
ar
X

iv
:1

81
1.

09
57

3v
1 

 [
cs

.D
S]

  2
3 

N
ov

 2
01

8

A lower bound for online rectangle packing∗

Leah Epstein†

Abstract

We slightly improve the known lower bound on the asymptotic competitive ratio for online

bin packing of rectangles. We present a complete proof for the new lower bound, whose value

is above 1.91.

1 Introduction

Bin packing [24] is a well-studied combinatorial optimization problem. The goal is to partition

items with rational sizes in (0, 1] into subsets of total sizes at most 1, called bins. In the online

version, items are presented one by one, such that every item is assigned irrevocably to a bin before

the next item arrives. This classic variant is also called one-dimensional bin packing.

Rectangle packing is a generalization of bin packing where every item is an axis parallel oriented

rectangle. Each rectangle ri has a height 0 < h(ri) ≤ 1 and a width 0 < w(ri) ≤ 1. The objective

is to partition input rectangles into subsets, such that every subset can be packed into a bin, where

a bin is a unit square. Packing should be done such that rectangles will not intersect, but their

boundaries can touch each other and they can also touch the boundary of the bin. As rectangles

are oriented, they cannot be rotated. In the online variant, rectangles are presented one by one,

as in the one-dimensional version. There are two scenarios; the one where the specific packing

of a rectangle is decided upon arrival (the position inside the bin), and the less strict one, where

the algorithm keeps subsets of rectangles that can be packed into bins, but the exact packing can

decided at termination. Typically, positive results are proved for the first version while negative

results are proved for the second one, and thus, all results are valid for both versions.

For an algorithm A for some bin packing problem, and an input I, the number of bins used

by A is denoted by A(I). In particular, for an optimal offline algorithm OPT that receives I

as a set, its cost is denoted by OPT (I), and this is the minimum number of bins required for

packing I. The approximation ratio, or competitive ratio if A is online, for input I is A(I)
OPT (I) . The

absolute approximation ratio or absolute competitive ratio is supI{
A(I)

OPT (I)}, and the asymptotic

approximation ratio or asymptotic competitive ratio R(A) (which is never larger than the absolute
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one) is

R(A) = lim
N→∞

sup
I

{

A(I)

OPT (I)

∣

∣

∣

∣

OPT (I) ≥ N

}

= lim sup
N→∞

max
I

{

A(I)

OPT (I)

∣

∣

∣

∣

OPT (I) = N

}

.

For one-dimensional online bin packing, it is known that the asymptotic competitive ratio is in

[1.5427809, 1.57828956] [3, 4] (see also [6, 23, 26, 28, 25, 31]).

For rectangle packing, there is a number of articles where various algorithms are designed

[11, 12, 13, 27, 16, 21]. Where the last work is the one of Han et al. [21], and the current best

asymptotic competitive ratio is still above 2.5. The history of lower bounds is as follows. Galambos

showed a lower bound of 1.6 on the asymptotic competitive ratio of any algorithm [19]. This was

improved by Galambos and van Vliet to approximately 1.808 by applying the same idea multiple

times [20]. By increasing the number of types of items in every part of the construction, an improved

lower bound of approximately 1.851 was shown by van Vliet [29]. Finally, by applying an additional

modification, a lower bound of 1.907 was claimed [8, 10]. For many years the lower bound of 1.907

was cited as an unpublished manuscript [10]. This result appears in the thesis of Blitz [8] that was

not accessible for many years. That thesis [8] contains information that can assist in obtaining a

proof, and can be seen as guidelines for obtaining it. A manuscript was published on arxiv with

the details of an inferior result of approximately 1.859 [9] also appearing in [8] with a partial proof,

where there are just nine types of items, while the value 1.907 was treated by many researchers as

a conjecture.

The special case of rectangle packing, where all input items are squares was studied as well

[11, 29, 8, 27, 15, 22, 1]. For this version there is also a large gap between the lower bound and

upper bound on the asymptotic competitive ratio, where the lower bound is approximately 1.75 [1],

while the upper bound is above 2.1 [22]. Another generalization of square packing is non-oriented

packing of rectangles, where rectangles are still packed in an axis parallel manner, but they can be

rotated by 90 degrees [17, 14]. This version is very different from the oriented one. For example, in

the non-oriented version, given rectangles of heights 0.66 and widths of 0.34, any bin can contain

at most two such items, while the non-oriented version allows us to pack four such items into each

bin.

