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Abstract

We introduce and asses several Divide & Conquer heuristic strategies aimed to solve large instances of the

0̧-1 Minimization Knapsack Problem. The method subdivides a large problem in two smaller ones (or recursive

iterations of the same principle), to lower down the global computational complexity of the original problem, at

the expense of a moderate loss of quality in the solution. Theoretical mathematical results are presented in order

to guarantee an algorithmically successful application of the method and to suggest the potential strategies

for its implementation. In contrast, due to the lack of theoretical results, the solution’s quality deterioration is

measured empirically by means of Monte Carlo simulations for several types and values of the chosen strategies.

Finally, introducing parameters of efficiency we suggest the best strategies depending on the data input.

Keywords: Divide and Conquer, Minimization Knapsack Problem, Monte Carlo simulations, method’s

efficiency.
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1. Introduction

The Knapsack Problem (KP) is, beyond dispute, one of the fundamental problems in integer optimization

for three main reasons. First, due to its simplicity with respect to a general linear integer (or mixed integer)

optimization problem. Second, because of its occurrence as a subproblem of an overwhelming number of opti-

mization problems, including a wide variety of real life situations which can be modeled by KP. Third, because

it belongs to the NP hard class problems which makes it relevant from the theoretical perspective. As a natural

consequence, there is a vast literature dedicated to the KP solution, comprising a broad spectrum between exact

algorithms such as Dynamic Programming (DP) and Branch & Bound (B&B) techniques [11], metaheuristic

schemes such as Genetic Algorithms (GA), Ant Colony Algorithms (ACO’s) and hybrid algorithms, including

matheuristics and symheuristics [3], [4], [10], [16], [18]; an early review of non-standard versions of KP is found

in [12], a detailed review of some versions is found in the texts [11] and [14]. The convergence analysis for

some of the aforementioned algorithms is presented in [5], [7], [8], [9]. As with any optimization problem, for

the KP solution it is crucial to exploit the trade-off between the quality of the solution in terms of the value of

the objective function, and the computational effort required to obtain it.

Both, exact methods and metaheuristic algorithms have disadvantages. Exact algorithms such as DP and

B&B usually are insufficient to address large instances: all dynamic programming versions for KP are pseudo-

polynomial, i.e. time and memory requirements are dependent on the instance size. Commonly, the com-

putational complexity of the algorithms B&B cannot be explicitly described, as it is not possible to estimate
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a priori the number of search tree nodes required (see [11], [15]). On the other hand, most metaheuristics

lack sufficient theoretical justification. Despite the widespread success of such techniques, among researchers

there is little understanding about the key aspects of their design, including the identification of search space

characteristics that influence the difficulty of the problem. There are some theoretical results related to the

convergence of algorithms under appropriate probabilistic hypotheses, however these are not useful from the

practical point of view. Moreover, it is not possible to argue that any of the particular metaheuristics is on

average superior to any other, so the choice of a metaheuristics to address a specific optimization problem

depends largely on the user’s experience [16].

As a consequence of the KP’s relevance, it is natural that any proposed method for solving integer optimization

problems: theoretical, empirical or mixed, is usually first tested on a Knapsack Problem. This is the case of

the present work, where we introduce a Divide and Conquer (D&C) strategy aimed to solve large instances

of the 0-1 Minimization Knapsack Problem 1 below (from now on 0-1 MKP). The main goal of the proposed

approach is to reduce the computational complexity of the 0-1 MKP by subdividing the original/initial problem

in two smaller subproblems, at the price of giving up (to some extent) quality of the solution. Moreover, using

multiple recursive D&C iterations the initial problem can be decomposed on several subproblems of suitable

size (at the price of further deterioration in the solution’s quality), in a multilevel scheme, see Figures 1, 2 and

3. The multilevel paradigm is not a metaheuristic in itself, on the contrary, it must act in collaboration with

some solution strategy, be it an exact or approximate procedure. For the method to be worthy, the loss of

quality vs. the reduction of computational time must lie within an acceptable range. Consequently, the present

work first introduces the technique, together with several strategies for its implementation. Next, the quality is

defined using several parameters of efficiency. Finally, since no theoretical results can be mathematically shown

for measuring the efficiency of the method, we proceed empirically using Monte Carlo simulations and the Law

of Large Numbers (see Theorem 7 below) to identify which strategy will likely be the best, when the data input

of the problem are regarded as random variables with known probabilistic distribution.

We close this section mentioning that different authors have reported the increased performance of metaheuris-

tic techniques when used in conjunction with a multilevel scheme on large instances. The multilevel paradigm

has been used mainly in mesh construction, Graph Partition Problem (GPP), Capacitated Multicommodity

Network Design (CMND), Covering Design (CD), Graph Colouring (GC), Graph Ordering (GO), Traveling

Salesman Problem (TSP) and Vehicle Routing Problem (VRP) [1], [17]. To the Authors’ best knowledge, the

use of a multilevel D&C scheme for solving the 0-1 Minimization Knapsack Problem has not been reported.

2. Preliminaries

In this section the general setting and preliminaries of the problem are presented. We start introducing

the mathematical notation. For any natural number N ∈ N, the symbol [N]
def
= {1, 2, . . . , N} indicates the

set/window of the first N natural numbers. For any set E we denote by |E| its cardinal and ℘(E) its power

set. A particularly important set is SN , where SN denotes the collection of all permutations in [N], its elements

will be usually denoted by π, σ, τ , etc. Random variables will be represented with upright capital letters, e.g.

X,Y,Z, ... and its respective expectations with E(X),E(Y),E(Z), .... Vectors are indicated with bold letters,

namely p, g, ... etc. Particularly important collections of objects will be written with calligraphic characters, e.g.

A,D, E to add emphasis. For any real number x ∈R the floor and ceiling function are given (and denoted) by

bxc def
= max{k : ` ≤ x, k integer}, dxe def

= max{k : k ≥ x, k integer}, respectively.

2.1. The Problem

Now we introduce the 0-1 Minimization Knapsack Problem.
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Problem 1 (0-1 Minimization KP).

min
∑
i ∈ [N]

pixi , (1a)

subject to ∑
i ∈ [N]

cixi ≥ D, (1b)

xi ∈ {0, 1}, for all i ∈ [N]. (1c)

Here, x
def
=
(
xi : i ∈ [N]

)
is the list of binary valued decision variables. In addition, the capacity coefficients

c
def
=
(
ci : i ∈ [N]

)
as well as the costs p

def
=
(
pi : i ∈ [N]

)
, are all positive integers. In the sequel, the feasible

set is denoted by

S
def
=
{
x ∈ {0, 1}N : c · x ≥ D

}
(2)

and the problem can be written concisely as

z∗
def
= min

{
p · x : x ∈ S

}
, (3)

where z∗ denotes the optimal solution value.

In general, the 0-1 MKP can be understood as the problem of buying items (buses, aircraft, ships fleet), denoted

by the index i = 1, . . . , N, with corresponding costs pi and capacities ci . Therefore, the natural question is

to choose a set of items to minimize its total cost but whose overall capacity satisfies a minimum threshold

demand D. Observe that the solution of Problem 1 above can be found using the solution of the following

Knapsack Problem

Problem 2.

max
∑
i ∈ [N]

piξi , (4a)

subject to ∑
i ∈ [N]

ciξi ≤
∑
i ∈ [N]

ci −D, (4b)

ξi ∈ {0, 1}, for all i ∈ [N]. (4c)

Proposition 1. Let ξ =
(
ξi : i ∈ [N]

)
∈ {0, 1}N be a solution to Problem 2 and define xi

def
= 1 − ξi for all

i ∈ [N] then, the vector x =
(
xi : i ∈ [N]

)
∈ {0, 1}N is a solution to Problem 1.

Proof. The proof uses the well-known classic transformation of complementary binary variables, xi = 1− ξi ∈
{0, 1} for all i ∈ [N], to relate the problems 1 and 2 (see Section 13.3.3 in [11] for details).

2.2. Greedy Algorithm vs Linear Optimization Relaxation

In this section, we explore the relationship between the solution of the natural linear relaxation of Problem

1 and the solution provided by the natural Greedy Algorithm. First we introduce the following definitions

Definition 1. Let c =
(
ci : i ∈ [N]

)
, p =

(
pi : i ∈ [N]

)
be the lists of capacities and prices respectively, we

define the list of specific weights by

γi
def
=
ci
pi
, for all i ∈ [N]. (5)
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Algorithm 1 Greedy Algorithm, returns feasible solution to Problem 1
(
yi : i ∈ [N]

)
and corresponding value

of objective function
∑{

piyi : i ∈ [N]
}

1: procedure Greedy Algorithm(Prices: p =
(
pi : i ∈ [N]

)
, Capacities: c =

(
ci : i ∈ [N]

)
, Demand: D)

2: if
∑
i ∈ [N]

ci < D then print “Feasible region is empty” . Checking if the problem is infeasible

3: else

4: compute list of specific weights
(
γi : i ∈ [N]

)
. Introduced in Definition 1.

5: sort the list
(
γi : i ∈ [N]

)
in descending order

6: denote by σ ∈ S[N] the associated ordering permutation, i.e.,

γσ(i) ≥ γσ(i+1), for all i ∈ [N − 1]. (6)

7: yi = 0 for all i ∈ [N], capacity = 0 . Initializing feasible solution and capacity

8: i = 1

9: while capacity ≥ D do yσ(i) = 1, capacity = capacity + cσ(i), i = i + 1

10: end while

11: return(
yi : i ∈ [N]

)
,
∑
i ∈ [N]

piyi . Feasible solution and corresponding value of objective function

12: end if

13: end procedure

Consider now the Greedy Algorithm 1 to find a feasible solution to Problem 1. Observe that due to the condition

(
∑
i ∈ [N]

ci ≥ D) for the loop to start, it will stop after a finite number of iterations. Next we introduce

Definition 2. The natural linear relaxation of Problem 1, is given by

Problem 3 (Linear Relaxation, 0-1 Minimization KP).

min
∑
i ∈ [N]

piξi , (7a)

subject to ∑
i ∈ [N]

ciξi ≥ D, (7b)

0 ≤ ξi ≤ 1, for all i ∈ [N], (7c)

i.e., the decision variables
(
ξi : i ∈ [N]

)
are are now real-valued.

Next we introduce a convenient notation and recall a classic result

Definition 3. Let ξ =
(
ξi : i ∈ [N]

)
be a solution of Problem 3 define the index sets

P
def
=
{
i ∈ [N] : ξi > 0

}
, Z

def
=
{
i ∈ [N] : ξi = 0

}
. (8)

Define its associated integer solution xξ =
(
xξi : i ∈ [N]

)
by

xξi
def
=

{
1 i ∈ P,
0 i ∈ Z.

(9)
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Theorem 2. Let ξ =
(
ξi : i ∈ [N]

)
be an optimal solution of Problem 3 and let xξ be as in Definition 3 above.

Then, xξ =
(
xξi : i ∈ [N]

)
is the solution furnished by the Greedy Algorithm 1.

Proof. See Theorem 2.1 in [11].

Remark 1. It is important to stress that the Greedy Algorithm 1 may not produce an optimal solution as the

following example shows. Consider Problem 1 for D = 40 and the following data.

Item Capacity: c Price: p Specific Weigh: γ

1 100 4 25

2 40 2 20

Table 1: Remark 1 Data

Clearly, the Greedy Algorithm 1 would choose the solution x =
(

1, 0
)

with p · x = 4 while y =
(

0, 1
)

gives

p · y = 2 and x is not optimal. Moreover, the linear relaxation of this problem would yield ξ =
(

0.4, 0
)

with

p · ξ = 1.6 and associated integer solution xξ =
(

1, 0
)

i.e, the solution produced by the Greedy Algorithm 1.

2.3. Introducing a Price-Capacity Rate

In the sequel we adopt a relationship between capacities c and prices p as it usually holds in real life scenarios.

Definition 4 (Rate Price Capacity). Let r ∈
[
1,max

i
ci
]

be a fixed price-capacity increase threshold, then

pi
def
=
⌈ci
r

⌉
, for all i ∈ [N]. (10)

In the following, we refer to r as the price-capacity rate.

