denoted by outlet(K), as follows. If no non-full component associated with K is out-

bound, then we let outlet(K) = /0. Otherwise, outlet(K) = N(A), where A is a non-full com-

ponent associated with K that is outbound, chosen so that N(A) is maximal. We define

support(K) = unconf(outlet(K),K), the set of components associated with K that are not

confined to outlet(K). By Lemma 4, every member of support(K) is inbound.

We call a full block (N(C),C) an I-block if C is inbound and |N(C)| ≤ k. We call it an

O-block if C is outbound and |N(C)| ≤ k.

We say that an I-block (N(C),C) is feasible if C is feasible. We say that an O-block

(N(A),A) is feasible if N(A) =
⋃

C∈C N(C) for some set C of feasible inbound components.

Note that this definition of feasibility of an O-block is somewhat weak in the sense that we

do not require every inbound component associated with N(A) to be feasible.

We say that a potential maximal clique Ω is feasible if |Ω | ≤ k + 1 and every C ∈
support(Ω) is feasible.

In order to formulate mutual recurrences among feasible I-blocks, O-blocks, and poten-

tial maximal cliques, we need the following auxiliary notion of buildable potential maximal

cliques.

Let Ω be a potential maximal clique with |Ω | ≤ k+1. For each C ∈ support(Ω), block

(N(C),C) is an I-block, since C is inbound as observed above and we have |N(C)| ≤ k by

our assumption that |Ω | ≤ k+1. We say that Ω is buildable if |Ω | ≤ k+1 and either

1. Ω = N[v] for some v ∈V (G),
2. there is some subset C of support(Ω) such that Ω =

⋃

D∈C N(D) and every member of

C is feasible, or

3. Ω = N(A)∪ (N(v)∩A) for some feasible O-block (N(A),A) and a vertex v ∈ N(A).

It will turn out that every feasible potential maximal clique is buildable (Lemma 9).

Lemma 5 We have tw(G) ≤ k if and only if G has a feasible potential maximal clique Ω

with outlet(Ω) = /0.

Proof Suppose first that G has a feasible potential maximal clique Ω with outlet(Ω) = /0.

Note that support(Ω) = C (Ω), as every C ∈ C (Ω) is unconfined to an empty set. For each

component C ∈ support(Ω), let TC be the tree-decomposition of G〈C〉 of width k or smaller,

which exists since C is feasible by the definition of a feasible potential maximal clique. Let

XC be a bag of TC such that N(C) ⊆ XC . Combine these tree-decompositions into a tree T

by adding bag Ω and letting each XC in TC be adjacent to Ω . That T satisfies the first two

conditions for tree decomposition is trivial. The third condition is also satisfied, since, if a

vertex v appears in N[C] for two or more members C in support(Ω), then v appears in XC

Positive-instance driven dynamic programming for treewidth ⋆ 7

for each such C and in Ω . Therefore, T is a tree decomposition of G of width k or smaller

and hence tw(G)≤ k.

For the converse, suppose the treewidth of G is k or smaller. Let T be a canonical tree-

decomposition of G of width k or smaller: each bag of T is a potential maximal clique and

the intersection of each pair of adjacent bags of T is a minimal separator. Orient each edge of

T as follows. Let X and Y be adjacent bags in T and let S = X ∩Y . Let C be the outbound full

component associated with the minimal separator S. Then, C intersects exactly one of X and

Y . If C intersects X then we orient the edge between X and Y from Y to X ; otherwise from

X to Y . Since T is a tree, the resulting directed tree has a sink X0. Then, each component

C associated with X0 is inbound and hence outlet(X0) = /0. We show that each such C is

moreover feasible. Indeed, the required tree-decomposition of G〈C〉 may be obtained from

T by taking intersection of every bag with N[C]: the resulting tree is a tree-decomposition

of G[N(C)] and contains the bag X0 ∩N[C]⊇ N(C). The width of the tree-decomposition is

not greater than that of T and hence is k or smaller. Therefore, I-block (N(C),C) for each

component C associated with X0 is feasible and hence the potential maximal clique X0 is

feasible. ⊓⊔

Lemma 6 Let C be a connected set of G such that N(C) is a minimal separator. Let Ω be a

potential maximal clique of G〈C〉. Then, Ω is a potential maximal clique of G.

Proof For each component D associated with N(C), let HD be a minimal chordal completion

of G〈C〉. In particular, choose HC so that Ω is a clique in HC. Let H be the union of these

graphs: V (H) = V (G) and E(H) =
⋃

D∈C (N(C))E(HD). It is clear that H is chordal. Let H ′

be a minimal chordal completion of G contained in H. It is well-known that every minimal

separator is a clique in every chordal completion and hence N(C) is a clique in H ′. Therefore,

the minimality of HD for each D implies that H ′ = H. As Ω is a clique in HC , it is a clique

in H and hence is a potential maximal clique of G. ⊓⊔

The following is our oriented version of the recurrence in the BT algorithm described in

the beginning of this section.

Lemma 7 An I-block (N(C),C) is feasible if and only if there is some feasible potential

maximal clique Ω with outlet(Ω) = N(C) and
⋃

D∈support(Ω) D =C.

Proof Suppose first that there is a feasible potential maximal clique Ω as in the lemma.

For each component D ∈ support(Ω), let TD be a tree-decomposition of G〈D〉 of width k

or smaller and XD be a bag in TD containing N(D). Combine these tree-decompositions TD,

D ∈ support(Ω), into a tree T by adding bag Ω and let it be adjacent to XD for each D ∈
support(Ω). We confirm that T is a tree-decomposition of G[N[C]]. Every vertex v ∈ N[C]
appears in some bag of T since C is the union of D for all D ∈ support(Ω) and the bag Ω

contains N(C). Every edge of G[N[C]] appears in some bag of T for the same reason. The

third condition for T being a tree decomposition is also satisfied, since, if a vertex v appears

in N[D] for two or more members D in support(Ω), then v appears in XD for each such D

and in Ω . Therefore, T is a tree decomposition of G[N[C]] of width k or smaller and hence

the bag Ω in T contains N(C), T attests the feasibility of the I-block (N(C),C).
For the converse, suppose that I-block (N(C),C) is feasible. Let T be a canonical tree-

decomposition of G〈C〉 of width k or smaller. Orient the edges of T as in the proof of

Lemma 5: orient the edge from X to Y if and only if Y intersects the outbound full component

associated with X ∩Y . We need to stress here that the notion of outbound components used

in this orientation is with respect to the entire graph G and not with respect to G〈C〉, the

8 Hisao Tamaki

graph of which T is a tree-decomposition. As N(C) is a clique in G〈C〉, T contains a bag

that contains N(C). In the subtree of T induced by those bags containing N(C), let X0 be

a sink with respect to the above orientation. As T is canonical, X0 is a potential maximal

clique of G〈C〉 and hence of G by Lemma 6. We show below that X0 is feasible.