As mentioned above, the previous lower bound on the asymptotic competitive ratio is known

as 1.907 [8, 10], which was cited multiple times, but there is no full proof of this result. While the

thesis of Blitz [8] has a number useful guidelines for the proof, including the input and properties

of a certain linear program (LP) and its dual (see below), it does not contain a complete and

precise proof, and only the proof of the lower bound 1.859 was recovered completely [9]. This last

construction is based on the nine types of items appearing in the bottom three rows in Figure 1. In

our work, we use the guidelines of Blitz that were provided for an intermediate result with 12 item

types, which was a lower bound of approximately 1.905 [8]. We modify the input by replacing the

first item with a potentially infinite sequence of items, so instead of 12 item types used, we have the

last 11 types, and we use a large number of types instead of the first type. This approach allows us

to provide a complete proof and show a slightly higher lower bound of 1.9100449 on the asymptotic

competitive ratio of any online algorithm for the packing problem of rectangles into unit square

bins. The construction of Blitz giving a lower bound of 1.907 consists of another row of items on
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the top compared to Figure 1, that is, the small empty space in the top of the bin in Figure 1

also contains three items. However, replacing the first item of this construction leads to a result

inferior to the one which we prove, since the first item type out of the 15 has very small height,

and replacing it with a sequence of items only increases the bound by a very small amount. On

the other hand, replacing the first item of the construction with nine item types does not increase

the lower bound above 1.9.

We briefly discuss the relation between the proof methods. Here, we do not provide the details

of proving the results of Blitz [8] using our method, since we show a better result. However, using

our proof methods it is possible to recover all three lower bounds mentioned the thesis of Blitz

[8] for rectangle packing, and many of the required properties are proved here. For comparison

between the two methods (which are related), we describe the approach of [29, 8] for proving lower

bounds on the competitive ratio for inputs of a specific form. Such an input has several types of

items fixed in advance, where the input is of the form that at each time a large number of identical

items arrive (those are items of some type), and then the input may be stopped (if the number of

bins already used by the algorithm is relatively high) or it may continue (if not all item types were

presented yet). Note that not all lower bounds for the asymptotic competitive ratio of bin packing

problems have this structure, and inputs may have branching or clusters of items of close but

slightly different sizes [5, 2, 1], though many results do have the form we discuss here [28, 18, 7, 6].

For the kind of inputs we described here, which will be used in our construction, it is possible to

analyze packing patterns. A pattern is a multiset of items that can be packed into a bin. One can

generate all such patterns for a given input or they can be analyzed without generating them. If

the number of types is constant as we assume here, it is possible to write an LP whose variables are

the numbers of patterns of every kind. The LP states the relation between numbers of items and

numbers of bins with all possible patterns, i.e., numbers of items are counted as a function of the

number of patterns containing such items (multiplied by the numbers of items in different patterns),

and it is ensured that all items are indeed packed. Patterns are partitioned into subsets where every

subset consists of patterns whose bins are first used after the arrival of one type of items. This

is done since bins only count towards the cost of the algorithm starting the arrival time of the

first items packed into them. Obviously, there are also constraints stating that the competitive

ratio is not violated. The inputs are sufficiently large such that the absolute competitive ratio

and the asymptotic one are equal. The cost of the algorithm is also based on numbers of suitable

patterns, while the optimal cost is computed based on the input. There is work where this LP is

solved [30], and work where the dual LP is analyzed too [29, 8, 9]. In the primal LP, there are

two constraints for every item type. Thus, the dual LP has two variables for every item type. It

is frequently the case that in an optimal solution to the dual LP the two sets of variables differ by

just a multiplicative factor.

Here, we do not use a linear program, though a linear program corresponding to our approach

would not contain a variable for every pattern, but just a variable for the number of bins opened

by an online algorithm after the arrival of a type of items. Thus, we would have one variable for all

patterns of one subset in the partition of patterns. We use weights for items, and these weights are

strongly related to the values of variables in solutions to dual LP’s. In our method, it is required
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to find an upper bound on the total weight of any pattern in every subset of the partition, and

this is also required in the method with LS’s and their dual LP’s described above. Thus, we can

use the tables of data [8], both for total weights and for optimal solutions. As these tables were

given without proof, we fill this gap and provide proofs. For our method it is not required to know

the precise values (for maximum weights and costs of optimal solutions) but only upper bounds

on these values. The method we apply was used in the past [7, 1]. We use it here as in [7] even

though the packing problem here is different, since the method defined there can be used for many

bin packing variants.

2 Lower bound

Our input is based on a modification of one of the inputs of Blitz [8], where the first item is replaced

with a sequence of items. Note that this is not the input for which a lower bound of approximately

1.907 was claimed, but an inferior input for which the claimed lower bound was approximately

1.905.

Let N > 0 be a large integer divisible by 5k · 7224. Let k ≥ 4 be an integer, which is seen as a

constant that is independent of N . Let δ > 0 and ε > 0 be very small values, such that δ < 1
23k+50

(where in particular, 250δ < 1
20 ) and ε < 0.0001. Let

h1 =
1

43
+ ε, h2 =

1

7
+ ε, h3 =

1

3
+ ε, and h4 =

1

2
+ ε.

Note that h1 + h2 + h3 + h4 = 1805
1806 + 4ε < 1.