Next we recall the main result of this part

Theorem 3. Let
(
ci : i ∈ [N]

)
be a given list of capacities, let the list of prices

(
pi : i ∈ [N]

)
be computed by

the map (10) and let r be the price-capacity rate introduced in Definition 4.

(i) The Greedy Algorithm 1 produces the exact solution for r ≥ max
i
ci .

(ii) Let r |ci for all i ∈ [N] (i.e, a common divisor of all the capacities). Then, the effectiveness of the Greedy

Algorithm 1 is entirely random.

(iii) Let r |ci for all i ∈ [N] (i.e, a common divisor of all the capacities). Let ξ =
(
ξi : i ∈ [N]

)
be an optimal

solution of Problem 3 furnished by the Simplex Algorithm and let xξ be as in Definition 3. Then, xξ is a

random element of the set

K
def
=
{
x ∈ S :

∑
i ∈A

cixi < D, ∀A ( {i ∈ [N] : xi = 1}
}
, (11)

where, S is the set of feasible solutions to Problem1, introduced in Expression (2).

Proof. See [11].

Remark 2. (i) Observe that if r |ci for all i ∈ [N], the Problem (1) becomes

min
1

r

∑
i ∈ [N]

cixi , S =
{
x ∈ {0, 1}N :

∑
i ∈ [N]

cixi ≥ D
}
.

Hence, it reduces to a problem of approximating and integer from above using an integer partition of
∑
i

ci

in N blocks.
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(ii) Notice that if r =
d

q
with d a common divisor of the capacities, the conclusion of Theorem 3 part (ii)

holds.

(iii) Given that the Greedy Algorithm effectiveness becomes entirely random when r is a common divisor of

the capacities, we would like to use another criterion to distinguish the eligible items. To this end, the

only possibility is to sort them according to its capacities. However, using the capacity as Greed function

may not produce the exact solution as the Greedy Algorithm produced for the case r ≥ max
i
ci . Consider

the following example

Item Capacity D = 11 D = 15

c Greedy Decreasing Optimal Greedy Increasing Optimal

1 10 1 0 0 0

2 9 1 0 0 0

3 8 0 0 1 1

4 7 0 1 1 1

5 6 0 1 1 0

Table 2: Remark 2 Data

3. A Divide & Conquer Approach

In the present section we introduce the Divide and Conquer method together with some theoretical results

to assure the successful implementation of the method, from the algorithmic point of view. We begin with the

following definition

Definition 5 (Divide & Conquer pairs and trees). (i) Let c =
(
ci : i ∈ [N]

)
and p =

(
pi : i ∈ [N]

)
be

the data associated to Problem 1. A subproblem of Problem 1 is an integer problem with the following

structure

min
∑
i ∈A

pixi , A ⊆ [N],

subject to ∑
i ∈A

cixi ≥ DA, DA ≤ D,

xi ∈ {0, 1}, for all i ∈ A.

(ii) Let (A0, A1) be a set partition of [N] and let (D0, D1) be an integer partition of D i.e., D = D0 + D1.

We say a Divide and Conquer instance of Problem 1 is the pair of subproblems
(

Πb : b ∈ {0, 1}
)

, defined

by

Problem 4 (Πb, b = 0, 1).

min
∑
i ∈Ab

pixi , (12a)

subject to ∑
i ∈Ab

cixi ≥ Db, (12b)

xi ∈ {0, 1}, for all i ∈ Ab. (12c)
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In the sequel, we refer to
(

Πb, b = 0, 1
)

as a D&C pair. Defining

cbi
def
=

{
ci i ∈ Ab,
0 i /∈ Ab,

pbi
def
=

{
pi i ∈ Ab,
0 i /∈ Ab,

the corresponding feasible sets and the D&C pair can be respectively written

zb∗
def
= min

{
pb · y : y ∈ Sb} with Sb

def
=
{
y ∈ {0, 1}N : cb · y ≥ Db

}
, (13)

where zb∗ denotes the optimal solution value of the problem Πb.

(iii) A D&C tree (see Figures 1, 2 and 3 below) for Problem 1 is a binary tree satisfying the following

(a) Every vertex of the tree is in bijective correspondence with a subproblem of Problem 1.

(b) The root of the tree is associated with Problem 1 itself.

(c) Every internal vertex V (which is not a leave) has a left and right children, Vl , Vr respectively, whose

associated subproblems make a D&C pair for the subproblem associated to V .

Remark 3. (i) Observe that, due to property (iii) a D&C tree is, in particular, a complete binary tree (see

[6] pg 127).

(ii) In the same way that in the knapsack problem the eligible items are identified with their corresponding

labels j = 1, . . . , N, from now on, in order to ease notation, we identify every vertex of a D&C tree

with its associated subproblem. More specifically, a vertex/node of a D&C tree will also act as the

label of a subproblem of Problem 1. Given that the vertex-subproblem assignment is a bijective map,

such identification will introduce no confusion, see Figure 1-Table 5 and Figure 2-Table 6 for concrete

examples; see also Figure 3 below.

Theorem 4. Suppose that Problem 1 is feasible, then

(i) A feasible solution y of Problem 1 can be infeasible for at most one problem of the D&C pair.

(ii) At most one problem of the D&C pair is infeasible.

(iii) Let
(
Ab : b ∈ {0, 1}

)
be a fixed partition of [N] then, both Problems 4,

(
Πb : b ∈ {0, 1}

)
are feasible if

and only if

D −
∑

i ∈A1−b

ci ≤ Db ≤
∑
i ∈Ab

ci , for b = 0, 1. (14)

(iv) Let
(
Ab : b ∈ {0, 1}

)
be a fixed partition of [N] and define

D0 def
=

⌊
D∑

{ci : i ∈ [N]}
∑
i ∈A0

ci

⌋
, D1 def

= D −D0. (15)

Then, if
D∑

{ci : i ∈ [N]}
∑
i ∈A1

ci + 1 ≤
∑
i ∈A1

ci , (16)

both Problems 4,
(

Πb : b ∈ {0, 1}
)

are feasible.

(v) The following inclusions for the feasible sets S0, S1, S hold

S ⊆ S0 ∪ S1, S0 ∩ S1 ⊆ S. (17)
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Proof. (i) Let y be a feasible solution of Problem 1, then
∑
i ∈ [N]

ciyi ≥ D; equivalently

∑
b∈{0,1}

∑
i ∈Ab

ciyi ≥ D0 +D1.

Hence, if y is Πb-infeasible we have
∑
i ∈Ab

ciyi < Db and the expression above writes

∑
i ∈A1−b

ciyi ≥ D1−b +Db −
∑
i ∈Ab

ciyi > D1−b,

i.e., y is Π1−b-feasible. Since b ∈ {0, 1} was arbitrary, the claim of this part follows.

(ii) Since Problem 1 is feasible, the vector y ∈ {0, 1}N having all its entries equal to one is also feasible, due

to the previous part the result follows.

(iii) Fix b ∈ {0, 1} arbitrary, then it is trivial to see that the second inequality in (14) is necessary and sufficient

condition for the problem Πb to be feasible, as well as the condition D1−b ≤
∑

i ∈A1−b
ci is necessary and

sufficient for Π1−b to be feasible. Recalling that Db = D −D1−b, the first inequality in (14) follows.

(iv) Since Problem 1 is feasible then D ≤
∑
{ci : i ∈ [N]}, therefore

D0 =

⌊
D∑

{ci : i ∈ [N]}
∑
i ∈A0

ci

⌋
≤
⌊ ∑
i ∈A0

ci

⌋
=
∑
i ∈A0

ci ,

i.e., the problem Π0 is feasible. On the other hand,

D0 =

⌊
D∑

{ci : i ∈ [N]}
∑
i ∈A0

ci

⌋
≥

D∑
{ci : i ∈ [N]}

∑
i ∈A0

ci − 1.

Since D1 = D −D0, we have

D1 ≤ D −
D∑

{ci : i ∈ [N]}
∑
i ∈A0

ci + 1

=
D∑

{ci : i ∈ [N]}
∑
i ∈A1

ci + 1

≤
∑
i ∈A1

ci ,

where the last bound holds due to Inequality 16. Hence, the problem Π1 is also feasible.

(v) Due to the first part, if y ∈ S then it must be Π0 or Π1-feasible. Equivalently, it belongs to S0 or S1, i.e.

y ∈ S0 ∪ S1.

Finally, if y ∈ S0 ∩ S1 then
∑
i ∈Ab

ciyi ≥ Db for b = 0, 1. Adding both inequalities yields

c · y =
∑
i ∈ [N]

ciyi =
∑
i ∈A0

ciyi +
∑
i ∈A1

ciyi ≥ D0 +D1 = D,

i.e., y belongs to the set S and the proof is complete.
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Remark 4. Observe that Inequality 16 in (iv) from Theorem 4, is a mild hypothesis. It is equivalent to

D ≤
∑
{ci : i ∈ A1} − 1∑
{ci : i ∈ A1}

∑
i ∈ [N]

ci , (18)

i.e., Inequality 16 demands a reasonable slack
∑
i ∈ [N]

ci −D between total capacity and demand.

Proposition 5. Let c =
(
ci : i ∈ [N]

)
, p =

(
pi : i ∈ [N]

)
be the data associated to Problem 1 and let

(
Π0,Π1

)
be a D&C pair.

(i) Let x be an optimal solution to Problem 1 and let y0,y1 be optimal solutions to Problems 4 Π0,Π1-

respectively. Then

z∗ =
∑
i ∈ [N]

pixi ≤
∑
j ∈A0

pjy
0
j +

∑
j ∈A1

pjy
1
j = z0

∗ + z1
∗ , (19)

where z∗, z
0
∗ , z

1
∗ denote the optimal solution values for the problems 1, Π0 and Π1 respectively.

(ii) Let x be an optimal solution to Problem 1 which is both Πb and Π1−b-feasible, then x is a Πb and

Π1−b-optimal solution.

Proof. (i) Since yb is an optimal solution of Πb, define the vector y ∈ {0, 1}N by

yi
def
=

{
y0
i i ∈ A0,

y1
i i ∈ A1.

Then, p · y =
∑
j ∈A0

pjy
0
j +

∑
j ∈A1

pjy
1
j and y is both Π0 and Π1-feasible i.e., y ∈ S0 ∩ S1. Recalling the

feasible sets inclusion (17) and that x is optimal, we have p · x = min
{
p · ξ : ξ ∈ S

}
≤ p · y i.e., the

result follows.

(ii) Let x be an optimal solution to Problem 1 which is also Πb-feasible for b ∈ {0, 1} fixed. Suppose that x is

not an optimal solution of Problem Πb and let yb be its optimal solution, therefore
∑
j ∈Ab

pjy
b
j <

∑
j ∈Ab

pjx
b
j .

Define y ∈ {0, 1}N by

yi
def
=

{
ybi i ∈ Ab,
xi i ∈ A1−b.

Observe that

c · y =
∑
j ∈Ab

cjy
b
j +

∑
j ∈A1−b

cjxj ≥ Db +D1−b.

Here, the inequality holds because yb is Πb-feasible and x is Π1−b-feasible. Therefore, y is feasible for

Problem 1; but then

p · y =
∑
j ∈Ab

pjy
b
j +

∑
j ∈A1−b

pjxj <
∑
j ∈Ab

pjxj +
∑

j ∈A1−b

pjxj = p · x

and x would not be an optimal solution, which is a contradiction. Since the above holds for any b ∈ {0, 1}
the proof is complete.
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Item Capacity: c Price: p

1 100 2

2 50 1

3 100 2

4 50 1

Table 3: Remark 5 Data

Remark 5. Notice that in Proposition 5 (ii) the hypothesis requiring the optimal solution x being both Πb and

Π1−b-feasible can not be relaxed as the following example shows. Consider Problem 1 for D = 150 and the

following data

An optimal solution is given by x =
(

1, 1, 0, 0
)

with p · x = 3. Consider A0 def
= {1, 2}, A1 def

= {3, 4} with

D0 = 50, D1 = 100. Then, x is Π0-feasible but it is not Π1-feasible, moreover x is not Π0-optimal because

y =
(

0, 1, 1, 0
)

is Π0-feasible and ∑
i ∈A0

piyi = 1 < 3 =
∑
i ∈A0

pixi .

