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In this paper, we study the stochastic submodular maximization problem with dependent items subject to

packing constraints such as matroid and knapsack constraints. The input of our problem is a finite set of

items, and each item is in a particular state from a set of possible states. After picking an item, we are

able to observe its state. We assume a monotone and submodular utility function over items and states,

and our objective is to select a group of items adaptively so as to maximize the expected utility. Previous

studies on stochastic submodular maximization often assume that items’ states are independent, however,

this assumption may not hold in general. This motivates us to study the stochastic submodular maximization

problem with dependent items. We first introduce the concept of degree of independence to capture the degree

to which one item’s state is dependent on others’. Then we propose a non-adaptive policy that approximates

the optimal adaptive policy within a factor of α(1− e
−κ

2
+ κ

18m2
−

κ+2
3mκ

) where the value of α is depending

on the type of constraints, e.g., α=1 for matroid constraint, κ is the degree of independence, e.g., κ= 1 for

independent items, and m is the number of items. We also analyze the adaptivity gap, i.e., the ratio of the

values of best adaptive policy and best non-adaptive policy, of our problem with prefix-closed constraints.

1. Introduction

Stochastic submodular maximization (SSM) and its variants have been extensively

studied recently (Asadpour et al. 2008)Asadpour and Nazerzadeh (2015)Adamczyk et al.

(2016)Hellerstein et al. (2015). The input of SSM is a set of items, each item belongs to a

particular state from a set of possible states. After picking an item, we are able to observe

its state. Given a monotone and submodular utility function over all items and their states,

our objective is to adaptively select a group of items that maximize the expected utility

subject to a variety of constraints. One example is stochastic sensor cover problem. In

this example, we are given a set of sensors and the state of each sensor is the subset of

targets it covers, this subset may change due to uncertain environmental conditions. After

selecting a sensor, we are able to observe its state, i.e., the actual subset of targets that

can be covered by this sensor. Then the objective of stochastic sensor cover problem is to

adaptively select a group of sensors to cover the largest amount of targets (in expectation).
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Majority of existing work assume that items are independent from each other, i.e., one

item’s state does not depend on others’. However, this assumption does not always hold

in reality. Consider the example of stochastic maximum k-cover, since each sensor’s state

is affected by the environmental conditions which are shared among all sensors, thus their

states are correlated. Another example is from viral marketing (Yuan and Tang 2017a,b)

where one customer’s influence in the social network is correlated with her neighbors’

influence. Golovin and Krause (2011) extended the previous studies to dependent items,

however, their results only hold when the utility function is adaptive submodular. It is not

clear how to generalize their results to more general settings when adaptive submodularity

does not hold. Very recently, Fujii and Sakaue (2019) propose a concept named adaptive

submodularity ratio to study the performance of greedy policy subject to cardinality con-

straint. However, their analysis cannot be applied to general constraints.

In this paper, we study the SSM with dependent items (SSMDI) subject to general

constraints such as downward-closed and prefix-closed constraints. To capture the degree

to which one item’s state is correlated with others’, we introduce the concept of degree of

independence. A larger degree of independence indicates a weaker correlation among all

items’ states, i.e., this value is 1 for independent items. Then we propose a non-adaptive

policy based on the optimistic continuous greedy algorithm. We say a policy is non-adaptive

if it always picks the next item before observing the states of picked items. We show that

our non-adaptive policy achieves approximation ratio α(1 − e−
κ
2
+ κ

18m2 − κ+2
3mκ

) where the

value of α is depending on the type of constraints, e.g., α = 1 for matroid constraint, κ

is the degree of independence, and m is the number of items. Since our policy is non-

adaptive, 1

α(1−e
− κ

2 + κ
18m2 − κ+2

3mκ
)
is also known as an upper bound on the adaptivity gap, i.e.,

the ratio of the values of best adaptive and best non-adaptive policies is bounded by

1

α(1−e
− κ

2 + κ
18m2 − κ+2

3mκ
)
. As a negative result, Asadpour and Nazerzadeh (2015) show that the

adaptivity gap with dependent items can be at least m/2. At the end of this paper, we

also analyze the adaptivity gap of SSMDI with prefix-closed constraints.