The input consists of k+9 item types. The first k item types have heights of h1, the next three

item types have heights of h2, the following three item types have heights of h3, and the final three

item types have heights of h4. The input may stop after each one of the k + 9 item types, and in

case that some item type is presented, there are N identical items of this type. For i = 1, . . . , k,

the ith item type out of the first k types is denoted by type ℓ1i. For i = 1, 2, . . . , k− 2, it is defined

by its width

w1i =
1 + δ

5k−i−1
,

and therefore our addition to the original input [8] is replacing an item whose width is just below
1
4 by items slightly wider than negative powers of 5. We also let the widths of type ℓ1(k−1) be

w1(k−1) = 1+240δ
4 , and the width of type ℓ1k is defined as w1k = 1+240δ

2 . Dimensions for all item

types are also given in Table 1, and an illustration is given in figure 1. We let h1i = h1 for 1 ≤ i ≤ k,

and hji = hj for j = 2, 3, 4 and i = 0, 1, 2.

Thus, for 1 ≤ i ≤ k − 3, we have w1(i+1) = 5 · w1i, and we also have w1k = 2 · w1(k−1). For any

integer 1 ≤ t ≤ k− 2, the total width of t items, consisting of exactly one item of every type ℓ1i for

any 1 ≤ i ≤ t, is

t
∑

i=1

w1i = (1 + δ)

t
∑

i=1

1

5k−i−1
= (1 + δ)

1

5k−t−1

t
∑

i=1

1

5t−i
= (1 + δ)

1

5k−t−1

t−1
∑

j=0

1

5j
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= (1 + δ)
1

5k−t−1

1− 1
5t

1− 1
5

= (1 + δ)
1

4 · 5k−t−2
(1−

1

5t
) = (1 + δ)(

1

4 · 5k−t−2
−

1

4 · 5k−2
) <

1− 242δ

4 · 5k−t−2
,

by 242 + 1 < 243 and since
243δ

4 · 5k−t−2
<

1 + δ

4 · 5k−2

holds by t ≤ k − 2 and

4 · 5k−2

4 · 5k−t−2
= 5t ≤ 5k−2 while

1 + δ

243δ
>

1

243δ
> 23k+7 > 8k.

In particular for t = k − 2, the total width is below 1
4 . Thus, we also have

k−1
∑

i=1

w1i <
1− 242δ

4
+

1 + 240δ

4
<

1

2
and

k
∑

i=1

w1i <
1− 242δ

4
+ 3 ·

1 + 240δ

4
< 1.

The next three types are denoted by ℓ20, ℓ21, ℓ22, and their widths are w20 = 1
4 − 232δ > 1

5 ,

w21 =
1
4 +230δ, and w22 = 1

2 +231δ, respectively. The following three types are denoted by ℓ30, ℓ31,

ℓ32, and their widths are w30 = 1
4 −222δ > 1

5 , w31 =
1
4 +220δ, and w22 =

1
2 +221δ, respectively. The

last three types are denoted by ℓ40, ℓ41, ℓ42, and their widths are w40 =
1
4−212δ > 1

5 , w41 =
1
4+210δ,

and w42 = 1
2 + 211δ, respectively. Note that wj0 +wj1 +wj2 < 1 and wj0 + wj1 <

1
2 for j = 2, 3, 4,

but

w20+3·w1(k−1) ≥ 2·w20+2·w1(k−1) ≥ 3·w20+w1(k−1) = 3·(
1

4
−232δ)+

1 + 240δ

4
> 1−234δ+238δ > 1

and

2 · w20 + w1k = 2 · w20 + 2 · w1(k−1) > 1.

In addition, we have

w(j+1)0 + 3wj1 ≥ 2w(j+1)0 + 2wj1 = 3w(j+1)0 + wj1 = 3(
1

4
− 252−10jδ) + (

1

4
+ 260−10jδ) > 1

and

2w(j+1)0 + wj2 = 2w(j+1)0 + 2wj1 > 1 for j = 2, 3.

It can be seen that w20 < w30 < w40 while w1(k−1) > w21 > w31 > w41 and w1k) > w22 > w32 >

w42.

We say that an item type is later than another type if it is presented later in the input. The

weight vji for an item of type ℓji is given in Table 1. The weights were selected based on dual

variables provided in [8].

We let Vji denote the maximum total weight of a bin containing items of the types consisting

of type ℓji and later types. Let Ωji be an upper bound on
OPTji

N
, where OPTji is the cost of an

optimal solution for the input up to type ℓ+ ji items. Note that [8] contains tables with costs of
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Figure 1: An illustration of the input in terms of one bin of an optimal solution for the entire input,

if all item types are presented. Item types arrive ordered from top to bottom and from left to right.

optimal solutions and Vji values for the part of the input that is identical to ours, though it does

not contain proofs of all the claimed values.