Let A be the outbound full component associated with N(C). As N(C) ⊆ X0 and A∩
N[C] = /0, A is a component associated with X0. We claim that N(C) = outlet(X0). Suppose

otherwise that there is some outbound component A′ associated with X0 such that N(C) is

a proper subset of N(A′). Then, as A′ is not confined to N(C), C = crib(N(C),X0) contains

A′. Therefore, there is some bag X adjacent to X0 in T such that X ∩A′ 6= /0. Since N(C)
is a minimal separator that separates A from A′, X must contain N(C). But, since A′ is an

outbound component associated with X0, the edge between X0 and X is oriented from X0 to

X . This contradicts the choice of X0 and we conclude that N(C) = outlet(X0).
It remains to verify that each D ∈ support(X0) is feasible. This is true since the tree of

bags obtained from T by intersecting each bag with N[D] is a tree-decomposition of G〈D〉
required for the feasibility of D. ⊓⊔

Lemma 8 Let K be a cliquish vertex set, C a non-empty subset of support(K), and S =
⋃

C∈C N(C). If S is a proper subset of K then crib(S,K) is outbound.

Proof Let K, C and S be as in the lemma. Since K is cliquish, crib(S,K) is a full component

associated with S that contains K \S, by Lemma 3. To show that it is outbound, it suffices

to show that no other full component associated with S is outbound. Let A be an arbitrary

full component associated with S that is distinct from crib(S,K). As A does not intersect

K, it is a component associated with K. Let C be an arbitrary member of C . Then, C is

confined to S by the definition of S. On the other hand C is not confined to outlet(K) since

C ∈ support(K). Therefore, S is not a subset of outlet(K). A cannot be outbound, since it

would imply that S = N(A) ⊆ outlet(K). Therefore, A is inbound and, since this holds for

every full component associated with S other than crib(S,K), crib(S,K) is outbound. ⊓⊔

The following lemma is crucial for our PID result: the algorithm described in the next

section generates all buildable potential maximal cliques and we need to guarantee all fea-

sible maximal cliques to be among them.

Lemma 9 Let Ω be a feasible potential maximal clique. Then, Ω is buildable.

Proof Let S =
⋃

C∈support(Ω) N(C).
Suppose first that S ∪ outlet(Ω) 6= Ω and let v be an arbitrary member of Ω \ (S ∪

outlet(Ω)). Since Ω is cliquish and v is not in N(C) for any component C associated with

Ω , v is adjacent to every other vertex in Ω . Therefore, Ω ⊆ N[v]. Let C be an arbitrary com-

ponent associated with Ω . If C is confined to outlet(Ω) then v 6∈ N(C) since v 6∈ outlet(Ω).
Otherwise, C ∈ support(Ω) and hence v 6∈ N(C) as v 6∈ S. Therefore, N(v)\Ω is empty and

hence we have Ω = N[v]. Thus, Ω is buildable, the first case of buildability.

Suppose next that S∪outlet(Ω) = Ω . We have two cases to consider: S = Ω and S 6= Ω .

Consider the case where S = Ω . Let C0 be an arbitrary minimal subset of support(Ω)
such that

⋃

C∈C0
N(C) = Ω . Since Ω does not have a full component associated with it, C0

has at least two members. Let C0 be an arbitrary member of C0 and let C1 = C0 \ {C0}.

From the minimality of C0, S1 =
⋃

C∈C1
N(C) is a proper subset of Ω . By Lemmas 3 and 8,

A1 = crib(S1,Ω) is a full component associated with S1 and is outbound. Therefore, (S1,A1)
is an O-block and is feasible since every member of C1 ⊆ support(Ω) is feasible as potential

maximal clique Ω is feasible. Thus, the second case in the definition of feasible potential

maximal cliques applies.

Positive-instance driven dynamic programming for treewidth ⋆ 9

Finally, suppose that S 6= Ω . Let A = crib(S,Ω). Then, A is a full component associ-

ated with S and is outbound, by Lemmas 3 and 8. Since S =
⋃

C∈support(Ω) N(C) and Ω is

feasible, the O-block (S,A) is feasible. Let x be an arbitrary vertex in Ω \ S. Since we are

assuming that S∪ outlet(Ω) = Ω we have x ∈ outlet(Ω) \ S. Let v be an arbitrary vertex

in Ω \outlet(Ω). Observe that there is no component C associated with Ω such that N(C)
contains both x and v: x 6∈ N(C) for every C ∈ support(Ω) and v 6∈ N(C) for every C that is

confined to outlet(Ω). Since Ω is cliquish, it follows that x and v are adjacent to each other.

Therefore, we have Ω \S ⊆ N(v). Moreover, A contains Ω \S by Lemma 3. Finally, A\Ω

is disjoint from N(v), since every component D associated with Ω such that v ∈ N(D) is not

confined to outlet(Ω) and hence contained in C. Therefore, we have Ω = S∪ (N(v)∩A),
and the third case in the definition of buildable potential maximal cliques applies. ⊓⊔

4 Algorithm

Given graph G and positive integer k, our algorithm generates all I-blocks, O-blocks, and

potential maximal cliques that are feasible. In the algorithm description below, the following

variables, with suffixes, are used: I for listing feasible I-blocks, O for feasible O-blocks,

P for buildable potential maximal cliques, and S for feasible potential maximal cliques.

We note that each member of I and O is actually the component part of an I- or O-block.

Algorithm PID-BT

Input: Graph G and positive integer k

Output: “YES” if tw(G)≤ k; “NO” otherwise

Procedure:

1. Let I0 = /0 and O0 = /0.

2. Initialize P0 and S0 to /0.

3. Set j = 0.

4. For each v ∈ V (G), if N[v] is a potential maximal clique with |N[v]| ≤ k + 1 then add

N[v] to P0 and if, moreover, support(N[v]) = /0 then do the following.

(a) Add N[v] to S0.

(b) If outlet(N[v]) 6= /0 then let C = crib(outlet(N[v]),N[v]) and, provided that C 6= Ch

for 1 ≤ h ≤ j, increment j and let C j =C.