2. Preliminaries
2.1. Submodular Function and Multilinear Extension

A submodular function is a set function f : 2Ω →R, where 2Ω denotes the power set of Ω,

which satisfies a natural “diminishing returns” property: the marginal gain from adding

an element to a set X is at least as high as the marginal gain from adding the same
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element to a superset of X . Formally, a submodular function satisfies the follow property:

For every X,Y ⊆ Ω with X ⊆ Y and every x ∈ Ω\Y , we have that f(X ∪ {x})− f(X)≥

f(Y ∪{x})−f(Y ). We say a submodular function f is monotone if f(X)≤ f(Y ) whenever

X ⊆ Y . Consider any vector x∈ [0,1]n. The multilinear extension of f is defined as F (x) =
∑

X⊆Ω f(X)
∏

i∈X xi

∏
i/∈X(1−xi).

3. Notations and Problem Formulation
3.1. Items and States

Let E denote a finite set of m items, and each item e ∈ E is in a particular state from

a set O of possible states. Let φ : E → O denote a realization of item states. Let Φ =

{Φe|e ∈ E} be a random realization where Φe denotes a random realization of e. After

picking an item e, we are able to observe its realization Φe. Let U denote the set of all

realizations, we assume there is a known prior probability distribution D over realizations,

i.e., D = {Pr[Φ = φ] : φ ∈ U}. Given a set of items S, let ΦS = {Φe | e ∈ S} denote the

random realization of S and US denote the set of all possible realizations that involve S.

Let De(φS) = {Pr[Φe = φe | ΦS = φS ] : φe ∈ Ue} denote the prior probability distribution

over realizations conditioned on ΦS = φS.

3.2. Utility Function and Problem Formulation

Let f : 2E×O →R≥0 be a monotone and submodular function over all items and their states.

A policy π is a function that specifies which item to pick next under the observations made

so far: π : 2E×O → E. Note that π can be regarded as some decision tree that specifies a

rule for picking items adaptively. Let I be a downward-closed family of subsets of E. Let

E(π,φ) denote the subset of items picked by policy π under φ. Then the utility of π can

be expressed as f(π) =
∑

φ∈U βφf(∪e∈E(π,φ)φe) where βφ denotes the probability that φ is

realized. We say a policy π is feasible if for any φ, E(π,φ)∈ I. Our goal is to identify the

best feasible policy that maximizes its expected utility.

max
π

f(π) subject to E(π,φ)∈ I for any φ.

3.3. More Notations and Degree of Independence

By abuse of notation, define f(S) = EΦ∼D[f(∪v∈SΦv)] as the value of items S ⊆ E where

Φ ∼ D means Φ follows the distribution of D. Let fS(e) = f(S ∪ {e})− f(S) denote the

marginal value of item e with respect to S. Define fS(φe) =EΦ∼D[f((∪v∈SΦv)∪φe)]−f(S)

as the marginal value of item e’s state φe with respect to S.
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Given a vector x ∈ [0,1]m, let R be a random set obtained by picking each item e

independently with probability xe, then the multilinear extension F (x) is defined as the

expected value of f(R): F (x) =
∑

S⊆V f(S)
∏

e∈S xe

∏
e/∈R(1 − xe). Let Fx(e) = E[fR(e)]

denote the marginal value of item e with respect to x. Define Fx(φe) = E[fR(φe)] as the

marginal value of item e’s state φe with respect to x. For notation convenience, denote

x \ e as a new vector by setting xe in x to be 0.

We next introduce the concept of degree of independence which refers to the degree to

which one item’s state is correlated the others’.

Definition 1. [Degree of Independence] The degree of independence κ(D) ∈ [0,1] of a

known prior probability distribution D is defined as follows

κ(D) := min
e∈E,S⊆E\{e},V⊆E\{e},φV ∈UV

fS(e)

EΦe∼De(φV )[fS(Φe)]
(1)

If the numerator and denominator are both 0, the ratio is considered to be 1.