We use a theorem defined for inputs for bin packing problems, such that the inputs have the

form explained in the introduction. The input consists of “batches” of identical items without

branching. Substituting our notation, the theorem states that

∑k
i=1 v1i +

∑4
j=2

∑2
i=0 vji

Q
,

where

Q =

(

Ω11 · V11 +
k
∑

i=2

(Ω1i − Ω1(i−1))V1i

)

+ ((Ω20 − Ω1k)V20 + (Ω21 − Ω20)V21 + (Ω22 − Ω21)V22)

6



+





4
∑

j=3

(

(Ωj0 − Ω(j−1)2)Vj0 + (Ωj1 − Ωj0)Vj1 + (Ωj2 − Ωj1)Vj2

)



 ,

is a lower bound on the asymptotic competitive ratio (see [7]).

Note that one can use an upper bound on Vji rather than the actual value if all multipliers are

positive, which will be the case here. This will hold as we will ensure that the sequence of upper

bounds on
OPTji

N
will be monotonically non-decreasing. In fact, many of the values that we use for

Vij and Ωji are not just upper bounds, but they are the precise values, though we do not prove

this property and do not use it. In order to apply the formula, one has to show that all optimal

solutions are of order of growth Θ(N) (since we are interested in a lower bound on the asymptotic

competitive ratio), which will be shown later.

We have
k
∑

i=1

v1i +
4
∑

j=2

2
∑

i=0

vji = 68.25 −
1

4 · 5k−1
,

since
∑k

i=k−1 v1i +
∑4

j=2

∑2
i=0 vji = 67 and

k−2
∑

i=1

v1i =

k−2
∑

i=1

1

5k−i−2
=

k−3
∑

j=0

1

5j
=

1− 1
5k−2

4/5
= 1.25 −

1

4 · 5k−1
,

and

Q ≤
1

168
· (42 · (5−

1

5k−3
)/5k−3 +

k−2
∑

i=2

42 · (5−
1

5k−i−2
) · (

1

5k−i−2
−

1

5k−(i−1)−2
)

+1 · 126 + 2 · 112 + 6 · 96 + 6 · 72 + 12 · 68 + 14 · 48 + 14 · 42 + 28 · 36 + 21 · 24 + 21 · 18 + 42 · 12).

Since
k−2
∑

i=2

(5−
1

5k−i−2
) · (

1

5k−i−2
−

1

5k−(i−1)−2
) =

k−2
∑

i=2

(5−
1

5k−i−2
) ·

4

5k−i−1

= 4 ·
k−2
∑

i=2

1

5k−i−2
− 0.8 ·

k−2
∑

i=2

1

25k−i−2
= 4 ·

k−4
∑

u=0

1

5u
− 0.8 ·

k−4
∑

u=0

1

25u

= 4 · (
1− (1/5)k−3

0.8
)− 0.8 · (

1− (1/25)k−3

0.96
) =

25

6
−

1

5k−4
+

1

6 · 52k−7

we have,

Q ≤
1

168
· (42/5k−4 − 42/52k−6 + 42(

25

6
−

1

5k−4
+

1

6 · 52k−7
) + 5828) =

6003 − 7
52k−6

168
.

We get

r ≥
68.25 − 1

4·5k−1

Q
≥

68.25 − 1
4·5k−1

6003
168 − 1

24·52k−6

.

Letting k grow to infinity, we get 11466
6003 = 1274

667 ≈ 1.9100449.
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Item type width height weight upper bound upper bound on

ℓji wji hji vji on Vji 168 ·OPTji/N (Ωji)

j = 1, 1 ≤ i ≤ k − 2 1+δ
5k−i−1

1
43 + ε 1

5k−i−2 42(5 − 1
5k−i−2 )

1
5k−i−2

j = 1, i = k − 1 1+240δ
4

1
43 + ε 1 126 2

j = 1, i = k 1+240δ
2

1
43 + ε 2 112 4

j = 2, i = 0 1
4 − 232δ 1

7 + ε 4 96 10

j = 2, i = 1 1
4 + 230δ 1

7 + ε 4 72 16

j = 2, i = 2 1
2 + 231δ 1

7 + ε 8 68 28

j = 3, i = 0 1
4 − 222δ 1

3 + ε 6 48 42

j = 3, i = 1 1
4 + 220δ 1

3 + ε 6 42 56

j = 3, i = 2 1
2 + 221δ 1

3 + ε 12 36 84

j = 4, i = 0 1
4 − 212δ 1

2 + ε 6 24 105

j = 4, i = 1 1
4 + 210δ 1

2 + ε 6 18 126

j = 4, i = 2 1
2 + 211δ 1

2 + ε 12 12 168

Table 1: A summary of the input and all values required for the proof of the lower bound. The

first four columns contain definitions, and the contents of the remaining two columns are proved in

the text.

Lemma 2.1 For every valid pair j, i, we have OPTji ≤ Ωji, where Ωji is stated in Table 1.

Proof. Let j = 1. Let 1 ≤ i ≤ k, and consider a subset of items consisting of one item of every

type ℓ1a for 1 ≤ a ≤ i. For 1 ≤ i ≤ k − 2, the set has total width below 1
4·5k−i−2 , and therefore one

can pack them into a rectangle of height 1
43 + ε and width 1

4·5k−i−2 . A bin can be split into 42 rows

of height 1
42 and 4 · 5k−i−2 columns of width 1

4·5k−i−2 , resulting in 42 · 4 · 5k−i−2 such rectangles.