Consequently, the optimal solution has to be both Π0, Π1-feasible to guarantee that Proposition 5 (ii) holds.

On the other hand if we take the previous setting but replacing D0 = 60, D1 = 90, then y0 =
(

1, 0, 0, 0
)

,

y1 =
(

0, 0, 1, 0
)

are Π0 and Π1 optimal solutions, however∑
i ∈A0

pixi = 2 + 1 < 2 + 2 =
∑
i ∈A0

piy
0
i +

∑
i ∈A1

piy
1
i ,

i.e., a global optimal solution can not be derived from the local solutions of the D&C pair. Finally, if we choose

A0 = {1, 2, 3}, A1 = {4}, D0 = 90, D1 = 60, the problem Π1 is not feasible.

Remark 6. The introduction of a D&C pair is of course aimed to reduce the computational complexity of

the Problem 1 given that Problem 4
(

Πb
)

can be regarded as a problem in {0, 1}|Ab | with b ∈ {0, 1}, instead

of a problem in {0, 1}N , which reduces the order of complexity (see Section 5.4 for details). However, from

the discussion above, it follows that the choice of D0, D1 is crucial when designing the pair
(

Π0,Π1
)

. Ideally,

Inequality (19) would be an equality for the optimal solutions x, y0, y1, this observation motivates the definition

6 introduced below.

Definition 6. Let c =
(
ci : i ∈ [N]

)
and p =

(
pi : i ∈ [N]

)
be the data associated to Problem 1. Let(

Ab : b ∈ {0, 1}
)

,
(
Db : b ∈ {0, 1}

)
be partitions of [N] and D respectively

(i) We say the demands are partition-dependent if both satisfy the relationship (15) and we denote this

dependence by

Db = Db(A0, A1), b = 0, 1. (20)

(ii) The D&C pair
(

Πb : b ∈ {0, 1}
)

is said to be a feasible pair if both Problems 4 are feasible.

(iii) If the D&C pair
(

Πb : b ∈ {0, 1}
)

is feasible we define its efficiency as

eff
(

(A0, A1), (D0, D1)
) def

= 100×
z0
∗ + z1

∗ − z∗
z∗

, (21)

where z∗, z
0
∗ , z

1
∗ denote the optimal solution values for the problems 1, Π0 and Π1 respectively.
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(iv) Given A def
=
(
Aj : j ∈ [J]

)
and D def

=
(
Dj : j ∈ [J]

)
be partitions of [N] and D respectively such that Πj is

feasible for all j ∈ [J], then, the its associated efficiency is defined by

eff
(
A,D

) def
= 100×

∑
{z j∗ : j ∈ [J]} − z∗

z∗
, (22)

where z∗ is the optimal solution value for Problem 1 and z j∗ indicates the optimal solution value for the

subproblem analogous to Problem 1, whose input data are the demand Dj and items Aj .

Remark 7. Notice that for any feasible pair, it holds that 0 < eff
(

(A0, A1), (D0, D1)
)

, due to Inequality (19).

Additionally, the notion of efficiency that we are defining is nothing but the relative error introduced by the

D&C approximation of the solution. Finally, for general partitions A and D, an inequality analogous to (19)

can be derived using induction on the cardinal of A.

Before introducing the definition of efficiency for D&C trees we recall a classic definition from Graph Theory

(see Section 2.3 in [6])

Definition 7. Let T = (V, E) be a tree and let U ⊆ V be a subset of vertices. The subtree induced on U,

denoted by T (U), is the tree whose vertices are U and whose edge-set consists on all those edges in E such

that both endpoints are contained in U.

Definition 8. Let c =
(
ci : i ∈ [N]

)
, p =

(
pi : i ∈ [N]

)
be the data associated to Problem 1, let DCT be a

D&C tree associated. Let H be the height and V0 be the root of the DCT tree, where V0 is associated to the

original problem 1 itself.

(i) The tree DCT is said to be feasible if all its nodes are feasible problems.

(ii) Let h ∈ [H] arbitrary, the tree pruned at height h is given by

DCTh = subtree of DCT induced on the set

{V vertex of DCT : height(V ) ≤ h}. (23)

We denote by L(DCTh) the set of leaves of the tree DCTh i.e., those vertices whose degree is equal to

one.

(iii) We say that a set of leaves L(DCTh) for a given h ∈ [H] is an instance of the D&C approach applied to

the problem 1.

(iv) Let DCT be feasible with H, the global and stepwise efficiencies of the tree are defined by

GbE(h)
def
= 100×

∑
{zV∗ : V ∈ L(DCTh)} − zV0

∗

zV0
∗

, h ∈ [H]. (24a)

SwE(h)
def
= 100×

∑
{zV∗ : V ∈ L(DCTh)} −

∑
{zV∗ : V ∈ L(DCTh−1)}∑

{zV∗ : V ∈ L(DCTh−1)} ,

h ∈ [H]− {0}. (24b)

Here, zV∗ indicates the optimal solution of the problem associated to the vertex V in the DCT tree and

L(DCTh) stands for the set of leaves in the tree DCTh, (see Figures 1, 2 and 3 below).
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(v) Let DCT be feasible with H, the global and stepwise relative computational times of the tree are

defined by

GbT (h)
def
= 100×

∑
{tV : V ∈ L(DCTh)}

tV0
, h ∈ [H]. (25a)

SwT (h)
def
= 100×

∑
{tV : V ∈ L(DCTh)}}∑
{tV : V ∈ L(DCTh−1)} , h ∈ [H]− {0}. (25b)

Here, tV indicates the absolute computational time needed for the solution of the vertex V in the DCT

tree and L(DCTh) stands for the set of leaves in the tree DCTh, (see Figures 1, 2 and 3 below).

Next we prove that the definition 8 above makes sense.

Theorem 6. Let DCT be a D&C tree with height H, root V0 and let DCTh, L(DCTh) for h ∈ [H] be as in

Definition 8 (ii) above. Then, {AV : V ∈ L(DCTh)} is a partition of [N], where AV is the set of eligible items

for the subproblem associated to the node V .

Proof. We proceed by induction on the height of the tree. For H = 0 the result is trivial and for H = 1 the tree

merely consists of V0 and its left and right children Vl , Vr which by definition, are associated to a D&C pair for

Problem 1; in particular, the sets A0, A1 are a partition of [N]. Now assume that the result is true for H ≤ k
and let DCT be such that its height is k + 1. Consider DCTk and L(DCTk), given that the result is true for

heights less or equal than k we have that {AV : V ∈ L(DCTk)} is a partition of [N]. We classify this set as

follows

{AV : V ∈ L(DCTk)} = {AV : V ∈ L(DCTk) ∩ L(DCTk+1)} ∪ {AV : V ∈ L(DCTk)− L(DCTk+1)}. (26)

However, if V ∈ L(DCTk)− L(DCTk+1) it means that its left and right children Vl , Vr belong to L(DCTk+1).

Moreover, since (Vl , Vr ) are associated to a D&C pair for the subproblem associated to V , then (AVl , AVr ) is a

partition of AV , i.e.,

{AV : V ∈ L(DCTk)− L(DCTk+1)} =

{AVl : Vl left child of V ∈ L(DCTk)− L(DCTk+1)}∪
{AVr : Vr right child of V ∈ L(DCTk)− L(DCTk+1)}. (27)

Putting together Expressions (26) and (27) the result follows.

Remark 8. Clearly, due to Theorem 6 a set of leaves L(DCTh) for h ∈ [H] is a potential instance of the D&C

method applied to Problem 1 as the definition 8 (iii) states. It is also direct to see that the global and stepwise

efficiencies GbE(h) and SwE(h) respectively, introduced in (iv) Definition 8 compute the ratios adding the

solution values found for different partitions of the set of eligible items.

In view of the previous discussion a natural question is how to choose D&C efficiency-optimal pairs (at least for

one step and not for a full D&C tree) however, allowing complete independence between the pairs (A0, A1) and

(D0, D1) i.e., the partitions of [N] and D respectively would introduce an overwhelmingly vast search space.

Consequently, from now on, we limit our study to partition-dependent demands, see Definition 6 (i).

In the next section several ways to generate partitions (A0, A1) will be introduced, which will be regarded

as strategies to implement the D&C approach. However, other strategies will be explored, such as the

price-capacity rate r and the demand-capacity fraction o
def
= 1

D

∑
{ci : i ∈ [N]}. These are related to

the problem setting (availability of resources), rather than the choice of D&C pairs. The assessment of all the

aforementioned strategies will be done using Monte Carlo simulations, when the list of capacities is regarded

as a random variable (C instead of c) with known probabilistic distribution.
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4. Strategies and Heuristic Method

Since no theoretical results can be found so far for the Divide and Conquer method, its efficiency has to be

determined empirically. To that end, numerical experiments will be conducted with randomly generated data,

according to classical discrete distributions. Next, several strategies will be evaluated in these settings (see

Figure 6). It is important to stress that the type of strategies, as well as their potential values (numerical in

most of the cases) presented here, were chosen in order to simulate plausible instances of the initial problem

rather than arbitrary instances of Problem 1.

4.1. Random Setting

A Random Setting Algorithm generates lists of eligible items according to certain parameters defined by

the user, namely the number of items, the distribution of its capacities (Uniform, Poisson, Binomial) and the

demand-capacity fraction o; which will range between 0.5 and 0.9, this will guarantee the hypotheses of (iv)

Theorem 4 are satisfied. If C denotes the random variable having the capacity of the eligible items, the code

uses the following parameters for the distributions

(i) Uniform. Range sizes [40, 120] ∩N i.e., P(C = n) =
1

80
, for n ∈ [40, 120] ∩N.

(ii) Poisson. Average λ = 65, then P(C = n) =
1

exp(λ)

λn

n!
, for n ∈N ∪ {0}.

(iii) Binomial. Sample space [480], success probability, p = 0.2, i.e., P(C = n) =
(

480
n

)
pn(1 − p)480−n, for

n ∈ [0, 480] ∩N.

An example of 4 realizations, each consisting in 8 eligible items, uniformly distributed with demand-capacity

fraction of 0.9 is displayed in Table 4 below. The Random Setting Algorithm 2, produces a table analogous to

Table 4 .

Item Realization 1 Realization 2 Realization 3 Realization 4 Realization 5

0 113 47 84 58 53

1 54 67 119 49 104

2 95 65 64 109 119

3 89 95 91 78 61

4 85 72 94 72 56

5 87 60 62 70 94

6 76 110 71 73 118

7 105 108 51 49 72∑7
i =0 ci 704 624 636 558 677

D 633 561 572 502 609

Table 4: Example of Random Setting Data: 5 Realizations, 8 eligible items with uniformly distributed capacity and 0.9 demand-

capacity fraction

Remark 9. (i) Since the successive application of the D&C approach generates binary trees, for practical

reasons, the numerical experiments will have a power of two (i.e., N = 2k for some k ∈N) as the number

of eligible items.

(ii) When generating a D&C tree we want to distribute the demand between left and right children according

to the relation (15). Then, the inequality (18) (equivalent to the hypothesis (16) of part (iv) Theorem

4) must be satisfied. To that end a demand-capacity fraction o ∈ {0.5, 0.55, 0.6, . . . , 0.9}, furnishes a

reasonable domain for numerical experimentation.
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Algorithm 2 Random Setting Algorithm

1: procedure Random Setting(Items’ Number: n, Probabilistic Distribution: d , Demand: o, Number of Trials:

t )

2: function Random Generation( d, n )

3: if d = Uniform then

4: i tems = list of n random items uniformly distributed on the interval [40, 120] . Python

command: numpy.random.randint(low = 40, high = 120, size = n)

5: else if d = Poisson then

6: i tems = list of n random items, Poisson distributed with average 65 . Python command:

numpy.random.poisson(65, size = n)

7: else

8: i tems = list of n random items, binomially distributed on the interval [0, 480] with success

probability p = 0.2 . Python command: np.random.binomial(480, 0.2, n)

9: end if

10: return i tems

11: end function

12: Eligible Items = ∅ . Initialize the Eligible Items table

13: for tr ial ≤ t do

14: Random Generation(d, n) → Eligible Items . Push list of n randomly generated items as a

column of the Eligible Items table.