Notice that if all items’ states are realized independently from each other, we have

∀e ∈E,∀S ⊆E \ {e},∀V ⊆ E \ {e},∀φV ∈ UV : fS(e) = EΦe∼De(φV )[fS(Φe)] due to the state

of e does not dependent on other items’ states. It follows that κ(D) = 1 when items are

independent. We omit D from κ(D) if it is clear from the context.

4. Algorithm Design

In this section, we present a non-adaptive policy πg, later, we show that the ratio

of the utilities of πg to best adaptive policy is bounded. This result is also known

as adaptivity gap. The general idea of πg is to first find a fractional solution using the

optimistic continuous greedy algorithm (Algorithm 1) and then round it to an integral

solution.

Stage 1: Optimistic Continuous Greedy Algorithm We first explain the design of the opti-

mistic continuous greedy algorithm. Algorithm 1 maintains a fractional solution y(t), start-

ing with y(0) = (0,0, · · · ,0). Let R(t) be a random set which contains each e independently

with probability ye(t). In each round t, it updates the weight Fy(t)\e(e) of each item e∈E

as follows,

Fy(t)\e(e) =E[f(Re(t)∪{e})]−E[f(Re(t))] (2)

where Re(t) =R(t) \ e is a subset of R(t) by excluding e. As compared with the standard

continuous greedy algorithm (Calinescu et al. 2011), we define the weight of each item in
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a different way, i.e., Calinescu et al. (2011) adopt the following weight function Fy(t)(e) =

E[f(R(t)∪{e})]−E[f(R(t))].We call our algorithm optimistic continuous greedy algorithm

due to Fy(t)\e(e)≥Fy(t)(e), i.e., the expected marginal contribution of any item e defined in

our algorithm is no less than the one defined in the standard continuous greedy algorithm.

Eq. (2) is also different from the one defined in Asadpour and Nazerzadeh (2015). They

define the weight of e as E[f(Θ↑e
R(t))]−E[f(ΘR(t))] which only makes sense when the state

of each item belongs to R+ (See Section 2 in Asadpour and Nazerzadeh (2015)).

Since we are not able to obtain the exact value of Fy(t)\e(e), we estimate this value

by averaging over 10
δ2
(1 + lnm) independent samples of Re(t). Let F̃y(t)\e(e) denote the

estimated value of Fy(t)\e(e). Assume PI = conv{1I : I ∈ I}, the convex relaxation for I, is

a down-monotone solvable polytope, we solve the following optimization problem.

P1: Maximize
∑

e∈E
F̃y(t)\e(e)ye

subject to: y ∈PI

After solving P1 at round t and obtain an optimal solution y(t), we update the fractional

solution at round t as follows ye(t+ δ) = ye(t) + δye(t). After 1/δ rounds where δ = 1
9m2 ,

y(1) is returned as the final solution.

Stage 2: Rounding Fractional Solution In the second stage, we round the fractional solution

y(1) to an integral solution. As shown in Chekuri et al. (2014), if there exists a α-balanced

contention resolution scheme for I where α ∈ [0,1], then we can find a feasible solution I ∈ I

such that E[f(I)]≥ αF (y(1)). It turns out many useful constraints admit good α-balanced

contention resolution schemes, including matroid constraints and knapsack constraints.

For example, when I specifies an intersection of k matroids and O(1) knapsacks, we have

α= 0.38
k
. Notice that when I specifies a matroid constraint, we can apply pipage rounding

technique (Ageev and Sviridenko 2004) to find a feasible solution with expected utility

F (y(1)), i.e., α= 1.

5. Performance Analysis

In this section, we prove the following main results.

Theorem 1. Assume π⋄ is the optimal policy and there exists a α-balanced contention

resolution scheme for I, we have f(πg)≥ α(1−e−
κ
2
+ κ

18m2 − κ+2
3mκ

)f(π⋄) where κ is the degree

of independence.
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Algorithm 1 Optimistic Continuous Greedy

1: Set δ= 1
9m2

, t=0,y(0) = (0,0, · · · ,0).

2: while t < 1 do

3: Let R(t) be a random set which contains each e independent with probability ye(t).