5. Set i = 0.

6. Repeat the following and stop repetition when j is not incremented during the iteration

step.

(a) While i < j, do the following.

i. Increment i and let Ii be Ii−1 ∪{Ci}.

ii. Initialize Oi to Oi−1, Pi to Pi−1, and Si to Si−1.

iii. For each B ∈Oi−1 such that Ci ⊆ B and |N(Ci)∪N(B)|≤ k+1, let K =N(Ci)∪
N(B) and do the following.

A. If K is a potential maximal clique, then add K to Pi.

B. If |K| ≤ k and there is a full component A associated with K (which is

unique), then add A to Oi.

iv. Let A be the full component associated with N(Ci) and add A to Oi.

v. For each A∈Oi\Oi−1 and v∈N(A), let K =N(A)∪(n(v)∩A)and if |K| ≤ k+1

and K is a potential maximal clique then add K to Pi.

10 Hisao Tamaki

vi. For each K ∈ Pi \Si−1, if support(K) ⊆ Ii then add K to Si and do the

following: if outlet(K) 6= /0 then let C = crib(outlet(K),K) and, provided that

C 6=Ch for 1 ≤ h ≤ j, increment j and let C j =C.

7. If there is some K ∈ S j such that outlet(K) = /0, then answer “YES”; otherwise, answer

“NO”.

Theorem 1 Algorithm PID-BT, given G and k, answers “YES” if and only if tw(G)≤ k.

Proof We show that SJ computed by the algorithm, where J denotes the final value of j,

is exactly the set of feasible potential maximal cliques for the given G and k. The theorem

then follows by Lemma 5.

In the following proof, Oi, Pi, and Si for each i stand for the final values of these

program variables.

We first show by induction on i that the following conditions are satisfied.

1. For every 1 ≤ h ≤ i, (N(C j),C j) is a feasible I-block.

2. Ii = {Ch | 1 ≤ h ≤ i}.

3. For every A ∈ Oi, (N(A),A) is a feasible O-block.

4. Every K ∈ Pi is a buildable potential maximal clique.

5. Every K ∈ Si is a feasible potential maximal clique.

Consider the base case i = 0. Condition 1 vacantly holds. Conditions 2 and 3 also hold

since I0 = O0 = /0. Condition 4 holds: N[v] is confirmed to be a potential maximal clique

before it is added to P0 and is buildable by the definition of buildability (case 1). Condition

5 holds since support(N[v]) = /0 implies that the potential maximal clique N[v] is feasible.

Suppose i > 0 and that the above conditions are satisfied for smaller values of i.

1. When Ci is defined, there is some i′ < i and K ∈ Si′ such that outlet(K) 6= /0 and Ci =
crib(outlet(K),K). By the induction hypothesis, K is a feasible potential maximal clique

and hence, by Lemma 7, (N(Ci),Ci) is a feasible I-block.

2. As Ii−1 = {Ch | 1 ≤ h ≤ i−1} and Ii = Ii−1 ∪{Ci}, Ii = {Ch | 1 ≤ h ≤ i} holds.

3. Let A ∈ Oi \Oi−1. Then there is some B ∈ Oi−1 such that A is outbound, |N(A)| ≤ k, and

N(A) = N(Ci)∪N(B). From the first two conditions, (N(A),A) is an O-block. By the

induction hypothesis, (N(B),B) is a feasible O-block and hence N(B) =
⋃

D∈C N(D) for

some set C of feasible inbound components. As Ci is feasible by 1 above and N(A) =
⋃

D∈C∪{Ci}
N(D), O-block (N(A),A) is feasible.

4. Let K ∈ Pi \Pi−1. Then, K is added to Pi either at step 6-(a)-iii-A or at step 6-(a)-v.

Consider the first case, Then, K = N(B)∪N(Ci) where (N(B),B) is a feasible O-block

and hence N(B) =
⋃

D∈C N(D) for some set C of feasible inbound components. As Ci

is feasible, K satisfies all the conditions in the second case of the definition of buildable

potential maximal cliques. Consider next the second case, K is obtained at step 6-(a)-v.

Then, K = N(A)∪ (n(v)∩A), where (N(A),A) is a feasible O-block, and the third case

in the definition of buildable potential maximal cliques applies.

5. Let K ∈ Si \Si−1. Then, K ∈ Pi and is a buildable potential maximal clique by 4

above. The confirmed condition support(K)⊆ Ii ensures that K is feasible, since every

member of Ii is feasible by 1 and 2 above.

We conclude that every member of SJ is a feasible potential maximal clique.

In showing the converse, the following observation is crucial. Let (N(A),A) be a feasible

O-block such that N(A) =
⋃

C∈C N(C) for some set C of feasible components and suppose

C ⊆ Ii. Then, A ∈ Oi. The proof is a straightforward induction on i.

The proof of the converse consists in showing the following by induction on m.

Positive-instance driven dynamic programming for treewidth ⋆ 11

1. For each feasible I-block (N(C),C), with |C|= m, there is some i such that C =Ci.

2. For each feasible O-block (N(A),A) with |A| = |V (G)| −m, there is some i such that

A ∈ Oi.

3. For each buildable potential maximal clique Ω such that |
⋃

C∈support(Ω)C|= m, there is

some i such that Ω ∈ Pi.

4. For each feasible potential maximal clique Ω such that |
⋃

C∈support(Ω)C| = m, there is

some i such that Ω ∈ Si.

The base case m = 0 is vacantly true. Suppose m > 0 and the statements hold for smaller

values of m.

1. Let (N(C),C) be a feasible I-block with |C| = m. Then, by Lemma 7, there is some

feasible potential maximal clique Ω such that N(C)= outlet(Ω) and C = crib(N(C),Ω).
We have |

⋃

C∈support(Ω)C|< m, since this union is a subset of C\(Ω \N(C)). Therefore,

by the induction hypothesis, there is some i such that Ω ∈Si. Therefore, C is constructed

as C j either at step 4-(b) or at step 6-(a)-vi.

2. Let (N(A),A) be a feasible O-block with |A| = |V (G)| −m. Let C be a set of feasible

components such that N(A) =
⋃

C∈C N(C) and let C be an arbitrary member of C . As C,

A, and N(C) are pairwise disjoint, we have |C|<m. Therefore, there is some iC such that

CiC =C. Set i = max{iC |C ∈ C }. Then, C ⊆ Ii and hence A ∈ Oi, by the observation

above.

