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Local Routing in a Tree Metric 1-Spanner

Milutin Brankovic Joachim Gudmundsson André van Renssen

Abstract

Solomon and Elkin [14] constructed a shortcutting scheme for weighted trees which results
in a 1-spanner for the tree metric induced by the input tree. The spanner has logarithmic
lightness, logarithmic diameter, a linear number of edges and bounded degree (provided the
input tree has bounded degree). This spanner has been applied in a series of papers devoted to
designing bounded degree, low-diameter, low-weight (1+ǫ)-spanners in Euclidean and doubling
metrics. In this paper, we present a simple local routing algorithm for this tree metric spanner.
The algorithm has a routing ratio of 1, is guaranteed to terminate after O(log n) hops and
requires O(∆ log n) bits of storage per vertex where ∆ is the maximum degree of the tree
on which the spanner is constructed. This local routing algorithm can be adapted to a local
routing algorithm for a doubling metric spanner which makes use of the shortcutting scheme.

1 Introduction

Let T be a weighted tree. The tree metric induced by T , denoted MT , is the complete graph on
the vertices of T where the weight of each edge (u, v) is the weight of the path connecting u and
v in T . For t ≥ 1, a t-spanner for a metric (V, d) is a subgraph H of the complete graph on V
such that every pair of distinct points u, v ∈ V is connected by a path in H of total weight at
most t · d(u, v). We refer to such paths as t-spanner paths. A t-spanner has diameter Λ if every
pair of points is connected by a t-spanner path consisting of at most Λ edges. Typically, t-spanners
are designed to be sparse, often with a linear number of edges. The lightness of a graph is the
ratio of its weight to the weight of its minimum spanning tree. Solomon and Elkin [14] define a
1-spanner for tree metrics. Given an n vertex weighted tree of maximum degree ∆, the 1-spanner
has O(n) edges, O(log n) diameter, O(log n) lightness and maximum degree bounded by ∆+O(1).
While being an interesting construction in its own right, this tree metric 1-spanner has been used
in a series of papers as a tool for reducing the diameter of various Euclidean and doubling metric
spanner constructions [2, 7, 9, 14, 15].
Once a spanner has been constructed, it becomes important to find these short paths efficiently.
A local routing algorithm for a weighted graph G is a method by which a message can be sent
from any vertex in G to a given destination vertex. The successor to each vertex u on the path
traversed by the routing algorithm must be determined using only knowledge of the destination
vertex, the neighbourhood of u and possibly some extra information stored at u. The efficiency of a
routing algorithm is measured by the distance a message needs to travel through a network before
reaching its destination as well as by the storage requirements for each vertex. There is a great
deal of work on local routing algorithms in the literature. The difficulty of designing a good local
routing algorithm clearly depends on the properties of the underlying network. Some authors have

A preliminary version of this paper appeared in the proceedings of COCOON’20 [6].
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designed algorithms for very general classes of networks. For example, the algorithm of Chan et al.
[8] works in any network although its quality depends on the induced doubling dimension. Many
authors have focused on highly efficient algorithms for specific classes of networks. For example,
there has been a line of research into routing algorithms for various classes of planar graphs [4, 5].
Support for efficient local routing algorithms is a desirable feature in a spanner and in some recent
papers, researchers have designed spanners which simultaneously achieve support for efficient local
routing with other properties. See, for example, the work of Ashvinkumar et al. [3].
There appears to be little work in the literature in designing spanners which achieve both support
for local routing as well as low diameter. Given a spanner with diameter Λ, it is natural to require
that a local routing algorithm on this spanner match this diameter, i.e., the algorithm should be
guaranteed to terminate after at most Λ hops. Abraham and Malkhi [1] give a construction, for
any ǫ > 0, of a (1+ ǫ)-spanner for points in two dimensional Euclidean space with an accompanying
routing algorithm. The diameter of the routing algorithm is O(logD) with high probability where
D is the quotient of the largest and smallest inter-point distances. The routing algorithm has
routing ratio O(log n), with high probability, for n points on a uniform grid.
In this paper, we demonstrate that the 1-spanner construction of Solomon and Elkin [14] supports
a local routing algorithm with O(log n) diameter in the worst case. In Section 4, we show that this
routing algorithm can be adapted to a class of doubling metric (1 + ǫ)-spanners which employ the
1-spanner construction to achieve low diameter while retaining low weight and low degree.