15: end for

16: last row = o ×
n∑
i=1

rowi with rowi i−th row of Eligible Items . Computing the demand fraction

17: last row → Eligible Items . Push last row as the last row or Eligible Items

18: Export Eligible Items . In this work, to the file Eligible Items.xls.

19: end procedure
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4.2. Tree Generation

There will be two ways of generating a D&C tree. Every vertex V of the tree, is associated with a subproblem

analogous to Problem 1, whose input is (AV , DV ), with AV ⊆ [N] a subset of items and an assigned demand

DV . Denote by V, Vl , Vr a vertex together with its left and right children respectively and by |AV |, AVl |, |AVr | the

corresponding cardinals. The trees are constructed using the Left Pre-Order i.e., the stack has the structure

[root, left-child, right-child] (see Algorithm 3.3.1 in[6] for details). The assigned demands to the left and right

children will be given by the Expression (15). All the difference between the algorithms is the way left-child and

right-child are defined.

I. First Case: Head-Left Subtree. Select the following parameters

(i) Select a sorting criterion: Specific Weight γ, Capacity c, Prices p or Random.

(ii) Select a fraction for the head-left subtree, i.e. f ∈ [0, 1].

(iii) Define the minimum number of items in a subproblem, i.e. the quantity items in the subproblems

associated to a leaf of the D&C tree, namely m = 1, 2, ..., etc.

Once the list of eligible items is sorted according to criterion s ∈ {p, c,γ}, the list of items AVl assigned

to the left-child Vl is defined as the first items of the list AV such that |AVl | = bf × |AV |c i.e., the head of

the list. The list assigned to the right-child is defined as the complement of that assigned to the left-child

i.e., AVr
def
= AV − AVl . The left and right demands are computed according to Equation (15). The tree

is constructed recursively as Algorithm 3 shows. In the table 5 below, we present a binary tree for the

Algorithm 3 Head-Left Subtree Algorithm, returns a D&C tree

1: procedure Head-Left Subtree Generator(Items’ List. Prices: p, Capacities: c,

Demand: D. Sorting: s ∈ {p, c,γ, random}, Head-left subtree fraction: f ∈ [0, 1], Minimum list size:

m ∈ [1,#Items’ List] ∩N )

2: if s = γ then . Asking if is necessary to compute specific weight

3: compute list of specific weights
(
γi : i ∈ [N]

)
. Introduced in Definition 1.

4: end if

5: V0 = sorted (Items’ List) according to chosen criterion s

6: V
def
= V0 . Initializing the root of the D&C tree

7: D&C tree = ∅ . Initializing D&C tree as empty list

8: Branch( V, f ,m,D, c, D&C tree ) . Calling the Branch function of Algorithm 4

9: end procedure

first column of Table 4 (Realization 1), with the following parameters: sorting by specific weight (s = γ),

f = 0.5, m = 2; Figure 1 shows its graphic representation. Finally, Figure 2 depicts a tree generated for

the same realization, but with parameters s = γ, f = 0.4 and m = 2; the corresponding table is omitted.

II. Second Case: Balanced Left-Right Subtrees. Select the same parameters as in the previous case except

for the fraction head f ∈ [0, 1] since this will be 0.5 by default. Once the list of eligible items is sorted

according to criterion s ∈ {p, c,γ}, the list of items AVl assigned to the left-child Vl is defined as the

items in even positions on the sorted list AV . The items AVr assigned to the right-child, is defined as the

complement of those assigned to the left-child i.e., AVr
def
= AV −AVl i.e., the left and right lists of items are

as balanced as possible, according to s. The left and right demands are computed according to Equation

(15). Again, the tree is constructed recursively as the Algorithm 5 shows. In Table 6 below, we present

a binary tree for the first column (Realization 1) of Table 4, with the following parameters: sorting by

specific weight (s = γ), m = 2; its graphic representation is displayed in Figure 3.

15



Algorithm 4 Function Branch (Subroutine for Algorithm 3)

1: procedure Branch Function(List of Items: V , Head-left subtree fraction: f ∈ [0, 1], Minimum size list m,

Demand: D, Capacities: c, Divide & Conquer Tree: D&C tree. )

2: function Branch( V, f ,m,D, c, D&C tree )

3: if |V | > m then

4: V → D&C tree . Push list V as node of the D&C tree

5: lcs =
⌊
f × |V |

⌋
. Defining the size of the left child

6: Vl =
(
Ri : 1 ≤ i ≤ lcs

)
. Computing the left child

7: Dl =
⌊∑{ci : 1 ≤ i ≤ lcs}∑
{ci : 1 ≤ i ≤ |V |} D

⌋
. Computing the left demand

8: Branch( Vl , f , m,Dl , cl
def
= (ci : 1 ≤ i ≤ lcs)) . Recursing for the left subtree

9: Vr =
(
Ri : lcs < i ≤ |V |

)
. Computing the right child

10: Dr
def
= D −Dl . Computing the right demand

11: Branch( Vr , f ,m,Dr , cr
def
= (ci : lcs ≤ i ≤ |V |))) . Recursing for the right subtree

12: return D&C tree

13: else

14: V → D&C tree . Push list V as node of the D&C tree

15: return D&C tree

16: end if

17: end function

18: end procedure

(
A0 = [1, 7, 2, 3, 5, 4, 6, 0]

D0 = 633

)
7→ V0

(
A1 = [1, 7, 2, 3]

D1 = 309

)
7→ V1

(
A2 = [1, 7]

D2 = 144

)
7→ V2

(
A3 = [2, 3]

D3 = 165

)
7→ V3

(
A4 = [5, 4, 6, 0]

D4 = 324

)
7→ V4

(
A5 = [5, 4]

D5 = 155

)
7→ V5

(
A6 = [6, 0]

D6 = 169

)
7→ V6

Figure 1: Algorithm 3 D&C tree generated for Realization 1 of Table 4. The tree is consistent with Table 5. Parameters: sorting

by specific weight (s = γ), left subtree fraction f = 0.5, minimum size leaf m = 2. Every vertex Vi has associated a subproblem

analogous to Problem 1, whose input data are the demand Di and the sorted list of eligible items Ai (together with its corresponding

lists of capacities and prices).
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(
A0 = [1, 7, 2, 3, 5, 4, 6, 0]

D0 = 633

)
7→ V0

(
A1 = [1, 7, 2]

D1 = 229

)
7→ V1

(
A2 = [3, 5, 4, 6, 0]

D2 = 404

)
7→ V2

(
A3 = [3, 5]

D3 = 159

)
7→ V3

(
A4 = [6, 0]

D4 = 245

)
7→ V4

Figure 2: Algorithm 3 D&C tree generated for Realization 1 of Table 4. Parameters: sorting by specific weight (s = γ), left

subtree fraction f = 0.4, minimum size leaf m = 2. Every vertex Vi has associated a subproblem analogous to Problem 1, whose

input data are the demand Di and the sorted list of eligible items Ai (together with its corresponding lists of capacities and prices).

Algorithm 5 Balanced Left-Right Subtrees Algorithm, returns a D&C tree

1: procedure Balanced Left-Right Subtrees Generator(Items’ List. Prices: p, Capacities: c,

Demand: D. Sorting: s ∈ {p, c,γ, random}, Minimum list size: m ∈ [1,#Items’ List] ∩N )

2: if s = γ then . Initializing the root of the D&C tree

3: compute list of specific weights
(
γi : i ∈ [N]

)
. Introduced in Definition 1.

4: end if

5: V0 = sorted (Items’ List) according to chosen criterion s

6: V
def
= V0 . Initializing the root of the D&C tree

7: D&C tree DCT = ∅ . Initializing D&C tree as empty list

8: function Branch( V,m,D, c )

9: if |V | > m then

10: V → DCT . Push list V as node of the D&C tree

11: Vl =
(
Ri : 1 ≤ i ≤ |V |, i even

)
. Computing the left child

12: Dl =
⌊∑{ci : 1 ≤ i ≤ |V |, i even }∑

{ci : 1 ≤ i ≤ |V |} D
⌋

. Computing the left demand

13: Branch( Vl , m,Dl , cl
def
= (ci : 1 ≤ i ≤ |V |, i even )) . Recursing for the left subtree

14: Vr =
(
Ri : 1 ≤ i ≤ |V |, i odd

)
. Computing the right child

15: Dr
def
= D −Dl . Computing the right demand

16: Branch( Vr , m,Dr , cr
def
= (1 ≤ i ≤ |V |, i odd ))) . Recursing for the right subtree

17: return DCT . return the D&C tree

18: else

19: V → DCT . Push list V as node of the D&C tree

20: return DCT . return the D&C tree

21: end if

22: end function

23: end procedure
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Item

Vertex
V0 V1 V2 V3 V4 V5 V6

1 1 1 1 0 0 0 0

7 1 1 1 0 0 0 0

2 1 1 0 1 0 0 0

3 1 1 0 1 0 0 0

5 1 0 0 0 1 1 0

4 1 0 0 0 1 1 0

6 1 0 0 0 1 0 1

0 1 0 0 0 1 0 1

D 633 309 144 165 324 155 169

Table 5: Algorithm 3 tree generated for Realization 1 of Table 4. Parameters: sorting by specific weight γ, left subtree fraction

f = 0.5, minimum size leaf m = 2.

Item

Vertex
V0 V1 V2 V3 V4 V5 V6

1 1 1 1 0 0 0 0

7 1 0 0 0 1 1 0

2 1 1 0 1 0 0 0

3 1 0 0 0 1 0 1

5 1 1 1 0 0 0 0

4 1 0 0 0 1 1 0

6 1 1 0 1 0 0 0

0 1 0 0 0 1 0 1

D 633 281 127 154 352 171 181

Table 6: Algorithm 5 tree generated for Realization 1 of Table 4. Parameters: sorting by specific weight γ, minimum size leaf

m = 2.

4.3. Efficiency Quantification

In this section we describe the general algorithm to compute the efficiency of the D&C tree approach. The

efficiencies will be measured according to Definition 8, moreover the computations will be done based on three

values:

1. Exact solution of Problem 1, computed using the algorithm COMBO presented in [13], from now on denoted

by DPS (the algorithm heavily relies on dynamic programming).

2. Upper bound furnished by the Greedy Algorithm 1, denoted by GAS in the sequel.

3. Lower bound, given by the solution of Problem 2, i.e., the natural linear relaxation of the problem 1, from

now on denoted by LRS.

The effectiveness of upper and lower bounds mentioned above is measured in the standard way i.e.,

GAE
def
= 100×

GAS −DPS
DPS

, LRE
def
= 100×

DPS − LRS
DPS

. (28)

Here, GAE, LRE respectively indicate, Greedy Algorithm and Linear Relaxation Efficiency. The general struc-

ture is as follows

(i) Execute the Random Setting Algorithm described in Section 4.1, according to its parameters of choice

and store its results in the file Eligible Items.xls.
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(
A0 = [1, 7, 2, 3, 5, 4, 6, 0]

D0 = 633

)
7→ V0

(
A1 = [1, 2, 5, 6]

D1 = 281

)
7→ V1

(
A2 = [1, 5]

D2 = 127

)
7→ V2

(
A3 = [2, 6]

D3 = 154

)
7→ V3

(
A4 = [7, 3, 4, 0]

D4 = 352

)
7→ V4

(
A5 = [7, 4]

D5 = 171

)
7→ V5

(
A6 = [3, 0]

D6 = 181

)
7→ V6

Figure 3: Algorithm 5 D&C tree generated for Realization 1 of Table 4. The tree is consistent with Table 6. Parameters: sorting

by specific weight (s = γ), minimum size leaf m = 2. Every vertex Vi has associated a subproblem analogous to Problem 1, whose

input data are the demand Di and the sorted list of eligible items Ai (together with its corresponding lists of capacities and prices).