4: For each e∈E, let Re(t) =R(t) \ e, estimate

Fy(t)\e(e) =E[f(Re(t)∪{e})]−E[f(Re(t))]

5: Solve P1 with estimated weight F̃y(t)\e(e)ye for each e and obtain an optimal solution y(t)

6: P1: Maximize
∑

e∈E
F̃y(t)\e(e)ye

subject to: y ∈ PI where PI = conv{1I : I ∈ I} is a down-monotone solvable polytope.

7: Let ye(t+ δ) = ye(t)+ δye(t);

8: Increment t= t+ δ;

Proof: Observing that if there exists a α-balanced contention resolution scheme for I,

we can find a feasible solution I ∈ I such that E[f(I)]≥ αF (y(1)), it suffice to prove that

F (y(1))≥ (1− e−
κ
2
+ κ

18m2 − κ+2
3mκ

)f(π⋄). Thus, in the rest of the proof, we focus on proving

this inequality.

For every e ∈ E, let y⋄e denote the probability that e is picked by π⋄. Due to π⋄ is a

feasible policy, y⋄ is a convex combination of feasible solutions in I, thus, y⋄e ∈ PI . We first

prove that f(π⋄)≤ F (x)+κ
∑

e∈E y⋄eFx\e(e) for any vector x∈ [0,1]m.

f(π⋄) =
∑

φ∈U

βφf(∪e∈E(π⋄,φ)φe) ≤
∑

φ∈U

βφ(F (x)+
∑

e∈E(π⋄,φ)

Fx(φe))

≤
∑

φ∈U

βφ(F (x)+
∑

e∈E(π⋄,φ)

Fx\e(φe))

≤ F (x)+
∑

φ∈U

∑

e∈E(π⋄,φ)

(βφFx\e(φe))

≤ F (x)+
1

κ

∑

e∈E

y⋄eFx\e(e) (3)

The first two inequalities are due to the submodularity of f . The third inequality is due

to
∑

φ∈U βφ = 1. The last inequality is due to the definition of degree of independence

(Definition 1).

We next provide a lower bound on the increased utility of F (y(t)) during one round of

Algorithm 1. To simplify the notation, we use y to denote the optimal solution to P1 in
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round t.

F (y(t+ δ))−F (y(t))

≥
∑

e∈E

δye
∏

e′ 6=e

(1− δye′)Fy(t)(e) (4)

≥
∑

e∈E

δye
∏

e′ 6=e

(1− δye′)(1− ye(t))Fy(t)\e(e) (5)

≥
∑

e∈E

δye(1− δ)m−1(1− ye(t))Fy(t)\e(e)

= δ(1− δ)m−1
∑

e∈E

ye(1− ye(t))Fy(t)\e(e)

≥ δ(1− δ)m−1
∑

e∈E

ye(1− tδ)Fy(t)\e(e) (6)

= (1− tδ)δ(1− δ)m−1
∑

e∈E

yeFy(t)\e(e)

≥ (1− tδ)δ(1− δ)m−1(
∑

e∈E

y⋄eFy(t)\e(e)− 2mδf(π⋄)) (7)

≥ (1− tδ)δ(1− δ)m−1 (κ(f(π⋄)−F (y(t)))− 2mδf(π⋄)) (8)

= (1− tδ)δ(1− δ)m−1κ

(
(1−

2mδ

κ
)f(π⋄)−F (y(t))

)

≥ (1− tδ)δ(1− δm)κ

(
(1−

2mδ

κ
)f(π⋄)−F (y(t))

)

≥ (1− tδ)δκ

(
(1−

(κ+2)mδ

κ
)f(π⋄)−F (y(t))

)
(9)

Inequality (4) is due to Lemma 3.3 in (Calinescu et al. 2011). Inequality (5) is due to

Fy(t)(e) = (1−ye(t))Fy(t)\e(e). Inequality (6) is due to mine∈E (1− ye(t))≥ 1−tδ. Inequality

(7) is due to y is an optimal solution to P1 and y⋄ ∈ PI is a feasible solution to P1, and

the rest proof is similar to the one of Lemma 3.2 in (Calinescu et al. 2011)). Inequality (8)

is due to Inequality (3).