3. Let Ω be a buildable potential maximal clique with |
⋃

C∈support(Ω)C| = m. In the first

case of the definition of buildability, Ω is added to P0 at step 4. In the second case,

we have Ω =
⋃

C∈C N(C) for some C ⊆ support(Ω) such that every member of C is

feasible. Choose C to be minimal subject to these conditions. Let C be an arbitrary

member of C . As |C| ≤ m, by the induction hypothesis and 1 above, there is some iC
such that C ⊆ IiC . Choose C ∈ C so that iC is the largest and let the chosen be D. Let

C ′ = C \{D} and let S =
⋃

C∈C ′ N(C). By the minimality of C , S is a proper subset of

Ω . Therefore, crib(S,Ω) is a full component associated with S and there is an outbound

full component A associated with S. As all members of C ′ is feasible and |S| ≤ k, (S,A)
is a feasible O-block. By the choice of D, we have C ′ ⊆ IiD−1 and hence A ∈ OiD−1 by

the observation above. At step 6-(a)-iii-A in the iteration for i = iD, Ω is put into PiD .

4. Let Ω be a feasible potential maximal clique with |
⋃

C∈support(Ω)C| = m. Then, by

3 above, there is some i1 such that Ω ∈ Pi1 . Furthermore, as every member C of

support(Ω) is feasible and |C| ≤ m, there is some i2 such that support(Ω) ⊆ Ii2 , by

1 above. At step 7 in the iteration for i = max{i1, i2}, Ω is put into Si.

We conclude that every feasible potential maximal clique is in SJ . This completes the proof.

⊓⊔

5 Running time analysis

The running time of our algorithm is stated in terms of the the number of positive subprob-

lem instances. Given G and k > 0, let I k
G denote the set of feasible I-blocks and Ok

G the set

of feasible O-blocks.

Observation 1 Given G and k > 0, algorithm PID-BT runs in O∗(|I k
G| · |O

k
G|) time.

Proof The number of iteration in step 6, where i is incremented each time, is |I k
G|. In each

iteration step, every computation step may be charged to each element of Oi−1 and the total

12 Hisao Tamaki

number of steps charged to a single element of Oi−1 is nO(1). Since |Oi−1| ≤ |Ok
G|, we have

the claimed time bound. ⊓⊔

The bound in this observation is incomparable to the previous bounds on non-PID ver-

sions of the BT algorithm, which run in O∗(|ΠG|) time when ΠG, the set of potential

maximal cliques in G, is given. In [12], in addition to a combinatorial bound of |ΠG| =
O(1.7549n), it was shown that ΠG can be computed in O∗(ΠG) time.

It should be emphasized, however, that it is not known whether the decision problem

version of the treewidth problem with given k can be solved in O∗(|Π k+1
G |) time, where Π

k
G

is the set of potential maximal cliques of cardinality at most k in G. The bottleneck here is

the time to list all members of Π
k+1
G . Although a nontrivial upper bound on |Π k+1

G | in terms

of n and k, together with a running time bound based on it, is given in [12], a huge gap

between the actual value |Π k+1
G | and the upper bound is observed in practice, as shown in

the next section. This is the gap that makes the bound in Obseravation 1 interesting.

6 Experimental analysis

To study the strength of the running time bound of Observation 1 from a practical view point,

we have performed some experiments, in which we count the number of combinatorial ob-

jects involved in the treewidth computation. We first compare the actual number of relevant

potential maximal cliques (that is, of cardinality at most k+1 where k is the treewidth) with

the theoretical uppser bounds on that number: the naive bound of
(

n
k+1

)

and an assymptot-

ically stronger bound of n(
(⌈(2n+k+7)/3⌉

k+2

)

+
(⌈(2n+k+4)/2⌉

k+1

)

) given in [12]. Table 1 shows the

results on some random instances, where the number of vertices n is 20, 30, 40, or 50, the

number of edges m is 2n, 3n, 4n or 5n, and the graph for each pair (n,m) is chosen uniformly

at random from the set of all graphs with n vertices and m edges. Huge gaps between the

actual number and the upper bounds are apparent.

n = |V | |E| k = tw PMCs (≤ k+1)
(

n
k+1

)

n(
(⌈(2n+k+7)/3⌉

k+2

)

+
(⌈(n+k+4)/2⌉

k+1

)

)

20 40 6 115 77520 1003860

20 60 8 96 167960 2076360

20 80 11 121 125970 1921680

20 100 11 37 125970 1921680

30 60 7 559 5852925 67393950

30 90 11 682 86493225 352580340

30 120 14 1137 155117520 430361970

30 150 16 768 119759850 426140550

40 80 8 5341 273438880 2705471600

40 120 14 10372 40225345056 91260807600

40 160 18 17360 131282408400 135562547400

40 200 20 6820 131282408400 157012867200

50 100 10 6029 37353738800 201991095800

50 150 16 48068 9847379391150 10332510412500

50 200 20 36388 67327446062800 53246262826500

50 250 24 47729 126410606437752 52230760068000

Table 1 The numbers of relevant potetntial maximal cliques and their upper bounds

Positive-instance driven dynamic programming for treewidth ⋆ 13

Since the running time bound in Observation 1 involves the quantity |Ok
G| which is not

theoretically upper-bounded by a function of |Π k+1
G |, the gaps observed in Table 1 alone

may not be sufficient to support the importance of this running time bound. To address this

issue, we have counted more combinatorial objects involved in our PID computation on the

same graph instances: in addition to relevant potential maximal cliques counted above, all

potential maximal cliques, relevant minimal separators, all minimal separators, feasible I-

blocks, feasible O-blocks and feasible potential maximal cliqeus. Here, the input k to the

decision problem is set to the treewidth of the graph.

Table 2 shows the result. We see that the number of feasible O-blocks is smaller than

the number of relevant potential mmaximal cliques, as far as these instances are concerend.

This, together with what we have observed in Table 1, provides an evidence that the running

time bound of Observation 1 is more relevant from a practical point of view than the running

time bounds of known theoretical algorithms.

We also see that the number of all potential maximal cliques grows much faster than the

number of relevant potential maximal cliques. This shows the advantage of our algorithm

which avoids generating all potential maximal cliques.

To summarize, our PID algorithm has advantages over the standard BT algorithms be-

cause the running time upper bounds of those algorithms are either in terms of a combi-

natorial upper bound on the number of relevant potential maximal cliques or in terms of

the actual number of all potential maximal cliques: our experiments reveal huge gaps be-

tween the actual number of relevant potential maximal cliques and both of these quantities.