(ii) Loop through the columns of file Eligible Items.xls, each of them is a random realization (see Table 4).

(iii) For each column/realization,

(a) Retrieve the basic information of Problem 1 i.e., Items’ List, Prices: p, Capacities: c, Demand: D.

(b) Build the D&C tree, Head-Left (Algorithm 3) or balanced (Algorithm 5) according to user’s choice.

(c) Loop through the D&C tree nodes, compute the Greedy Algorithm 1, Exact and Linear Relaxation

solutions and store them in the D&C tree structure.

(d) Loop through the D&C tree heights, compute the global and stepwise efficiencies according to Def-

inition 8 (iv) and store them in stack structures within a realizations’ global table (see, Table 8).

Compute the Greedy Algorithm and Linear Relaxation Efficiencies as defined in Equation (28) and

store them in stack structures within a realizations’ global table (see Table 9).

(iv) In the realizations’ global table, compute the average of the global and stepwise efficiencies.

The steps (ii) and (iii) of the previous description are detailed in the pseudocode 6, an example of its output is

presented in the table 7 below, where the efficiencies of the method are reported for the Realization 1 of Table

4, using the D&C tree structure, depicted in Figure 1 and detailed in Table 5.

Height LRS DPS GAS GbELRS GbEDPS GbEGAS SwELRS SwEDPS SwEGAS
0 14.12 15 16 0.00 0.00 0.00

1 14.25 16 16 0.98 6.67 0.00 0.98 6.67 0.00

2 14.36 16 16 1.71 6.67 0.00 0.72 0.00 0.00

Table 7: Algorithm 6 height efficiencies for Realization 1 of Table 4. Parameters: sorting by specific weight γ, left subtree fraction

f = 0.5, minimum size leaf m = 2, see also Figure 1 and Table 5 for details on the tree structure. The Linear Relaxation,

Exact and Greedy Algorithm solutions are represented with the initials LRS,DPS and GAS respectively. The Global and Stepwise

Efficiencies are represented with the initials GbE, SwE respectively and the subindex affecting them, indicates for which of the

solutions LRS,DPS,GAS the column values apply.

In addition, for the five realizations of Table 4, the table 8 presents the result of computing the global and

stepwise efficiencies (GbE and SwE) of the Exact Solutions (DPS), while Table 9 displays the corresponding

values of the Greedy Algorithm and the Linear Relaxation Efficiencies (GAE and LRE). So far, we have been

using Realization 1 in Table 4 to illustrate the method, however, we close this section presenting an example

significantly larger in order to illustrate the method for a richer D&C tree and bigger range of heights.
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Algorithm 6 D&C Efficiency Quantification, returns a list of global and stepwise efficiencies

1: procedure D&C Efficiency Quantification(File Eligible Items.xls contains:

Items’ List, Prices: p, Capacities: c, Demand: D.

User Decisions: Sorting: s ∈ {p, c,γ, random}, Head-left subtree fraction: f ∈ [0, 1],

Minimum list size: m ∈ [1,#Items’ List] ∩N, Price-Capacity rate: r ∈ [1,max
i
ci ],

Type of Tree: t ∈ {Head-Left, Balanced}. )

2: for column of Eligible Items.xls do . Each column is a random realization, e.g. Table 4

3: retrieve from Eligible Items.xls the information: Items’ List, Prices: p, Capacities: c, Demand:

D, corresponding to column/realization.

4: if t = Head-Left then

5: D&C tree: DCT
def
= call Algorithm 3 (Items’ List, p, c, D, s, f , m )

. Producing the Head-Left D&C tree

6: else

7: D&C tree: DCT
def
= call Algorithm 5 (Items’ List, p, c, D, s, m )

. Producing the Balanced D&C tree

8: end if

9: Solutions Tree: ST = ∅ . Initializing Solutions Tree as empty list

10: for V ∈ vertices of DCT do . Recall that DCT has table format as Table 6

11: Linear Relaxation Solution: LRSV ← call simplex algorithm solver (Data {p, c, D}, corre-

sponding to vertex V )

12: Exact Solution: DPSV ← call MT1 solver Data {p, c, D}, corresponding to vertex V )

13: Greedy Algorithm Solution: GASV ← call Algorithm 1 (Data {p, c, D}, corresponding to vertex

V )

14: [LRSV , DPSV , GASV ]→ ST . Push the triple [LRSV , DPSV , GASV ] as vertex of the

solutions tree ST

15: end for

16: z∗
def
= ∅ . Initializing solution values stack as empty list

17: GbE
def
= [0] . Initializing global efficiency stack; 0 is the first value

18: SwE
def
= ∅ . Initializing stepwise eficiency stack as empty list

19: GAE
def
= ∅ . Initializing greedy algorithm efficiency stack as empty list

20: LRE
def
= ∅ . Initializing linear relaxation eficiency stack as empty list

21: H
def
= height of DCT .

22: for h ∈ [H] do

23: DCTh = subgraph of DCT induced on the set {V ∈ DCT : height(V ) ≤ h} . Tree pruned at

height h

24: L(DCTh) = {V ∈ DCTh : deg(V ) = 1} . Selecting the leaves of the pruned tree DCTh
25: zh∗ ←

∑
{[LRSV , DPSV , GASV ] : V ∈ L(DCTh)} =

∑
{ST (V ) : V ∈ L(DCTh)} . Push the

total solutions (Linear Relaxation, Exact, Greedy) at height h of the three DCT , to the stack

26: if h > 0 then

27: GbE(h)← 100×
zh∗ − z0

∗
z0
∗

. Push global efficiency at height h to the stack

28: SwE(h − 1)← 100×
zh−1
∗ − zh∗
zh−1
∗

. Push stepwise efficiencyror at height h to the stack

29: end if

30: GAE(h)← 100×
zh∗ [GAS]− zh∗ [DPS]

zh∗ [DPS]
. Push greedy algorithm efficiencies into the stack,

see Equation (28)

31: LRE(h)← 100×
zh∗ [DPS]− zh∗ [LRS]

zh∗ [DPS]
. Push linear relaxation efficiencies into the stack, see

Equation (28)

32: end for

33: return (GbE, SwE) . Efficiencies corresponding to column/realization

34: end for

35: end procedure
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Height GbE1 GbE2 GbE3 GbE4 GbE5 SwE1 SwE2 SwE3 SwE4 SwE5

0 0.00 0.00 0.00 0.00 0.00

1 6.67 14.29 14.29 7.14 13.33 6.67 14.29 14.29 7.14 13.33

2 6.67 14.29 14.29 7.14 13.33 0.00 0.00 0.00 0.00 0.00

Table 8: Algorithm 6 example of Global Efficiency (GbE) and Stepwise Efficiency (SwE) results for the case Exact Solution

(DPS) through the 5 realizations of Table 4. Parameters: sorting by specific weight γ, left subtree fraction f = 0.5, minimum

size leaf m = 2. The subindex affecting GbE and SwE indicates the corresponding number of realization for which the column

applies.

Height GAE1 GAE2 GAE3 GAE4 GAE5 LRE1 LRE2 LRE3 LRE4 LRE5

0 6.67 0.00 0.00 7.14 0.00 5.90 0.66 0.45 6.65 2.62

1 0.00 0.00 0.00 0.00 0.00 10.91 11.76 11.21 11.74 12.00

2 0.00 0.00 0.00 0.00 0.00 10.27 10.68 10.51 10.52 10.58

Table 9: Algorithm 6 example of Greedy Algorithm Efficiency (GAE) and Linear Relaxation Efficiency (LRE) (see Equation (28)

for its definition), through the 5 realizations of Table 4. Parameters: sorting by specific weight γ, left subtree fraction f = 0.5,

minimum size leaf m = 2. The subindex affecting GAE and LRE indicates the corresponding number of realization for which the

column applies.

Example 1 (The D&C tree of a large random realization). In Table 10 we present the LRS,DPS,GAS so-

lutions for a D&C tree corresponding to a random realization of 128 eligible items, uniformly distributed ca-

pacities, with demand-capacity fraction of 0.9. The respective D&C tree is constructed using the head-left

algorithm 3, sorted by specific weight γ, left subtree fraction f = 0.5 and minimum size m = 1, i.e., its height is

7. To avoid redundancy, we omit tables displaying the corresponding values of GAE, LRE as well as GbE, SwE

for LRS,DPS,GAS, analogous to those reported in Tables 7 and 9, since they can be completely derived from

Table 10; however, we display the graphics corresponding to all such tables.

In Figure 4 we depict the behavior through the heights of a D&C tree, for the solutions LRS,DPS,GAS,

the efficiencies GAE, LRE, as well as the global and stepwise efficiencies
{
GbELRS, GbEDPS, GbEGAS

}
,{

SwELRS, SwEDPS, SwEGAS
}

. As it can be seen in figures (a), (b), GAS is significantly more accurate

than LRS to the point that one curve stays below the other through all the height of the D&C tree. In the

case of global efficiencies we also observe that the behavior of GbEGAS and GbEDPS are similar, though none

is above the other through all the D&C tree heights and GbEDPS stays below both of them. A similar behavior

is observed for the case of stepwise efficiencies (SwE), although the curves SwEDPS and SwELRS intersect in

this case for h = 2. Observe that if h ≥ 4, the results for DPS,GAS,GAE,GBEDPS, GbEGAS become stable

i.e., the D&C method no longer deteriorates the exact solution; since N = 128, h ≥ 4 corresponds to lists

of 8 items or smaller. Finally, in Figure 5 we present the efficiencies GbEDPS, SwEDPS, GAE and LRE for

Height LRS DPS GAS

0 233.43 234 236

1 236.41 239 239

2 238.02 240 242

3 238.79 248 249

4 239.12 262 266

5 239.25 266 266

6 239.33 266 266

7 239.38 266 266

Table 10: Example 1. Solutions LRS,DPS and GAS table for a random realization of 128 eligible items uniformly distributed and

demand-capacity fraction of 0.9. The D&C tree has height 7, generated by the head-left algorithm 3, sorted by specific weight γ,

left subtree fraction f = 0.5 and minimum size m = 1.
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(d) SwELRS , SwEDPS and SwEGAS efficiencies.

Figure 4: Example 1. Random realization of 128 eligible items, with uniformly distributed capacities and demand-capacity fraction

of 0.9. The D&C tree has height 7, it is generated by the head-left algorithm 3, sorted by specific weight γ, left subtree fraction

f = 0.5 and minimum size m = 1. In Figure (a) the y -axis is expressed in absolute values while in figures (b), (c) and (d) the

y -axis is a percentage.

five random realizations. We choose depicting this efficiencies because the Exact Solution (DPS) is the most

important parameter, as it measures the quality of the exact solution and the GAE, LRE efficiencies store the

quality of the usual bounds (Greedy Algorithm and Linear Relaxation). The realizations are generated with the

same parameters of the previous one (therefore comparable to it) and follow similar behavior amongst them as

expected. In particular, notice that for h ≥ 4 (subproblems of size 8 or smaller) the solutions stabilize.

Remark 10. Examples of 128 eligible items, with a large number of realizations and different distributions (uni-

form, binomial, Poisson) present similar behavior to the one presented in Example 1. For the three distributions,

most of the results stabilize for h ≥ 4 (subproblems of 8 items).

5. Numerical Experiments

In this section, we present the results from the numerical experiments. All the codes needed for the present

work were implemented in Python 3.4 and the databases were handled with Pandas (Python Data Analysis

Library). The full scale experiments were run in the server Gauss at Universidad Nacional de Colombia, Sede
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Figure 5: Example 1. Five random random realization of 128 eligible items, with uniformly distributed capacities and demand-

capacity fraction of 0.9. The D&C tree has height 7, it is generated by the head-left algorithm 3, sorted by specific weight γ, left

subtree fraction f = 0.5 and minimum size m = 1.

Medelĺın, Facultad de Ciencias. The Script can be downloaded from the address https://sites.google.

com/a/unal.edu.co/fernando-a-morales-j/home/research/software

5.1. The Experiments Design

The numerical experiments are aimed to asses the effectiveness of the heuristic D&C method presented in

Section 4. Its whole construction was done in a way such that its effectiveness could be analyzed under the

probabilistic view of the Law of Large Numbers (which we write below for the sake of completeness, its proof

and details can be found in [2]).