Thus,

OPTji ≤
N

42 · 4 · 5k−i−2
=

N

168
·

1

5k−i−2
,

and we let Ω1i =
1

168 · 1
5k−i−2 . For i = k − 1, the total width is below 1

2 , so the columns will be of

width 1
2 , and Ω1k = 1

84 . For i = k, the total width is below 1, so the columns will be of width 1

(that is, there are no columns), and Ω1k = 1
42 .

For j = 2, 3, 4, an item of type ℓj0 can be packed into a rectangle of width 1
4 and the corre-

sponding height (17 for j = 2, 1
3 for j = 3, and 1

2 for j = 1), two items, one of type ℓj0 and one

of type ℓj1 have total width below 1
2 , and they can be packed into a rectangle of width 1

2 and the
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corresponding height. For three items, one of each type out of ℓj0, ℓj1, and ℓj2, the total width is

below 1, they can be packed into a rectangle of width 1 and the corresponding height.

Bounding OPT20 is done as follows. Create N
24 bins with six rows of height 1

7 + ε and six rows

of height 1
43 + ε. This is possible since ε = 0.0001. Every row of height 1

7 + ε is split into four

columns of width 1
4 . This allows us to pack all items of type ℓ20, as there are 24 areas in every

bin that can contain an item of type ℓ20 each. Additionally, we can pack one item of each type ℓ1i
(where 1 ≤ i ≤ k) into every row of height 1

43 + ε, allowing to pack six items of every such type

into every bin, and leaving 3N
4 items of each such type unpacked. These items are packed into 3N

4·42

additional bins, each having 42 rows of height 1
43 + ε. Thus, we let Ω20 =

10
168 .

Bounding OPT21 is done similarly, but pairs of a type ℓ20 item and a type ℓ21 item are packed

into areas of width 1
2 , so they occupy N

12 bins and N
2 items of each type ℓ1i remain unpacked and

they require N
2·42 bins, leading to the definition Ω21 = 16

168 . For OPT22, triples of a type ℓ20 item,

a type ℓ21 item, and a type ℓ22 item are packed into areas of width 1, so they occupy N
6 bins, and

all items of types ℓ1i are packed into the rows of height 1
43 + ε in the same bins. This leads to the

definition Ω22 =
28
168 .

Bounding OPT30 is done as follows. Create N
8 bins with two rows of height 1

3 + ε, two rows of

height 1
7 + ε and two rows of height 1

43 + ε. This is possible since ε = 0.0001. Every row of height
1
3 + ε is split into four columns of width 1

4 . This allows us to pack all items of type ℓ30, as every

bin has eight areas where such an item can be packed. Additionally, we can pack one item of each

type ℓ1i into every row of height 1
43 + ε, and we can pack one item of each type ℓ2i into every row

of height 1
7 + ε, leaving 3N

4 items of each such type unpacked. These items are packed into 3N
4·6

additional bins, each having six rows of height 1
7 + ε and six rows of height 1

43 + ε. Thus, we let

Ω30 =
42
168 .

Bounding OPT31 is done similarly, but pairs of a type ℓ30 item and a type ℓ31 item are packed

into areas of width 1
2 , so they occupy N

4 bins and N
2 items of each type ℓji for j = 1, 2 remain

unpacked and they require N
12 bins, leading to the definition Ω31 = 56

168 . For OPT32, triples of a

type ℓ30 item, a type ℓ31 item, and a type ℓ32 item are packed into areas of width 1, so they occupy
N
2 bins, and all items of types ℓ1i and ℓ2t are packed into the rows of height 1

43 + ε in the same

bins. This leads to the definition Ω32 =
84
168 .

Bounding OPT40 is done as follows. Create N
4 bins with a row of every height out of 1

2 + ε,
1
3 + ε, 1

7 + ε, and 1
42 + ε. This is possible since ε = 0.0001. Every row of height 1

2 + ε is split into

four columns of width 1
4 . This allows us to pack all items of type ℓ40. Additionally, we can pack

one item of each type ℓji for any j ∈ {1, 2, 3} and any i into the other rows, leaving 3N
4 items of

each such type unpacked. These items are packed into 3N
4·2 additional bins, each having two rows

of every height excluding 1
2 + ε. Thus, we let Ω40 =

105
168 .

Bounding OPT41 is done similarly, but pairs of a type ℓ40 item and a type ℓ41 item are packed

into areas of width 1
2 , so they occupy N

2 bins and N
2 items of each type ℓji for j = 1, 2, 3 remain

unpacked and they require N
4 bins, leading to the definition Ω31 = 126

168 . For OPT32, triples of a

type ℓ30 item, a type ℓ31 item, and a type ℓ32 item are packed into areas of width 1, so they occupy
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N bins, and all items of other types are packed into the rows of the other three heights. This leads

to the definition Ω32 = 1.