By induction, we have F (y(1)) ≥ (1− e−
∑1/δ

t=1(1−tδ)δκ)(1− (κ+2)mδ
κ

)f(π⋄). It follows that

F (y(1))≥ (1− e−
κ(1−δ)

2 )(1− (κ+2)mδ
κ

)f(π⋄). Finally, since δ = 1
9m2 , we have F (y(1))≥ (1−

e−
κ
2
+ κ

18m2 )(1− κ+2
3mκ

)f(π⋄)≥ (1− e−
κ
2
+ κ

18m2 − κ+2
3mκ

)f(π⋄). �

As a byproduct of our main theorem, we have the following corollary.

Corollary 1. The adaptivity gap of SSMDI is 1

α(1−e
− κ

2 + κ
18m2 − κ+2

3mκ
)
.

6. Adaptivity Gap of SSMDI with Prefix-closed Constraints

In this section, we analyze the adaptivity gap of SSMDI with prefix-closed constraints.

Notice that the class of prefix-closed constraints contains any downward-closed/packing
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constraint (Gupta et al. 2017). To facilitate our study, we first introduce a new form of

degree of independence.

Definition 2. [A Second Form of Degree of Independence] The degree of independence

γ(D)∈ [0,1] of a known prior probability distribution D is defined as follows

γ(D) := min
e∈E,V⊆E\{e},φV ,φ′

V ∈UV

EΦe [fφV ∪φ′
V
(Φe)]

EΦ′
e
[fφV ∪φ′

V
(Φ′

e)]
(10)

where Φ′
e follows the distribution of De(φ

′
V ), Φe follows the distribution of De(φV ), and

fφV ∪φ′
V
(·) = f(φV ∪φ′

V ∪·)−f(φV ∪φ′
V ). If the numerator and denominator are both 0, the

ratio is considered to be 1.

Clearly, when all items are realized independently, γ(D)= 1. We next present the main

theorem. We omit D from γ(D) if it is clear from the context.

Theorem 2. The adaptivity gap of SSMDI with prefix-closed constraints is 1+γ
γ
.

Proof: The basic idea of our proof is to show that given any adaptive policy, we can build

a non-adaptive policy whose utility is at least γ
1+γ

times the utility of the given adaptive

policy. The way we construct such a non-adaptive policy is inspired by the one proposed

in (Bradac et al. 2019). However, our setting is more complicated than theirs due to the

dependency among items.

Definition 3 (Virtual Non-adaptive Policy). Given any adaptive policy π, we

define a non-adaptive policy σ as follows: randomly draw a realization φ according to D,

then run π on φ virtually to pick a group of items.

Consider the first |S| items S picked by π, denote by A the realization of S when picked

by π and we also use A to denote the virtual realization when picked by σ. Let B be the

true realization of S when picked by σ. Let πA denote the sub-decision tree π goes to when

ΦS = A. Similarly, let σA denote the sub-decision tree1 σ goes to when ΦS =A. Assume

the first item picked by πA and σA is v. Denote by Φv the realization of v when picked

by σA and also the virtual realization when picked by σA, while Φ′
v be the true realization

of v when picked by σA. Thus Φv follows the distribution of Dv(A) and Φ′
v follows the

distribution of Dv(B).

Given two realizations A and B of S, we redefine the expected utility of a policy

based on a new utility function fA∪B(·) = f(A∪B ∪ ·)− f(A∪B). Let R(πA, fA∪B |A) =

1 Any adaptive policy can be represented as a decision tree: Each node in the decision tree represents an item, we
first pick the root item and observe its state, and then choose a subtree to go to.
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∑
φ∈U β

A
φ fA∪B(∪e∈E(πA,φ)φe), where βA

φ is the probability that φ is realized conditioned

on ΦS = A, denote the expected utility of πA conditioned on ΦS = A. Similarly, we use

R(σA, fA∪B |B)=
∑

φ∈U β
B
φ fA∪B(∪e∈E(σA,φ)φe), where β

B
φ is the probability that φ is realized

conditioned on ΦS = B, to denote the expected utility of σA conditioned on ΦS = B. To

prove this theorem, it suffice to prove that when S = ∅, R(σ∅, f∅ | ∅) ≥
γ

1+γ
R(π∅, f∅ | ∅).