Theorem 7 (Law of Large Numbers). Let
(
Z(n) : n ∈N

)
be a sequence of independent, identically distributed

random variables with expectation E
(
Z(1)

)
, then

P

[∣∣∣Z(1) + Z(2) + . . .+ Z(n)

n
− E

(
Z(1)

)∣∣∣ > 0

]
−−−−→
n→∞

0, (29)

i.e. , the sequence
(
Z(n) : n ∈N

)
converges to µ in the Cesàro sense.
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The D&C method introduces several free/decision parameters to analyze the behavior of Problem 1 under

different scenarios. We have the following list of domains for each of these parameters

a. Number of items: N ∈N.

b. Distribution of items’ capacities: dist ∈ {Ud, Pd, Bd} (Ud: uniform, Pd: Poisson, Bd: Binomial).

c. Demand-Capacity fraction: o ∈ {0, 50, 0.55, . . . , 0, 90} (to satisfy hypotheses of (iv) Theorem 5).

d. Price-Capacity rate: r ∈ {34, 44, 54, 64, 74} (to avoid hypotheses of Theorem 3 been satisfied).

e. D&C tree algorithm T-alg ∈ {hlT, blT} (hlT head-left Tree Algorithm 3, blT balanced-left Tree Algorithm

5).

f. Eligible Items list sorting method: s ∈ {p, c,γ, random}.

g. Fraction of the left list: f ∈ {0.35, 0.40, . . . , 0.65}.

h. Minimum list size: m ∈N.

Remark 11 (Parameters Domains). It is clear that o and f could very well adopt any value inside the interval

[0.1], while r could be any arbitrary number inN. However, adopting such ranges is impractical for two reasons.

First, their infinite nature prevents an exhaustive exploration as we intend to do. Second, most of the values in

such a large range are unrealistic. For instance: o = 0.1 means that the capacity of available items is 10 times

the demand (scenario that will hardly occur in real-world problems), f = 0 means no D&C pair was introduced

and r ≥ maxi ∈ [N] ci means that all the items have the same price regardless of their capacity.

In order to model, an integer problem of type 1 and its D&C solution as random variables, we need to introduce

the following definition

Definition 9. Consider the following probabilistic space and random variables.

(i) Denote by Ω the set of all possible integer problems of the type 1.

(ii) Define the random problem generator variable as

X :N× {Ud, Pd, Bd} × {0, 50, 0.55, . . . , 0, 90} →Ω

(N, dist, o) 7→X(N, dist, o).
(30)

Here, X(N, dist, o) is an integer problem of type 1.

(iii) Define the D&C solution variable by

S : Ω× {34, 44, . . . , 74} × {hlT, blT} × {0.35, 0.40, . . . , 0.65}×

{p, c,γ, random} ×N→
⋃
h∈N

N
h

(X, r,T-alg, s, f ,m) 7→S(X, r,T-alg, s, f ,m).

(31)

In the expression above, it is understood that X = X(N, dist, o) is the random problem generator variable

and S(X, r,T-alg, s, f ,m) indicates the solution for the chosen integer problem X ∈ Ω, under the D&C

tree solution parameters r,T-alg, s, f ,m. This is, a stack/vector of solutions in NH where H is the height

of the constructed D&C tree. In particular, notice that H is also a random variable.
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Notice that if the parameters N, s,m are fixed, then, H is constant and the D&C solutions random variable

S
(
X(N, dist, o), r,T-alg, s, f ,m

)
∈NH. However, a Monte Carlo simulation analysis can not be applied under

these conditions, because the realizations of the random variable S would not meet the hypotheses of the Law

of Large Numbers 7, more specifically, the identically distributed condition. On the other hand, the analysis is

pertinent for several realizations of the random variables X and S, with a fixed list of free/decision parameters,

namely P = (N, dist, o, r,T-alg, s, f ,m). Under these conditions the Law of Large Numbers can be applied on

S to estimate the expected effectiveness of the method, conditioned to the chosen set of parameters P .

In order to compare the different scenarios without introducing too many possibilities a standard setting has to

be defined, which we introduce below, together with the justification behind its choice.

Definition 10. In the following we refer to the standard setting of a numerical experiment

P =

{
(N, dist, o, r,T-alg, s, f ,m), for T-alg = hlT,

(N, dist, o, r,T-alg, s,m), for T-alg = blT,

if its parameters satisfy the following values:

(i) Head Fraction, f = 0.5 (applies for the head-left method only). To make it comparable with the balanced

method.

(ii) Demand-Capacity Fraction, o = 0.9.

(iii) Price-Capacity rate, r = 54. From experience, this is a reasonable value, as it permits explore problems

of computable size without landing into trivial scenarios.

(iv) Eligible Items list sorting method, s = γ i.e., specific weight. Because this greedy function is closely

related to the solutions furnished by the linear relaxation (LRS), presented in Theorem 2, as well as the

Greedy Algorithm 1.

(v) Minimum list size, m = 4. From multiple random realizations, it has been observed that the D&C method

does not yield significantly different results for list sizes smaller than m = 8; see Remark 10. Consequently,

we adopt the size m = 4 in order to capture one step (and only one) of this “steady behavior”.

(vi) Number of eligible items, N = 512. This size was chosen because for m = 4 it will produce in most of the

studied cases a D&C tree of height 7. The only exceptions will occur for head-left generated trees with

head fraction f 6= 0.5.

In addition the next conventions are adopted

a. An experiment is defined by a list of parameters, namely P ; from now on we do not make a distinction

between the experiment and its list of parameters. Moreover, P has 8 parameters if T-alg = hlT and 7 if

T-alg = blT. To ease notation, from now on we denote P = (512, dist, o, r,T-alg, s, f , 4) for any experiment

in general, in the understanding that if T-alg = blT the head fraction f is not present in the list P .

b. Each case will be analyzed using 50 randomly generated realizations of 512 items with Uniform, Poisson and

Binomial distributions respectively i.e., P = (512, d ist, o, r,

T-alg, s, f , 4), see Figure 6.

c. Given a standard setting P = (512, d ist, o, r,T-alg, s, f , 4) and a variable v ∈ {o, r, s, f }, we denote by

P (v) the list of experiments where the variable v runs through its whole domain, see Table 11 and Figure

7 .
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d. The analysis of the efficiencies GAE, LRE,GbELRS, GbEDPS, GbEGAS, SwELRS, SwEDPS and SwEGAS
will be done using their average values, corresponding to the 50 random realizations mentioned above. In

the following, we denote by E the list ot these efficiencies; due to the Law of Large Numbers 7 we know

this is an approximation of their expected values. An example is presented in Table 11 and Figure 7 below.

5.2. Critical Height and hlT vs. blT strategies Comparison

As a first step we find a critical height. From the numerical experiments, it is observed that the method

heavily deteriorates beyond certain height i.e., after certain number of D&C iterations, as it can be seen in the

figures 4 and 5 from Example 1, where it can be observed that beyond h > 3 the slope becomes very steep,

therefore a critical height needs to be adopted.

Definition 11. Given an experiment of 50 realizations with a fixed set of parameters P = (512, d ist, o, r,T-alg, s, f , 4)

and let v ∈ {o, r, s, f } be a variable running through its full domain. Define

(i) For a fixed efficiency eff ∈ E , denote respectively S̄(eff, P ), S̄(eff, P, v), the average value of 50 random

realizations executed with parameters P and the list of such values when the variable v runs through its

whole domain, see Table 11 and Figure 7 below.

(ii) For a fixed efficiency eff ∈ E , denote by

S̄′(eff, P, v)(h)
def
= S̄(eff, P, v)(h)− S̄(eff, P, v)(h − 1), for h = 1, 2, . . . , H,

with H the height of the D&C tree. Denote by S̄′v (eff, P )(h) = max{S̄′(eff, P, v)(h) : v ∈ full domain}.

(iii) For each of the efficiencies eff ∈ E , its critical height relative to the variable v , denote by hv (eff, P ) the

last height h satisfying S̄′v (eff, P )(h) ≤ 2S̄′v (eff, P )(h − 1), see Table 11 and Figure 7.

(iv) The critical height of the experiment relative to the variable v , denoted by hv (P ) is given by the mode of

the list {hv (eff, P ) : eff ∈ E}.

(v) In order to compare the experiments PhlT = (512, d ist, o, r, hlT, s, 0.5, 4) and PblT = (512, d ist, o, r, lbT, s, 4)

(head-left vs balanced), relative to the variable v , we proceed as follows: set the height h̃
def
= min{hv (PhlT), hv (PblT)}

(see Table 13) and compute the `1-norm for the arrays {S̄(eff, PhlT, v)(h) : eff ∈ E , h = 1, 2, . . . , h̃},
{S̄(eff, PblT, v)(h) : eff ∈ E , h = 1, 2, . . . , h̃}, when regarded as lists (not as matrices, as Table 11 would

suggest). The lowest of these norms yields the best strategy among hlT and blT.

Example 2. In the table 11 below we display {S̄(GbEDPS, P, r)(h) : h = 0, 1, . . . , 7} i.e., the averaged values

corresponding to 50 realizations for the efficiency eff = GbEDPS running through the full domain of the

price-capacity rate i.e., v = r . The list of parameters is given by P = (512,Ud, 0.9, r, hlT,γ, 0.5, 4) with r ∈
{34, 44, 54, 64, 74}. The tables corresponding to the intermediate slope variables {S̄′(P, v)(h) : h = 0, 1, . . . 7},
{S̄′v (P )(h) : h = 0, 1, . . . 7} are omitted since they can be completely deduced from Table 11. In this particular

example hv (eff) = hr (GbEDPS) = 5. Finally, the corresponding solution is presented in Figure 7 (a), together

with its analogous for the efficiencies SwEDPS, GAE, LRE ((b), (c) and (d) respectively). We chose to present

these efficiencies because the Exact Solution behavior DPS, is the central parameter to asses the quality of

the method for measuring the quality of the solution, while the efficiencies GAE, LRE measure the expected

quality of the usual bounds (Greedy Algorithm and Linear Relaxation) through the D&C tree.

Given that the aim of this section is to compare the generation methods hlT vs. blT, we first find the optimal

head fraction value f for hlT, in order to attain the best possible efficiencies for the hlT method. The results

are summarized in Table 12 below; the pointing arrows indicate the optimal head fraction values
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Standard Setting

N = 512, m = 4

dist ∈ {Ub, Pd, Bd}
T-alg ∈ {hlT, blT}

o = 0.9, r = 54, s = γ, f = 0.5





Standard Setting

N = 512, m = 4

dist ∈ {Ub, Pd, Bd}
T-alg = hlT

o = 0.9, r = 54, s = γ, f = 0.5





Standard Setting

N = 512, m = 4

dist ∈ {Ub, Pd, Bd}
T-alg = blT

o = 0.9, r = 54, s = γ, f = 0.5



(b)



Balanced-Left Method

N = 512, m = 4

dist ∈ {Ub, Pd, Bd}
T-alg ∈ {hlT, blT}
o = 0.9, r = 54.





Balanced-Left Method

N = 512, m = 4

dist ∈ {Ub, Pd, Bd}
T-alg = blT

o = 0.9, r = 54.





Balanced-Left Method

N = 512, m = 4

dist ∈ {Ub, Pd, Bd}
T-alg = blT

o = 0.9, r = 54.





Standard Setting

N = 512, m = 4

dist ∈ {Ub, Pd, Bd}
T-alg = blT

o = 0.9, r = 54, s = γ, f = 0.5



Figure 6: Schematics of the set of numerical experiments in search of optimal strategies. The first level, depicted in Figure (a),

branches on the tree generation method: lhT and blT. The second level branches on the remaining strategies: o, r , s for both

{lhT, blT} and f for the lhT method. Figure (b) displays the branching process for the blT method; a similar diagram corresponds

for the lhT method.
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Height r = 34 r = 44 r = 54 r = 64 r = 74

0 0.00 0.00 0.00 0.00 0.00

1 1.26 1.93 1.95 2.29 1.82

2 2.11 3.19 3.40 3.45 2.74

3 2.66 3.91 4.27 4.34 3.53

4 3.15 4.52 4.85 4.92 4.17

Ù hr (P ) = 5 3.93 5.68 6.63 7.08 6.24

6 7.72 9.56 10.11 9.99 8.74

7 14.11 15.50 15.70 15.66 14.83

Table 11: Average values of 50 random realizations for the efficiency variable eff = GbEDPS relative to the variable v = r .