Note that, if there is an efficient method of generating relevant potential maximal cliques, a

non-PID version of the BT algorithm might outperform our PID version.

minimal separators PMCs feasible objects

|V | |E| tw all ≤ tw all ≤ tw+1 I-blocks O-blocks PMCs

20 40 6 98 51 376 115 19 26 37

20 60 8 191 48 796 96 46 108 93

20 80 11 185 122 698 376 121 158 370

20 100 11 107 25 354 37 24 32 36

30 60 7 535 185 3122 559 114 170 334

30 90 11 2983 247 20154 682 228 708 618

30 120 14 2713 376 16736 1137 352 804 1055

30 150 16 1913 281 10535 768 240 498 647

40 80 8 14842 1070 178661 5341 840 2965 4154

40 120 14 164773 2356 1740644 10372 2080 8637 8577

40 160 18 134485 3952 1251656 17360 3289 10023 13646

40 200 20 52182 1790 423691 6820 1502 4749 5347

50 100 10 96499 1361 1123621 6029 779 2171 2914

50 150 16 1792713 9152 >2000000 48068 8099 36881 39803

50 200 20 2130811 7878 >2000000 36388 6956 28247 29842

50 250 24 1452449 10571 >2000000 47729 8949 30834 37115

Table 2 The numbers of principal objects in treewidth computation

7 Implementation

In this section, we sketch two important ingredients of our implementation. Although both

are crucial in obtaining the result reported in Section 8, our work on this part is preliminary

and improvements are the subject of future research.

14 Hisao Tamaki

7.1 Data structures

The crucial elementary operation in our algorithm is the following. We have a set O of fea-

sible O-blocks obtained so far and, given a new feasible I-block (N(C),C), need to find all

members (N(A),A) of O such that C ⊆ A and |N(C)∪N(A)| ≤ k+ 1. As the experimen-

tal analysis in the previous section shows, there is only a few such A on average for the

tested instances even though O is usually huge. To support an efficient query processing, we

introduce an abstract data structure we call a block sieve.

Let G be a graph and k a positive integer. A block sieve for graph G and width k is a data

structure storing vertex sets of V (G) which supports the following operations.

store(U) : store vertex set U in in the block sieve.

supersets(U) : return the list of entries W stored in the block sieve such that U ⊆ W and

|N(U)∪N(W)| ≤ k+1.

Data structures for superset query have been studied [20]. The second condition above on

the retrieved sets, however, appears to make this data structure new. For each U ⊆V (G), we

define the margin of U to be k+1−|N(U)|. Our implementation of block sieves described

below exploits an upper bound on the margins of vertex sets stored in the sieve.

We first describe how such block sieves with upper bounds on margins are used in our

algorithm. Let O be the current set of O-blocks. We use t block sieves B1, . . . , Bt , each

Bi having a predetermined upper bound mi on the margins of the sets stored. We have

0<m1 <m2 < .. .<mt = k. We set m0 = 0 for notational ease below. In our implementation,

we choose roughly t = log2 k and mi = 2i for 0 < i < t. For each (N(A),A) in O, A is stored

in Bi such that the margin k+1−|N(A)| is mi or smaller but larger than mi−1. When we are

given an I-block (N(C),C) and are to list relevant blocks in O, we query all of the t blocks

with the operations supersets(C). These queries as a whole return the list of all vertex sets A

such that (N(A),A) ∈ O, C ⊆ A, and |(N(A)∪N(C))| ≤ k+1.

We implement a block sieve by a trie T . The upper bound m on margin is not used

in the construction of the sieve; it is used in the query time. In the following, we assume

V (G) = {1, . . . ,n} and, by an interval [i, j], 1 ≤ i ≤ j ≤ n, we mean the set {v : i ≤ v ≤ j}
of vertices. Each non-leaf node p of T is labelled with a non-empty interval [sp, fp], such

that sr = 0 for the root r, sp = fq +1 if p is a child of q, and fp = n if p is a parent of a leaf.

Each edge (p,q) which connects node p and a child q of p, is labelled with a subset S(p,q)

of the interval [sp, fp]. Thus, for each node p, the union of the labels of the edges along the

path from the root to p is a subset of the interval [1,sp −1], or [1,n] when p is a leaf, which

we denote by Sp. The choice of interval [sp, fp] for each node p is heuristic. It is chosen so

that the number of descendants of p is not too large or too small. In our implementation, the

interval size is adaptively chosen from 8, 16, 32, and 64.

Each leaf q of trie T represents a single set stored at this leaf, namely Sq as defined

above. We denote by S(T) the set of all sets stored in T . Then, for each node p of T , the

set of sets stored under p is {U |U ∩ [1, p] = Sp}.

We now describe how a query is processed against this data structure. Suppose query

U is given. The goal is to visit all leaves q such that U ⊆ Sq and |N(U)∪N(Sq)| ≤ k+ 1.

This is done by a depth-first traversal of the trie T . When we visit node p, we have the

invariant that U ∩ [1, fp] ⊆ Sp, since otherwise no leaf in the subtree rooted at p stores a

superset of U . Therefore, we descend from p to a child p′ of p only if this invariant is

maintained. Moreover, we keep track of the quantity i(p,U) = |N(U)∩Sp| in order to make

further pruning of search possible. For each leaf q below p such that U ⊆ Sq, we have

i(q,U)≥ i(p,U). Combining this with eauality |N(U)\N(Sq)|= |N(U)∩Sq|= i(q,U), we

Positive-instance driven dynamic programming for treewidth ⋆ 15

have |N(U)∪N(Sq)| ≥ |N(Sq)|+ i(p,U). Since we know an upper bound m on the margin

k+1−|N(Sq)| of Sq, or lower bound k+1−m on |N(Sq)|, we may prune the search under

node p if i(p,U) > m, since this inequality implies |N(U)∪N(Sq)|> k+1 for every leaf q

under p. When we reach a leaf q, we test if |N(U)∪N(Sq)| ≤ k+1 indeed holds.

7.2 Safe separators

The notion of safe separators for treewidth was introduced by Bodlaender and Koster [5]: a

separator S of G is safe if completing S into a clique does not change the treewidth of G. If

we find a safe separator S then the problem of deciding tree width of G reduces to that of

deciding the treewidth of G〈C〉 for each component C associated with S. Preprocessing G

into such independent subproblems is highly desirable whenever possible.