We are left with the task of bounding Vij. The bounds will be proved using a sequence of

lemmas, where the first one is general an it is used in several proofs.

Lemma 2.2 Let bw and bh be positive integers. Consider an item size such that the width is in

( 1
bw+1 , 1], and the height is in ( 1

bh+1 , 1]. Consider a bin that contains f items of this type (and

possibly other items). Then, f ≤ bw · bh.

Proof. Consider the bin and draw bh horizontal lines. Considering also the bottom and top of the

bin, the distances between any two consecutive lines will be 1
bh+1 . Since the height of the items

is above 1
bh+1 , every item contains a part of at least one line in its interior (such a line is not the

bottom or top). Since the width of every item is above 1
bw+1 , and items cannot overlap (except

for their boundary), there can be at most bw items containing a part of a line. For every item,

associate it with a line that it contains a part of it (if there is more than one such line, choose one

arbitrarily). As there are bh lines with at most bw items each, there are at most bw · bh items of

this type.

The last lemma shows in particular that all optimal solutions have order of growth Ω(N), as

the first N items have sides larger than 1
5k−2 and 1

43 , respectively, so the cost of any solution is

at least N
42·(5k−2−1)

. An upper bound of O(N) on the cost of an optimal solution for every input

follows from the total number of items which is (k + 9)N .

We use the concept of dominance as in [8]. For an item type ℓji and an item of type ℓj′i′ , if there

are integers cw and ch such that wji ≥ cw ·wj′i′ and hji ≥ ch · hj′i′ , while vji ≤ cw · ch · vj′i′ , we say

that type ℓj′i′ (cw, ch)-dominates (or simply dominates) type ℓji in the sense that in the calculation

of the maximum weight of any feasible bin, items of type ℓji do not need to be considered, as every

such item can be replaced with cw · ch items of type ℓj′i′ , without decreasing the total weight. Note

that the dominance relation is transitive. The value cw · ch is called the factor of dominance.

Lemma 2.3 1. For every j ∈ {2, 3, 4} and every i = 0, 1, type ℓji dominates ℓj(i+1).

2. For i = 1, 2, . . . , k − 1, type ℓ1i dominates ℓ1(i+1).

3. Item type ℓ1(k−2) dominates item type ℓ20.

4. Item type ℓ20 dominates item type ℓ30.

5. Item type ℓ30 dominates item type ℓ40.

Proof.

1. For every j ∈ {2, 3, 4}, the type ℓj0 dominates ℓj1 since the width of the former type is smaller,

and their heights and weights are equal. Type ℓj1 dominates type ℓj2 since the width of the

former is twice as small, their heights are equal, and the weight ratio satisfies vj2/vj1 = 2.
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2. For 1 ≤ i ≤ k − 3, type ℓ1i dominates type ℓ1(i+1) as their heights are equal, and
w1(i+1)

w1i
=

v1(i+1)

v1i
= 5. Type ℓ1(k−2) dominated type ℓ1(k−1) since their heights are equal, w1(k−2) <

w1(k−1) and v1(k−2) = v1(k−1). Type ℓ1(k−1) dominated type ℓ1k since their heights are equal,

2 · w1(k−1) = w1(k−1) and 2 · v1(k−1) = v1k.

3. The height of item type ℓ1(k−2) is
1
43 + ε, and the height of item type ℓ20 is 1

7 + ε. We have

6( 1
43 + ε) < 1

7 + ε as ε < 0.0001. The width of item type ℓ1(k−2) is
1+δ
5 , and the width of item

type ℓ20 is 1
4 − 232δ. We have 1+δ

5 < 1
4 − 232δ as 264δ < 1. As the weight of six items of type

ℓ1(k−2) is 6, while the weight of one item of type ℓ20 is 4, the domination holds.

4. Item type ℓ20 has height
1
7+ε while item type ℓ30 has height

1
3+ε, and we have 2(17+ε) < 1

3+ε,

as ε < 0.0001. Item type ℓ20 has smaller width than item type ℓ30. The weight of two items

of type ℓ20 is 8 while the weight of one type ℓ30 item is 6. Thus, the domination holds.

5. Item type ℓ30 has both smaller height and smaller width than an item of type ℓ40 and they

have the same weights. Thus, the domination holds.

Lemma 2.4 In the following cases it is sufficient to consider bins containing only items of type

ℓji for the computation of Vji.

1. The case j = 4 and i = 0, 1, 2.

2. The cases j = 2, 3 and i = 0.

3. The case j = 1 and i ≤ k − 2.

In the cases j = 1 and i = k − 1, k, it is sufficient to consider only ℓ1i and ℓ20. In the cases

j = 2 and i = 1, 2 it is sufficient to consider only ℓji and ℓ30. In the cases j = 3 and i = 1, 2 it is

sufficient to consider only ℓji and ℓ40

Proof. The three cases where one item type can be considered follow by transitivity of domination,

since every such type dominates every later type.