The experiments parameters P = (N, dist, o, r,T-alg, s, f ,m) have the following values: N = 512, dist = Ud, o = 0.9, r ∈
{34, 44, 54, 64, 74}, T-alg = hlT, s = γ, f = 0.5, m = 4.
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(a) S̄(GbEDPS , P, r), r ∈ {34, 44, 54, 64, 74}.
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(b) S̄(SwEDPS , P, r), r ∈ {34, 44, 54, 64, 74}.
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(c) S̄(GAE, P, r), r ∈ {34, 44, 54, 64, 74}.
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(d) S̄(LRE, P, r), r ∈ {34, 44, 54, 64, 74}.

Figure 7: Example 2. Averaged values for 50 random realizations. Four particular efficiencies are depicted

GbEDPS , SwEDPS , GAE, LRE. The notation Exp r with r ∈ {34, , 44, 54, 64, 74} in the graphics’ legends, stands for the ex-

pected value for the corresponding S̄(eff, P, r), eff ∈ {GbEDPS , SwEDPS , GAE, LRE}.

Remark 12. As it can be observed in Table 12, the optimal values are attained at the extremes of the head
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Head Fraction Uniform Poisson Binomial

f Height ho(PblT) = 4 Height ho(PblT) = 3 Height ho(PblT) = 3

GbEDPS eff ∈ E GbEDPS eff ∈ E GbEDPS eff ∈ E
0.35 Ù 8.27 Ù 26.45 2.83 8.87 Ù 3.36 Ù 10.54

0.40 8.88 28.20 3.06 9.60 3.54 11.04

0.45 9.30 29.43 2.87 8.97 3.69 11.56

0.50 9.62 30.51 2.94 9.27 3.67 11.49

0.55 9.72 30.57 2.95 9.30 4.02 12.51

0.60 9.64 30.48 3.12 9.78 4.23 13.12

0.65 9.73 30.63 Ù 2.82 Ù 8.81 4.16 13.06

Table 12: Head Fraction Comparison. Table registering values of `1-norms of arrays {S̄(eff, PblT, f )(h) : eff ∈ E, h =

1, 2, . . . , hf (PblT)} and {S̄(GbEDPS , PblT, f )(h) : h = 1, 2, . . . , hf (PblT)}. The values are displayed for f ∈ full domain and

dist ∈ {Ub, Pd, Bd}. The remaining parameters are o = 0.9, r = 54, s = γ and Minimum List Size m = 4 i.e.,

PhlT = (512, dist, o, 54, hlT,γ, 0.5, 4). The pointing arrows indicate the optimal strategy within its column or family of com-

parable experiments.

fraction experimental range and this happens in the three distributions in analysis. This is hardly surprising, as

a bigger head (for the Poisson distribution) or a bigger tail (for the Uniform and Binomial distributions) have a

better chance to capture a big chunk of a real optimal solution. Furthermore, when the range of head fraction

is extended, namely if we take [a, b] ⊆ [0, 1] such that [0.35, 0.65] ( [a, b], the optima occur at the extremes

a and b. In particular for f ∈ {0, 1} we are back in the original problem and attaining the original optima with

the original computational complexity, which defeats the purpose of the D&C method itself.

Adopting the optimal heights for the lhT method and recalling the definitions above, the list of critical heights

is summarized in the table 13 below. The pointing arrows indicate the comparison height between hlT and blT

tree generation methods.

Var Uniform, f = 0.35 Poisson, f = 0.65 Binomial, f = 0.35

v Head-Left Balanced Head-Left Balanced Head-Left Balanced

o 5 Ù 4 4 Ù 3 Ù 4 Ù 4

r Ù 5 Ù 5 Ù 2 3 Ù 2 3

s Ù 4 6 Ù 3 4 Ù 3 5

Table 13: Critical Heights table. Each corresponds to the expected values of efficiencies E coming from the experiments with pa-

rameters P = (512, dist, o, r, lfT, s, f , 4) (f = 0.35 for dist ∈ {Ud, Bd}, f = 0.65 for dist = Pd) or P = (512, dist, o, r, blT, s, 4).

The heights pointed with arrows are the values valid for comparison between the lfT and blT tree generation methods.

Once the heights’ comparison values are found, we proceed to compare both methods in analogous conditions

i.e., when the remaining variables are equal. The results for the demand-capacity fraction variable o, running

through its full domain, are summarized in Table 14. Similar tables were constructed for the price-capacity

rate r ∈ {34, 44, 54, 64, 74} and the sorting s ∈ {p, ,̧γ, random} variables running through their respective full

domains which we omit here for the sake of brevity.

It is important to notice that in Table 14 all the values corresponding to the blT method are lower than

its corresponding analogous for the hlT algorithm. The same phenomenon can be observed for the table

running through the price-capacity rate r . The table running through the sorting variable also shows clear

predominance of the blT over the hlT method, though it is not absolute (10 out of 12 cases) as in the previous

cases. Furthermore, noticing the differences of values, it follows that blT produces significant better results

than hlT. Therefore, this choice of strategy when using the D&C approach is clear and the remaining strategies

need to be decided based on blT tree generation algorithm results.
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Remark 13 (Head Fraction f values). With regard to the optimal head fraction values it is important to

notice the following

(i) As expected, the optimal values tend to be on the extremes f = 0.35 or f = 0.65, since f = 0 or f = 1

would imply that no D&C pair has been introduced and therefore the efficiency should be 100%.

(ii) Notice that hlT generated D&C tree for f 6= 0.5 will be deeper than its analogous for blT, see Figures 1,

2 and 3. In particular, the hlT method with optimal head fraction values (f = 0.35, f = 0.65) has higher

complexity than its blT analogous.

(iii) A similar comparison procedure was done between hlT and blT, when f = 0.5 i.e., the standard. As

expected, the hlT yields poorer results than using the optimal head fraction values and blT is remarkably

superior.

Occupancy Uniform Poisson Binomial

o Comparison Height h̃ = 4 Comparison Height h̃ = 3 Comparison Height h̃ = 4

Head-Left Balanced Head-Left Balanced Head-Left Balanced

f = 0.35 f = 0.65 f = 0.35

0.50 98.66 7.19 35.51 3.12 49.59 7.00

0.55 86.04 7.69 32.95 2.65 44.37 5.64

0.60 74.47 7.57 29.20 2.58 40.19 5.86

0.65 64.25 6.73 25.35 2.42 37.71 5.33

0.70 55.42 6.16 21.83 2.01 34.41 4.46

0.75 47.39 5.56 18.61 1.77 30.73 4.56

0.80 40.53 5.13 15.58 2.09 27.25 3.81

0.85 34.35 3.74 12.57 2.30 23.93 4.00

0.90 26.45 3.81 8.81 2.08 18.83 4.11

Table 14: Occupancy Fraction Comparison. Table registering values of `1-norms of arrays {S̄(eff, PT-alg, o)(h) : eff ∈ E, h =

1, 2, . . . , h̃} for o ∈ full domain, T-alg ∈ {hlT, blT} and dist ∈ {Ub, Pd, Bd}. The remaining parameters are r = 54, s = γ,

Left Head Fraction f = 0.35 for dist ∈ {Ud, Bd}, f = 0.65 for dist = Pd (if T-alg = hlT) and Minimum List Size m = 4 i.e.,

P = (512, dist, o, 54,T-alg,γ, f ∈ {0.35, 0.65}, 4). Observe that in all the instances of the problems, the blT method gives better

results than the hlT.

5.3. Optimal Strategies

In the previous section, it was determined that blT produces better results than hlT. Consequently, from

now on, we focus on finding the best values for the remaining parameters: o, r and s conditioned to the blT

tree generation method.

First we revisit the pruning height of the tree: given that h̃ ≤ hv (PblT) (as introduced in Definition 11 (v))

and the analysis is now narrowed down to the blT method, the computations will be done for these heights

because is desirable to stretch the D&C method as far as possible but within the quality deterioration control

established by hv (PblT) (see Definition 11 (iv)).

Second, now we analyze the method from two points of view. A global one, as it has been done so far accounting

for the overall efficiency of the variables in E by computing the `1-norm of the array {S̄(eff, PblT, v)(h) : eff ∈
E , h = 1, 2, . . . , h̃} as introduced in Definition 11 (v). A specialized and second point of view, uses only the

`1-norm of the array {S̄(GbEDPS, PblT, v)(h) : h = 1, 2, . . . , h̃} i.e., regarding only the behavior of the efficiency

GbEDPS, through the variables o, r and s. This specialized measurement is presented because the efficiency

of the Exact Solution (DPS) is the most important parameter, given that it contains the behavior of the exact

solution.

In Table 15 below the GbEDPS and the global efficiency eff ∈ E are presented for the demand-capacity fraction

variable o, running through its full domain. The pointing arrows indicate the optimal strategy within its column
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or family of comparable experiments. As in the previous stage, similar tables were built for the price-capacity

rate r ∈ {34, 44, 54, 64, 74} and the sorting s ∈ {p, c,γ, random} variables, running through their respective

full domains, which we omit here for the sake of brevity. Finally, in the tables 16 and 17 below we summarize

the optimal strategies from both points of view, the specialized GbEDPS and the global one eff ∈ E .

Occupancy Uniform Poisson Binomial

o Height ho(PblT) = 4 Height ho(PblT) = 3 Height ho(PblT) = 4

GbEDPS eff ∈ E GbEDPS eff ∈ E GbEDPS eff ∈ E
0.50 1.28 7.19 0.67 3.12 1.83 7.00

0.55 1.14 7.69 0.58 2.65 1.35 5.64

0.60 1.08 7.57 0.50 2.58 1.30 5.86

0.65 0.95 6.73 0.54 2.42 1.29 5.33

0.70 0.87 6.16 Ù 0.33 2.01 1.00 4.46

0.75 0.79 5.56 0.42 Ù 1.77 0.98 4.56

0.80 Ù 0.75 5.13 0.50 2.09 0.82 Ù 3.81

0.85 Ù 0.75 Ù 3.74 0.52 2.30 0.78 4.00

0.90 0.84 3.81 0.56 2.08 Ù 0.62 4.11

Table 15: Occupancy Fraction Comparison. Table registering values of `1-norms of arrays {S̄(eff, PblT, o)(h) : eff ∈ E, h =

1, 2, . . . , ho(PblT} and {S̄(GbEDPS , PblT, o)(h) : h = 1, 2, . . . , ho(PblT)}. The values are displayed for o ∈ full domain and dist ∈
{Ub, Pd, Bd}. The remaining parameters are r = 54, s = γ and Minimum List Size m = 4 i.e., P = (512, dist, o, 54, blT,γ, 4).

The pointing arrows indicate the optimal strategy within its column or family of comparable experiments.

Var Uniform Poisson Binomial

v Strategy Height Error Strategy Height Error Strategy Height Error

hv (PblT) `1 hv (PblT) `1 hv (PblT) `1

o 0.80/0.85 4 0.75 0.70 3 0.33 0.90 4 0.62

r 34 5 1.08 34 3 0.22 34 3 0.15

s c 6 2.85 random 4 1.07 c 5 1.01

Table 16: Chosen Strategies Table. Summary of best strategies. The expected errors are measured with the `1-norms of arrays

{S̄(GbEDPS , PT-alg, v)(h) : h = 1, 2, . . . , hv (PblT)}, for each of the variables v ∈ {o, r, s}. These were used as decision parameters;

given that the norms are computed only for the BgEDPS efficiency, this point of view only considers the exact solution. The tree

generation method is the blT since it was determined as the best tree generation strategy.