The above authors observed that a powerful sufficient condition for safeness can be

formulated based on graph minors. A labelled minor of G is a graph obtained from G by

zero or more applications of the following operations. (1) Edge contraction: choose an edge

{u,v}, replace u and v by a single new vertex and let all neighbors of u and v be adjacent

to this new vertex; name the new vertex as either u or v. (2) Vertex deletion: delete a vertex

together with all incident edges. (3) Edge deletion.

Lemma 10 ([5]) A separator S of G is safe if, for every component C associated with S,

G[V (G)\C] contains clique S as a labelled minor.

Call a separator minor-safe if it satisfies the sufficient condition for safeness stated in this

lemma. Bodlaender and Koster [5] showed that if S is a minimal separator and is an almost

clique (deleting some single vertex makes it a clique) then S is minor-safe and moreover that

the set of all almost clique minimal separators can be found in O(n2m) time, where n is the

number of vertices and m is the number of edges.

We aim at capturing as many minor-safe separators as possible, at the expense of theoret-

ical running time bounds on the algorithm for finding them. Thus, in our approach, both the

algorithm for generating candidate separators and the algorithm for deciding minor-safeness

are heuristic. For candidate generation, we use greedy heuristic for treewidth such as min-

fill and min-degree: the separators in the resulting tree-decomposition are all candidates for

safe separators.

When we apply our heuristic decision algorithm for minor-safeness to candidate sepa-

rator S, one of the following occurs.

1. The algorithm answers “YES”. In this case, a required labelled clique minor has been

found for every component associated S and hence S is minor-safe.

2. The algorithm answers “DON’T KNOW”. In this case, the algorithm has failed to find

a labelled clique minor for at least one component, and hence it is not known if S is

minor-safe or not.

3. The algorithm aborts, after reaching the prescribed number of execution steps.

Our heuristic decision algorithm works in two phases. Let S be a separator, C a com-

ponent associated with S, and R = V (G) \ (S∪C). In the first phase, we contract edges in

R and obtain a graph B on vertex set S ∪R′, where each vertex of R′ is a contraction of

some vertex set of R and B has no edge between vertices in R′. For each pair u,v of distinct

vertices in S, let N(u,v) denote the common neighbors of u and v in graph B. The contrac-

tions are performed with the goal of making |N(u,v)∩R′| large for each missing edge {u,v}
in S. In the second phase, for each missing edge {u,v}, we choose a common neighbor

16 Hisao Tamaki

w ∈ N(u,v)∩R′ and contract either {u,w} or {v,w}. The choice of the next missing edge

to be processed and the choice of the common neighbor are done as follows. Suppose the

contractions in the second phase are done for some missing edges in S. For each missing

edge {u,v} not yet “processed”, let N ′(u,v) be the set of common neighbors of u and v that

are not yet contracted with any vertex in S. We choose {u,v} with the smallest |N ′(u,v)∩R′|
to be processed next. Tie-breaking when necessary and the choice of the common neighbor

w in N ′(u,v)∩R′ to be contracted with u or v is done in such a way that the minimum of

|(N ′(x,y)∩R′)\{w}| is maximized over all remaining missing edges {x,y} in S.

The performance of these heuristics strongly depends on the instances. For PACE 2017

public instances, they work quite well. Table 3 shows the preprocessing result on the last 10

of those instances. See Section 8 for the description of those instances and the computational

environment for the experiment. For each instance, the number of safe separators found

and the maximum subproblem size in terms of the number of vertices, after the graph is

decomposed by the safe separators found, are listed. The results show that these instances,

which are deemed the hardest among all the 100 public instances, are quickly decomposed

into manageable subproblems by our preprocessing.

name |V | |E| tw(G) safe separators found max subproblem time(secs)

ex181 109 732 18 18 89 0.078

ex183 265 471 11 173 76 0.031

ex185 237 793 14 142 52 0.046

ex187 240 453 10 138 81 0.031

ex189 178 4517 70 6 161 0.062

ex191 492 1608 15 184 132 0.171

ex193 1391 3012 10 791 119 3.17

ex195 216 382 10 114 84 0.015

ex197 303 1158 15 176 56 0.062

ex199 310 537 9 157 131 0.046

Table 3 Safe separator preprocessing on PACE 2017 instances

On the other hand, these heuristics turned out useless for most of the DIMACS graph

coloring instances: no safe separators are found for those instances. We suspect that this

is not the limitation of the heuristics but is simply because those instances lack minor-safe

separators. We need, however, further study to get a firm conclusion.

8 Performance results

We have tested our implementation on two sets of instances. The first set comes from the

DIMACS graph coloring challenge [14] and has served as a standard benchmark suite for

treewidth in the literature [13,5,15,19,4,2]. The other is the set of public instances posed

by the exact treewidth track of PACE 2017 [16].

The computing environment for the experiment is as follows. CPU: Intel Core i7-7700K,

4.20GHz; RAM: 32GB; Operating system: Windows 10, 64bit; Programming language:

Java 1.8; JVM: jre1.8.0 121. The maximum heap space size is 6GB by default and is 24GB

where it is stated so. The implementation is single threaded, except that multiple threads

may be invoked for garbage collection by JVM. The time measured is the CPU time, which

includes the garbage collection time.

Positive-instance driven dynamic programming for treewidth ⋆ 17

To determine the treewidth of a given instance we use our decision procedure with k

being incremented one by one, starting from the obvious lower bound, namely the minimum

degree of the graph. Binary search is not used because the cost of overshooting the exact

treewidth can be huge. We do not feel the need of using stronger lower bounds either, since

the cost of executing the decision procedure for k below such lower bounds is usually quite

small.

Table 4 shows the results on DIMACS graph coloring instances. Each row shows the

name of the instance, the number of vertices, the number of edges, the exact treewidth com-

puted by our algorithm, CPU time in seconds, and the previously best known upper and

lower bounds on the treewidth. Rows in bold face show the newly solved instances. For all

but three of them, the previous best upper bound has turned out optimal: only the lower

bound was weaker. In this experiment, however, no knowledge of previous bounds are used

and our algorithm independently determines the exact treewidth.

The results on “queen” instances illustrate how far our algorithm has extended the prac-

tical limit of exact treewidth computation. Queen7 7 with 49 vertices is the largest instance

previously solved, while queen10 10 with 100 vertices is now solved. Also note that all pre-

viously solved instances are fairly easy for our algorithm: all of them are solved within 10

seconds per instance and many of them within a second.