In the other cases the mentioned two item types are sufficient as for every later type (later than

ℓji, at least one of these two mentioned types dominates the later one.

Corollary 2.5 All Vji values in the table for the next cases are correct.

The case j = 4 and i = 0, 1, 2, the cases j = 2, 3 and i = 0, and the case j = 1 and i ≤ k − 2.

Proof. For these values we consider one type of item.

In the cases where i = 0 and j ≥ 2, the width of an item is in (15 ,
1
4 ], so bw = 4, and the heights

for j = 2, 3, 4 are in ( 1
bh+1 ,

1
bh
] for bh = 6, 2, 1, respectively. Thus, taking the item weights into

account we let V20 = 4 · 24 = 96, V30 = 6 · 8 = 48, and V40 = 6 · 4 = 24.

As w41 > 1
4 , we let V41 = 6 · 3 = 18, and as w42 >

1
2 , we let V42 = 12.

Consider j = 1, for which the height is above 1
43 . For 1 ≤ i ≤ k − 2, we let V1i =

1
5k−i−2 · 42 ·

(5k−i−1 − 1) since the width of these items is above 1
5k−i−1 and the height is above 1

43 .
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Lemma 2.6 We have V31 = 42 and V32 = 36.

Proof. To prove the first bound, we consider types ℓ31 and ℓ40. Since for these two types the

widths are above 1
5 and the heights are above 1

3 , no bin can contain more than eight such items.

Moreover, for type ℓ40 the width is above 1
2 , so no bin can contain more than four such items. If

the bin has at most seven items, we are done, as the weight of any item of one of these types is 6

and therefore we assume that there are eight such items.

Recall that we use the word intersecting with the meaning that the intersection is in the interior

and not on the boundary. Draw two horizontal lines with distances of 1
3 between consecutive lines

including the top and bottom. Due to item heights, every item intersects at least one line (contains

a part of a line in its interior) and we associate it with such a line. If it intersects both lines, we

associate it with one of them.

As all widths are above 1
5 , every line can intersect at most four items, and as there are eight

items, each associated with one of the lines, we find that every line intersects exactly four items,

and no item intersects two lines. For a given line (one of the two), let y31 ≥ and y40 ≥ be the

(integer) numbers of items of types ℓ31 and ℓ40 associated with this line, where ℓ31 + ℓ40 = 4. We

have

1 ≥ y31(
1

4
+ 220δ) + y40(

1

4
− 212δ) = (y31 + y40)/4 + δ(220y31 − 212y40) = 1 + δ(220y31 − 212y40),

which implies y40 ≥ 28y31. The only solution is y40 = 4 and y31 = 0. However, this proves that the

bin has eight type ℓ40 items, a contradiction.

To prove the second bound, note that a bin can contain at most two items of type ℓ32, as their

heights are above 1
3 and their widths are above 1

2 . Since a bin contains at most four items of type

ℓ40, if there is at most one item of type ℓ32, we are done, as w32 = 12. Assume that there are two

such items. Drawing horizontal lines as before, every ℓ32 type item overlaps at least one such line,

and as w32 > 1
2 , each item overlaps exactly one of the lines. Since (12 + 221δ) + 2(14 − 212δ) > 1,

each line overlaps at most one item of type ℓ40. Since every type ℓ40 item overlaps at least one line,

there are at most two such items, and the total weight is at most 2 · 12 + 2 · 6 = 36.

Lemma 2.7 We have V21 = 72 and V22 = 68.

Proof. To prove the first bound, we consider types ℓ21 and ℓ30.

Here we draw six horizontal lines with distances of 1
7 between consecutive lines including the

top and bottom. Due to item heights, every type ℓ21 item intersects a line and we associate it with

one such line. Every type ℓ30 item intersects at least two lines (as otherwise its height is at most
2
7) and we associate it with exactly two such lines.

As all widths are above 1
5 , every line intersects at most four items, and it has at most four items

associated with it. For a given line (one of the six), let y21 and y30 be the (integer) numbers of

items of types ℓ21 and ℓ30 associated with it, where ℓ31 + ℓ40 ≤ 4, as widths are larger than 1
5 . We

have

1 ≥ y21(
1

4
+ 230δ) + y30(

1

4
− 222δ) = (y21 + y30)/4 + δ(230y31 − 222y40),

12



which implies that either y21+ y30 ≤ 3, or that y30 = 4 and y21 = 0. The second option holds since

in the case y21 + y30 ≤ 3 we get y30 ≥ 28y21 similarly to the proof of the previous lemma.

For every item associated with one line, we assign its weight to the line, and for items associated

with two lines, we assign half of the weight to each such line, so the weight is split equally between

its two associated lines. Thus, an item of type ℓ21 assigns a weight of 4 to its line, and an item of

type ℓ30 assigns a weight of 3 to each of its lines.