Var Uniform Poisson Binomial

v Strategy Height Error Strategy Height Error Strategy Height Error

hv (PblT) `1 hv (PblT) `1 hv (PblT) `1

o 0.85 4 3.74 0.75 3 1.77 0.80 4 3.81

r 44 5 6.77 34 3 1.69 64 3 1.06

s γ 6 12.29 γ 4 3.79 γ 5 8.52

Table 17: Summary of Chosen Strategies. In this case the expected errors are measured with the `1-norms of arrays

{S̄(eff, PT-alg, v)(h) : eff ∈ E, h = 1, 2, . . . , hv (PblT)}, for each of the variables v ∈ {o, r, s}. These were used as decision

parameters; given that the norms are computed through all the efficiencies in E, this a global point of view. The tree generation

method is the blT since it was determined as the best tree generation strategy.

5.4. Computational Time

In this section, we discuss the computational time needed for the Divide & Conquer method. To that end,

we present the relative times rather than the absolute computational times, as the latter values can greatly vary
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from one computer to another. More specifically we focus on the relative computational global time (GbT)

and stepwise time (SwT), introduced in Definition 8, equations (25a), (25b).

In the tables 18 we display the expected values of GbT and SwT (after 50 realizations) of the Exact Solution

(DPS), for the datasets generated by the three random distributions and taking the problems in standard

setting (see Definition 10), the corresponding graphs are depicted in Figures 8 (a), (b). In the same fashion,

Table 19 and Figures 8 (c), (d), summarize the expected values for GbT and SwT when measuring the

computational time of the Linear Relaxation Solution (LRS). The Greedy Approximation Solution (GAS)

presents an analogous behavior to the LRS, which we omit here for brevity. As it can be observed in both, the

table and figures, the difference in computational time is marginal, but is strongly tied to the algorithm that

must be solved along the D&C tree. Moreover, a similar phenomenon will be observed when moving away from

the standard setting to the other problem instances explored before (see Figure 6 ), i.e., the computational

time is essentially indifferent with respect to the D&C strategies and the data distribution.

Height Uniform Poisson Binomial

GbT SwT GbT SwT GbT SwT

0 100 100 100

1 46.93 46.93 47.42 47.42 45.69 45.69

2 25.47 54.29 26.26 55.37 24.61 53.86

3 15.97 62.70 16.74 63.76 15.05 61.15

4 11.51 72.05 12.35 73.82 10.65 70.80

5 8.94 77.68 9.66 78.23 8.09 76.00

6 7.88 88.21 8.66 89.59 7.10 87.79

7 8.39 106.39 9.23 106.64 7.53 106.03

Table 18: Summary of Computational Times Exact Solution (DPS). See equations (25a), (25b) for the definitions of GbT and

SwT respectively. See Figures 8 (a), (b) for their corresponding depiction.

Height Uniform Poisson Binomial

GbT SwT GbT SwT GbT SwT

0 100 100 100

1 42.60 42.60 46.76 46.76 46.23 46.23

2 24.95 58.59 25.81 55.20 25.41 54.97

3 17.66 70.80 17.75 68.77 17.74 69.85

4 13.66 77.37 13.96 78.65 13.97 78.76

5 12.72 93.16 13.20 94.58 13.28 95.09

6 12.83 100.90 14.13 107.04 14.20 106.92

7 14.79 115.20 15.60 110.44 15.78 111.16

Table 19: Summary of Computational Times Linear Relaxation Solution. See equations (25a), (25b) for the definitions of GbT

and SwT respectively. See Figures 8 (c), (d) for their corresponding depiction.

In the numerical results, we observe that the DPS shows an exponential decay for the BgT , which is consistent

with the almost linear behavior of the SwT . The critical GbT point is h = 6 because taking h ≥ 7 would

produce bigger computational time and a lower quality solution, i.e., deterioration in both features with respect

to h = 6. On the other hand, while the LRS shows also an exponential decay, it has wilder behavior in the

SwT which scales up to a shift in the critical point h = 5 in its GbT , i.e., for h ≥ 6 there is no longer a

trade-off between solution quality and computational time.

32



The existence of critical points in the GbT mentioned above, occurs because some sizes of the problem are small

enough for the algorithm (DPS, LRS or GAS) to become quite efficient, therefore, the decomposition of a given

problem in multiple parts such as the D&C tree generation, together with the reassembling of the problems’

results (computation of pruned trees, leaves and sums, see Definition 8), add up to higher computational times.

Further experiments with different size for the original 0-1 Minimization KP are summarized in the table 20.

From there, it follows that the D&C will continue to trade-off computational time vs. solution’s quality, until

the size of the subproblems is 16 for the Exact Solution DPS and 32 for the for the bounds LRS,GAS.

Problem LRS DPS GAS

Size Height Size Height Size Height Size

128 3 32 4 16 3 32

256 4 32 5 16 4 32

512 5 32 6 16 5 32

1024 6 32 7 16 6 32

Table 20: Critical D&C tree Heights and associated subproblem sizes, for several sizes of the original 0-1 Minimization KP.

6. Conclusions and Final Discussion

The present work yields the following conclusions. The heuristics of the method can be summarized as

(i) We have proposed A Divide and Conquer method to solve the Knapsack Problem at large scale. The

method reduces the computational time at the expense of loosing quality in the solution. Consequently,

the central goal of the paper is to minimize the quality loss by finding the optimal strategies to use the

method.

(ii) The deterioration of the solution’s accuracy and/or other parameters of control (such as upper and lower

bounds) is defined as the efficiency of the method, and it is the main quantity to asses the quality of the

method.

(iii) The method is heuristic therefore, several scenarios need to be explored in order to asses its efficiency.

The scenarios are modeled using intermediate variables, some deterministic and some probabilistic, e.g.

lhT, blT tree generation methods, distribution of capacities dist ∈ {Ud, Pd, Ud} respectively, see Figure

6.

(iv) The assessment of strategies is done statistically, using random realizations, computing the respective

averages and appealing to the Law of Large Numbers 7 to approximate the expected behavior.

(v) It is important to stress that the D&C method is not directly comparable with previous algorithms,

because it does not compete with them, it complements them. In particular, approximation algorithms

(such as those presented here or others included in [11] and [14]), essentially exact algorithms (such as

COMBO from [13]) or exact algorithms (such as a naive Dynamic Programming implementation, or MT1

from [14]) can be combined with it. Matter of fact, it must be combined with a solution algorithm at

certain level of branching if it is to produce an approximate solution at all.

From the results point of view

(i) The D&C method can be applied several times to the original KP and generate a tree of subproblems,

as those depicted in Figures 1, 2, 3. However, it is not reasonable to branch the problem producing

subproblems smaller than n = 32 (see Section 5.4) due to the trade-off between computational time and

quality deterioration. Such limit is denoted by hv (PblT) and it constitutes the first strategy in applying the

D&C method within a reasonable range of efficiency.

33



0 1 2 3 4 5 6 7
0

20

40

60

80

100

Uniform

Poisson

Binomial

(a) Global Computational Time GbT , DPS. See Table
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(c) Global Computational Time GbT , LRS. See Table

19.
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(d) Stepwise Computational Time SwT , LRS. See Table

19.

Figure 8: The figures display the average computational time values for 50 random realizations: global GbT (see Equation (25a))

and Stepwise SwT (see Equation (25b)). The Exact Solution DPS (see Table 18) is depicted in figures (a), (b), while the

Linear Relaxation Solution LRS (see Table 19) is displayed in figures (c), (d). The experiments were done in the standard setting

(see Definition 10). Other instances of the problem show similar behavior to its analogous in standard setting. The Greedy

Approximation Solution (GAS) shows similar behavior to LRS.

(ii) Two methods have been introduced to iterate the D&C heuristics, namely lhT, blT. They are compared

after a common limit for the branching has been established: h̃
def
= min{hv (PblT), hv (PhlT)}. Next, the

efficiencies of both methods are compared from three points of view: demand-capacity fraction (e.g.

Table 14), price-capacity rate and sorting method. It follows that the blT furnishes significantly better

results than the hlT in most of the possible scenarios.

(iii) Once the blT algorithm has been determined as the best tree/branching generation method, the remaining

optimal strategies are searched from two points of view: a specialized one, focused on the exact solution

only GbEDPS, and a global one analyzing also the decay of the bounds of control GAE, LRE. The results

are summarized in the tables 16 and 17 above.

(iv) As it can be seen, the optimal strategies disagree from one point of view to the other for most of the

cases. It is useful to have these information for both cases because in practice, depending on the method

to be used in solving the family of subproblems derived from successive applications of the D&C branching,

34



it may be more convenient to prioritize one point of view over the other. For instance, if the family of

subproblems will be solved using Exact, then GbEDPS is more important. On the other hand, if the

method includes bounds control (quantified in GAE and LRE) the global point of view may be preferable.

(v) It is also important to stress that in most of the cases GbEDPS represents, in average, a fraction of 33%

of the global efficiency. This shows that when applying the D&C method, the deterioration of the exact

solution’s quality is important with respect to the deterioration of the bounds’ quality.

(vi) A paramount feature is that the D&C method deteriorates within reasonable values. In the case of

GbEDPS, a maximum expected error of 2.85% is observed. However, such an error occurs after the

6th D&C iteration, which drastically reduces the computational time. On the other hand, the global

quantification eff ∈ E , presents a quality decay of 12.29% in the worst case scenario but again, 6 D&C

iterations were used and this value encompasses all the efficiencies. It follows that the proposed method

is efficient.

(vii) The computational time is indifferent with respect to the strategies for the D&C tree design as well as

the data probabilistic distribution.

The present paper opens up new research lines to be explored in future work

(i) The reduction of computational time and critical problem sizes, discussed in Section 5.4, were quantified

considering a serial algorithm implementation. A parallel implementation, on the other hand may fur-

nish better results, because a D&C iteration produces two fully decoupled optimization problems. The

assessment of computational time for a parallel scheme will be pursued in future work.

(ii) As mentioned above, currently a D&C iteration produces two fully decoupled subproblems. However,

another scheme with partial coupling can be proposed namely introducing a pair of problems like that

presented in Definition 5 (ii), Problem 4, but such that A0 ∪ A1 = [N] and A0 ∩ A1 6= ∅; with assigned

demands D0, D1, computed by rules analogous to Equation (15) i.e., construct artificially an integer

problem with the structure

Problem 5 (Πb, b = 0, 1).

min

[ ∑
b∈{0,1}

∑
i ∈Ab

pixi −
∑

j ∈A0∩A1

pjxj

]
, (32a)

subject to ∑
i ∈A0

cixi ≥ D0,
∑
i ∈A1

cixi ≥ D1, xi ∈ {0, 1}, ∀ i ∈ [N]. (32b)

A future line of research is the optimal choice of coupling/overlapping sets A0 ∩ A1 6= ∅ and exploit

the structure of the integer programming problem 5 (analogously to the Dantzig-Wolfe decomposition

for linear problems with the same structure). Furthermore, the optimality has to be analyzed from the

perspective quality vs. computing time.

(iii) In this work, the method used a static choice of strategies, e.g. if the sorting method was s = γ, it

remained constant through all the nodes of the D&C tree (as Table 6, Figure 3 illustrate). A future line of

research is to investigate the effect of mixing the strategies, e.g. the sorting parameter s taking different

values from {p, c,γ, random} from one node to its children, or from one height (tree level) to the next.

(iv) The blT algorithm is significantly superior to the hlT method; the numerical evidence suggests that an

analytic proof of this conjecture is plausible. A future line of research is to look for a rigorous mathematical

proof, which of course, would use probability theory and furnish its results in terms of expected efficiencies.
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(v) Finally, a future line of research is the implementation and assessment of the D&C method for the

optimization of general linear integer programs. However, such a step should be done only once the

aforementioned aspects have been deeply studied.
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[9] Sáıd Hanafi. On the convergence of tabu search. Journal of Heuristics, 7(1):47–58, Jan 2001.

[10] Angel A Juan, Javier Faulin, Scott E Grasman, Markus Rabe, and Gonçalo Figueira. A review of simheuristics: Extending
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