18 Hisao Tamaki

name |V | |E| tw time(secs) prev UB prev LB

anna 138 493 12 0.078 12 12

david 87 406 13 0.031 13 13

DSJC125.5 125 3891 108 459 108 56

DSJC125.9 125 6961 119 0.062 119 119

DSJC250.9 250 27897 243 0.44 243 212

DSJC500.9 500 112437 492 14 492 433

DSJR500.5 500 58862 246 546 - -

DSJR500.1c 500 121275 485 2.12 485 485

fpsol2.i.1 496 11654 66 3.30 66 66

fpsol2.i.2 451 8691 31 5.66 31 31

fpsol2.i.3 425 8688 31 5.68 31 31

games120† 120 638 32 94738 32 24

homer† 561 1628 30 2765 31 26

huck 74 301 10 0.012 10 10

inithx.i.1 864 18707 56 8.10 56 56

inithx.i.2 645 13979 31 8.14 31 31

inithx.i.3 621 13969 31 10 31 31

jean 80 254 9 0.031 9 9

miles250 128 387 9 0.000 9 9

miles500 128 1170 22 0.11 22 22

miles750 128 2113 36 0.23 36 35

miles1000 128 3216 49 0.33 49 49

miles1500 128 5198 77 0.45 77 77

mulsol.i.1 197 3925 50 1.41 50 50

mulsol.i.2 188 3885 32 1.77 32 32

mulsol.i.3 184 3916 32 1.80 32 32

mulsol.i.4 185 3946 32 1.78 32 32

mulsol.i.5 186 3973 31 1.80 31 31

myciel2 5 5 2 0.000 2 2

myciel3 11 20 5 0.000 5 5

myciel4 23 71 10 0.015 10 10

myciel5 47 236 19 0.33 19 19

myciel6 95 755 35 419 35 29

queen5 5 25 160 18 0.000 18 18

queen6 6 36 290 25 0.031 25 25

queen7 7 49 476 35 0.19 35 35

queen8 8 64 728 45 4.16 45 25

queen9 9 81 1056 58 274 58 35

queen8 12 96 1368 65 649 - 39

queen10 10 100 1470 72 20934 72 39

zeroin.i.1 211 4100 50 1.09 50 50

zeroin.i.2 211 3541 32 1.64 32 32

zeroin.i.3 206 3540 32 1.55 32 31

Previous upper bounds from [13] and [15]; previous lower bounds from [13] and [6].
† 24GB heap space is used for these instances.

Table 4 Results on the DIMACS graph coloring instances

Table 5 shows the lower bounds obtained by our algorithm on unsolved DIMACS graph

coloring instances. Lower bound entries in bold face are improvements over the previously

known lower bounds. Computation time of the previously best lower bounds ranges from a

few minutes to a week [6]. Detailed comparison of lower bound methods, which requires

the normalization of machine speeds, is not intended here. Rather, the table is meant to show

the potential of our algorithm as a lower bound procedure.

Positive-instance driven dynamic programming for treewidth ⋆ 19

For many of the instances the improvements are significant. It can also be seen from

this table that our algorithm performs rather poorly on relatively sparse graphs with a large

number of vertices.

lower bounds computed previous bounds

name |V | |E| 1 sec 1 min 30 min lower upper

DSJC125.1 125 736 25 30 36 20 60

DSJC250.1 250 3218 45 57 66 43 167

DSJC250.5 250 15668 180 197 211 114 229

DSJC500.1 500 12458 - 94 115 87 409

DSJC500.5 500 62624 - 360 388 231 479

DSJC1000.1 1000 49629 - 172 189 183 896

DSJC1000.5 1000 249826 - 724 742 469 977

DSJC1000.9 1000 449449 - 983 987 872 991

le450 5a 450 5714 29 50 59 79 243

le450 5b 450 5734 - 49 57 - 246

le450 5c 450 9803 - 84 100 106 265

le450 5d 450 9757 - 94 99 - 265

le450 15a 450 8168 24 40 49† 94 262

le450 15b 450 8169 23 32 47† - 258

le450 15c 450 16680 - 114 132 139 350

le450 15d 450 16750 - 112 131 - 353

le450 25a 450 8260 11 23 25† 96 216

le450 25b 450 8263 16 26 30† - 219

le450 25c 450 17343 43 89 109 144 320

le450 25d 450 17425 - 93 112 - 327

myciel7 191 2360 22 31 35 52 66

queen11 11 121 1980 61 70 77 40 87

queen12 12 144 2596 71 76 84 55 103

queen13 13 169 3328 70 82 91 51 121

queen14 14 196 4186 74 87 98 55 140

queen15 15 225 5180 78 93 104 73 162

queen16 16 256 6320 83 99 110 79 186

school1 385 19095 73 112 125 149 178

school1 nsh 352 14612 78 105 118 132 152

Previous upper bounds from [15]; previous lower bounds from [6].
† out of memory before time out

Table 5 New lower bounds on the treewidth of unsolved DIMACS graph coloring instances

Table 6 shows the results on PACE 2017 instances. The prefix “ex” in the instance names

means that they are for the exact treewidth track. Odd numbers mean that they are public

instances disclosed prior to the competition for testing and experimenting. Even numbered

instances, not in the list, are secret and to be used in evaluating submissions. The time

allowed to be spent for each instance is 30 minutes. As can be seen from the table, our

algorithm solves all of the public instances with a large margin in time.

20 Hisao Tamaki

name |V | |E| tw time (secs) name |V | |E| tw time (secs)