Next we prove a even stronger result: for any S and its realizations A and B,

R(σA, fA∪B |B)≥
γ

1+ γ
R(πA, fA∪B |A) (11)

We prove (11) through induction on the size of S. Assume the deepness of π is T , i.e., π

picks at most T items. The proof of the base case when |S|= T −1 is as follows. Note that

when |S|= T − 1, πA (and also σA) picks at most one item. To avoid trivial cases, assume

πA (and also σA) picks v, it follows that

R(σA, fA∪B |B)=EΦv [fA∪B(Φv)]

R(πA, fA∪B |A)=EΦ′
v
[fA∪B(Φv)]

Because EΦv [fA∪B(Φv)]≥ γEΦ′
v
[fA∪B(Φ

′
v)] due to Definition 2, we have

R(σA, fA∪B |B)≥ γR(πA, fA∪B |A)≥
γ

1+ γ
R(πA, fA∪B |A)

We next prove the induction step, assume the first item picked by πA (and also σA) is v.

We first derive an uppder bound on R(πA, fA∪B |A).

R(πA, fA∪B |A)=EΦv [fA∪B(Φv)+R(πA∪Φv , fA∪B∪Φv |A∪Φv)]

≤EΦv ,Φ′
v
[fA∪B(Φv ∪Φ′

v)+R(πA∪Φv , f
i
A∪B∪Φv∪Φ′

v
|A∪Φv)] (12)

≤EΦv ,Φ′
v
[fA∪B(Φv)+ fA∪B(Φ

′
v)+R(πA∪Φv , f

i
A∪B∪Φv∪Φ′

v
|A∪Φv)]

≤ (1+
1

γ
)EΦ′

v
[fA∪B(Φ

′
v)] +EΦv,Φ′

v
[R(πA∪Φv , f

i
A∪B∪Φv∪Φ′

v
|A∪Φv)] (13)

Inequality (12) is due to fA∪B is submodular. Inequality (13) is due to γEΦv [fA∪B(Φv)]≤

EΦ′
v
[fA∪B(Φ

′
v)]. Next we derive a lower bound on R(σA, fA∪B |B).

R(σA, fA∪B |B)=EΦv ,Φ′
v
[fA∪B(Φ

′
v)+R(σA∪Φv , fA∪B∪Φ′

v
|B∪Φ′

v)]

≥EΦv ,Φ′
v
[fA∪B(Φ

′
v)+R(σA∪Φv , fA∪B∪Φv∪Φ′

v
|B∪Φ′

v)]

=EΦ′
v
[fA∪B(Φ

′
v)] +EΦv,Φ′

v
[R(σA∪Φv , fA∪B∪Φv∪Φ′

v
|B∪Φ′

v)]

≥EΦ′
v
[fA∪B(Φ

′
v)] +

γ

1+ γ
EΦv ,Φ′

v
[R(σA∪Φv , fA∪B∪Φv∪Φ′

v
|A∪Φv)] (14)
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Inequalities (13) and (14) imply that R(σA, fA∪B |B)≥ γ
1+γ

R(πA, fA∪B |A). �

When γ = 1, i.e., items are independent, Theorem 2 reduces to the following corollary.

Corollary 2. (Bradac et al. 2019) The adaptivity gap is 2 when items are indepen-

dent.

7. Conclusion

Previous studies on SSM often assume that items are independent, however, this assump-

tion may not always hold. In this paper, we study SSM with dependent items. To capture

the impact of item dependency, we first introduce the concept of degree of independence.

Then we propose a non-adaptive policy whose performance is close to the optimal adaptive

policy. In particular, we prove that our non-adaptive policy achieves an approximation

ratio whose value is depending on the degree of independence, the number of items, and the

performance loss due to rounding. We also extend our study to the case with prefix-closed

constraints and derive an adaptivity gap that depends on the (second form of) degree of

independence.
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