Consider a specific lines again. If y21 + y30 ≤ 3, the line is assigned at most a weight of 12. In

the case y30 = 4 and y21 = 0, it is also assigned a weight of 12 (as the share of weight for every

item is 3). As there are six lines, the total weight is at most 6 · 12 = 72.

To prove the second bound, we consider types ℓ22 and ℓ30. We draw lines and associate items as

above. Every line can intersect at most one item of type ℓ22 as the width of such an item is above 1
2 .

If a line does not have such an item associated with it, it can have at most four ℓ30 items associated

with it. Otherwise, since w22 + 2 · w30 > 1, it can have at most one type ℓ30 item associated with

it. Let x0 be the number of lines without an ℓ22 item associated with them and let x1 = 6− x0 be

the number of lines having an ℓ22 item associated with them. As every ℓ30 item is associated with

two lines, the number of ℓ30 items is at most
⌊

1

2
· (4x0 + x1)

⌋

=

⌊

1

2
· (3x0 + 6)

⌋

=

⌊

3 · x0
2

⌋

+ 3.

The number of ℓ30 items is also at most 8, as their heights are above 1
3 , and their widths are above

1
5 .

The number of ℓ22 items is x1. Using the weights of items (8 for type ℓ22 and 6 for type ℓ30),

the total weight is at most

6 · (3 +

⌊

3x0
2

⌋

) + 8x1 = 18 + 6

⌊

3x0
2

⌋

+ 8(6 − x0) = 66 + 6

⌊

3x0
2

⌋

− 8x0 ≤ 66 + x0,

so for x0 ≤ 2 the total weight does not exceed 68. The total weight is also at most 6 · 8 + 8x1,

using the property that there are x1 items of type ℓ22 and at most eight items of type ℓ30, so for

x1 ≤ 2, the weight does not exceed 64. The only remaining case is x0 = x1 = 3. In this case we

have
⌊

3x0
2

⌋

= 4, and

66 + 6

⌊

3x0
2

⌋

− 8x0 = 66 + 6 · 4− 8 · 3 = 66.

Lemma 2.8 We have V1(k−1) = 126 and V1k = 112.

Proof. We will consider type V20 for all bounds, and type ℓ1(k−1) or ℓ1k for the two bounds. We

will use the property that the width of type ℓ20 is above 1
5 .

1
4 − 232δ > 1

4 −
1
230 > 0.24, so any horizontal line can intersect the interior of at most four such

items.

Recall that

w20 + 3 · w1(k−1) ≥ 2 · w20 + 2 · w1(k−1) ≥ 3 · w20 + w1(k−1) > 1
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and

2 · w20 + w1k = 2 · w20 + 2 · w1(k−1) > 1.

We also use the property 2w1k = 4w1(k−1) > 1.

Here, we draw 42 lines of distances 1
43 between consecutive lines, including the top and bottom.

Since h20 = 1
7 + ε, every item of type ℓ20 contains parts of at least six lines (as an item with at

most five lines in its interior has height at most 7
43 ), and we associate it with exactly six lines. Any

item of the other type contains a part of at least one line, and we associate it with one such line.

The calculation of V1(k−1) is as follows. A line can have at most three ℓ1(k−1) items associated

with it due to the width of this type that is larger than 1
4 . The maximum number of ℓ20 items for

a line with 3, 2, 1, and 0 such items can have at most the following numbers of ℓ20 items associated

with it (respectively): 0, 1, 2, and 4. Let xi be the number of lines for which the number of ℓ1(k−1)

items associated with them is i, where x0 + x1 + x2 + x3 = 42.

As there are six lines associated with every ℓ20 item, we have at most
⌊

1
6 (x2 + 2x1 + 4x0)

⌋

items

of type ℓ20. The weight of an ℓ1(k−1) item is 1, and the weight of a type ℓ20 item is 4 (so the share

of every line associated with it is 2
3). Thus the total weight is at most

4

⌊

x2 + 2x1 + 4x0
6

⌋

+ (3x3 + 2x2 + x1) ≤ 3(x0 + x1 + x2 + x3) = 3 · 42 = 126.

The calculation of V1k is as follows. A line can have at most one ℓ1k item associated with it,

as its width is above 1
2 . The maximum number of ℓ20 items associated with a line with one ℓ1k

item is one, and it there are no ℓ1k items, there can be at most four ℓ20 items associated with the

line, as their widths are above 1
5 . Let x0 and x1 = 42 − x0 be the numbers of lines with no ℓ1k

items associated with them, and with one associated ℓ1k item, respectively . As there are six lines

associated with every ℓ20 item, we have at most
⌊

1
6(4x0 + x1)

⌋

such items. The weight of an ℓ1k
item is 2. Thus the total weight is at most

4

⌊

4x0 + x1
6

⌋

+ 2x1 ≤
8

3
(x0 + x1) =

8

3
· 42 = 112.

We conclude with the following theorem.

Theorem 2.9 The asymptotic competitive ratio of any online algorithm for rectangle packing is at

least 1274
667 ≈ 1.9100449.
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