ex001 262 648 10 1.48 ex101 1038 291034 540 12

ex003 92 2113 44 8.92 ex103 237 419 10 3.01

ex005 377 597 7 14 ex105 1038 291037 540 12

ex007 137 451 12 0.046 ex107 166 396 12 1.44

ex009 466 662 7 13 ex109 1212 1794 7 43

ex011 465 1004 9 0.50 ex111 395 668 9 4.33

ex013 56 280 29 15 ex113 93 488 14 0.046

ex015 177 669 15 0.046 ex115 963 419877 908 18

ex017 330 571 9 1.11 ex117 77 181 13 18

ex019 291 752 11 40 ex119 84 479 23 16

ex021 318 572 9 2.80 ex121 204 1164 34 76

ex023 690 1355 8 0.91 ex123 122 635 35 14

ex025 92 472 20 1.61 ex125 320 8862 70 8.19

ex027 274 715 11 51 ex127 228 527 10 0.20

ex029 238 411 9 1.33 ex129 737 2826 14 0.97

ex031 219 382 8 12 ex131 292 1386 18 0.17

ex033 363 541 7 50 ex133 522 1296 11 3.94

ex035 247 804 14 3.60 ex135 2822 129474 87 49

ex037 272 615 10 3.43 ex137 196 1098 19 0.34

ex039 56 280 32 58 ex139 334 568 9 8.34

ex041 205 341 9 0.63 ex141 226 1168 34 117

ex043 279 513 9 3.34 ex143 130 660 35 52

ex045 600 865 7 7.80 ex145 48 96 12 18

ex047 1854 21118 21 140 ex147 101 606 16 0.093

ex049 117 332 13 0.078 ex149 698 2604 12 0.75

ex051 136 254 10 0.62 ex151 279 733 12 210

ex053 218 383 9 1.98 ex153 772 11654 47 57

ex055 197 813 18 0.078 ex155 758 11580 47 103

ex057 281 9075 117 0.093 ex157 260 467 9 6.42

ex059 298 780 10 0.47 ex159 582 2772 18 2.37

ex061 158 1058 22 9.59 ex161 1046 3906 12 2.84

ex063 103 582 34 4.76 ex163 244 445 10 4.69

ex065 50 175 25 79 ex165 222 742 14 0.23

ex067 235 424 10 2.70 ex167 509 969 10 7.96

ex069 235 441 9 1.43 ex169 3706 42236 22 530

ex071 253 434 9 2.42 ex171 647 2175 14 0.77

ex073 712 1085 7 15 ex173 536 1011 10 5.05

ex075 111 360 8 0.28 ex175 227 1000 17 113

ex077 237 423 10 2.70 ex177 227 759 14 0.23

ex079 314 4943 42 1.64 ex179 187 346 10 14

ex081 188 638 6 0.55 ex181 109 732 18 0.20

ex083 213 380 10 3.05 ex183 265 471 11 8.61

ex085 229 370 8 11 ex185 237 793 14 0.33

ex087 380 5790 47 46 ex187 240 453 10 2.80

ex089 318 576 9 11 ex189 178 4517 70 3.59

ex091 193 336 9 31 ex191 492 1608 15 21

ex093 454 664 7 27 ex193 1391 3012 10 3.80

ex095 220 555 11 0.59 ex195 216 382 10 6.11

ex097 286 4079 48 2.01 ex197 303 1158 15 0.36

ex099 616 923 7 88 ex199 310 537 9 23

Table 6 Results on the PACE 2017 public instances

Positive-instance driven dynamic programming for treewidth ⋆ 21

Acknowledgment

The author thanks Hiromu Ohtsuka for his help in implementing the block sieve data struc-

ture. He also thanks Yasuaki Kobayashi for helpful discussions and especially for drawing

the author’s attention to the notion of safe separators. This work would have been non-

existent if not motivated by the timely challenges of PACE 2016 and 2017. The author is

deeply indebted to their organizers, especially Holger Dell, for their dedication and excellent

work.

References

1. S. Arnborg, D. G. Corneil, and A. Proskurowski: Complexity of finding embeddings in a k-tree. SIAM

Journal on Algebraic Discrete Methods 8, 277-284, 1987

2. J. Berg and M. Järvisalo: SAT-based approaches to treewidth computation: an evaluation. Proceedings of

the IEEE 26th International Conference on Tools with Artificial Intelligence, 328-335, 2014

3. H. L. Bodlaender: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM

Journal on Computing 25(6), 1305-1317, 1996

4. H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster D. Kratsch, and D. M. Thilikos: On exact algorithms

for treewidth. ACM Transactions on Algorithms 9(1), 12, 2012

5. H. L. Bodlaender and A. M. C. A. Koster: Safe separators for treewidth. Discrete Mathematics 306(3),

337-350, 2006

6. H. L. Bodlaender, T. Wolle, and A. M. C. A. Koster: Contraction and Treewidth Lower Bounds. Journal

of Graph Algorithms and Applications 10(1), 5-49, 2006

7. H. L. Bodlaender and A. M. C. A. Koster: Combinatorial Optimization on Graphs of Bounded Treewidth.

The Computer Journal 51(3), 255-269, 2008

8. V. Bouchitté and I. Todinca: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM

Journal on Computing 31(1), 212-232, 2001

9. V. Bouchitté and I. Todinca: Listing all potential maximal cliques of a graph. Theoretical Computer

Science 276, 17-32, 2002

10. H. Dell, T. Husfeldt, B. M. Jansen, P. Kaski, C. Komusiewicz, and F. A. Rosamond: The First Param-

eterized Algorithms and Computational Experiments Challenge LIPIcs-Leibniz International Proceedings

in Informatics 63, 2017.

11. F. V. Fomin, D. Kratsch, I. Todinca, and Y. Villanger: Exact algorithms for treewidth and minimum

fill-in. SIAM Journal on Computing, 38(3), 1058-1079, 2008

12. F. Fomin and Y. Villanger: Treewidth computation and extremal combinatorics. Combinatorica 32(3),

289-308, 2012

13. V. Gogate and R. Dechter: A complete anytime algorithm for treewidth. Proceedings of the 20th confer-

ence on Uncertainty in artificial intelligence, AUAI Press, 2004

14. D. S. Johnson and M. A. Trick (eds.): Cliques, coloring, and satisfiability: second DIMACS implementa-

tion challenge. Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical

Society, Vol. 26. American Mathematical Society, 1996

15. N. Musliu: An iterative heuristic algorithm for tree decomposition. Recent Advances in Evolutionary

Computation for Combinatorial Optimization, 133-150, 2008

16. PACE 2017 website: https://pacechallenge.wordpress.com/

17. N. Robertson and P. D. Seymour: Graph minors. II. Algorithmic aspects of tree-width. Journal of

Algorithms 7, 309-322, 1986

18. N. Robertson and P. D. Seymour: Graph minors. XX. Wagner’s conjecture. Journal of Combinatorial

Theory, Series B 92(2), 325-357, 2004

19. M. Samer and H. Veith: Encoding treewidth into SAT. Proceedings of International Conference on

Theory and Applications of Satisfiability Testing, 45-50, 2009

20. I. Savnik: Index data structure for fast subset and superset queries. Proceedings of International Confer-

ence on Availability, Reliability, and Security, 134-148, 2013

21. Github repository: https://github.com/TCS-Meiji/PACE2017-TrackA

	1 Introduction
	2 Preliminaries
	3 Recurrences on oriented minimal separators
	4 Algorithm
	5 Running time analysis
	6 Experimental analysis
	7 Implementation
	8 Performance results