2 The Model

A local routing algorithm for a weighted graph G is a distributed algorithm in which each vertex
is an independent processor. At the beginning of a round, a node may find that it has received a
message. If a message is received, the algorithm decides to which neighbour the message should be
forwarded. The following information is available to each vertex v in G:

1. A header contained in the message.

2. The label of v as well as labels of neighbouring vertices.

The message header stores the label of the destination vertex as well as other information if required
by the routing algorithm. The labels are used not only as unique identifiers of vertices but may also
store additional information if required. The labels of vertices are computed in a pre-processing
step before the algorithm is run. Our model does not consider the running time of computation
performed at each vertex in each round and so we do not specify the type of data structure used for
headers and labels. The routing decision made at each vertex is deterministic. A routing algorithm
is evaluated on the basis of the following quality measures.

• Routing Ratio. Given two vertices u, v of G, let dG(u, v) denote the shortest path distance
from u to v and let droute(u, v) denote the total length of the path traversed by the routing

algorithm when routing from u to v. The routing ratio is defined to be maxu,v∈V

{

droute(u,v)
dG(u,v)

}

.

• Diameter. A routing algorithm is said to have diameter Λ if a message is guaranteed to reach
its destination after traversing at most Λ edges.

• Storage. A bound on the number of bits stored at vertices and in message headers.
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3 Local Routing in Tree Metrics

In this section we present a slightly modified version of the tree metric 1-spanner of Solomon and
Elkin [14]. We then present our routing algorithm for this spanner and show that it has a routing
ratio of 1.

3.1 The Spanner

In this section we describe the tree metric 1-spanner construction of Solomon and Elkin [14].
We first define some notation used in this section. T will denote a weighted, rooted tree and
wt(T ) will denote its weight. Given a graph G, V (G) and E(G) denote its vertex and edge sets
respectively. The root of T is denoted rt(T ) and ch(v) denotes the number of children of v. As in
the notation of [14], the children of a vertex v are denoted c1(v), ..., cch(v)(v) and p(v) denotes the
parent of a vertex v. The lowest common ancestor of two vertices u, v ∈ V (T ) will be denoted by
lca(u, v). Given u, v ∈ V (T ), P (u, v) denotes the unique path from u to v in T . Given v ∈ V (T ),
Tv will denote the subtree of T rooted at v.
The shortcutting procedure selects a constant number of cut vertices in the tree whose removal
results in a forest of trees which are at most a constant fraction of the size of the input tree. The
spanner is obtained by building the complete graph on these cut vertices and recursively applying
the procedure to all subtrees obtained by removing the cut vertices. We note that the original
construction appearing due to Solomon and Elkin [14] actually builds a low diameter spanner on
the cut vertices rather than the complete graph.
We first outline the method by which the cut vertices are selected. We assume that among all
subtrees rooted at children of a vertex v, the subtree rooted at the leftmost vertex is the largest.
That is, |Tc1(v)| ≥ |Tci(v)|, for all i > 1.
For an integer d, we call a vertex v d-balanced if |Tc1(v)| ≤ |T | − d. We label an edge (u, v) of T as
leftmost if u = c1(v) or v = c1(u). Let P (v) denote the path of maximum length from v to some
descendant of v which includes only leftmost edges. We say the last vertex on P (v) is the leftmost
vertex in Tv and we denote it by l(v). We define l(T ) := l(rt(T )). The construction we describe
involves taking subtrees of an input tree. These subtrees inherit the ‘leftmost’ labelling of the input
tree so it may be the case that l(T ) = rt(T ). If there is a d-balanced vertex along P (v), we denote
the first such vertex by bd(v). Otherwise, bd(v) = NULL.
Given a rooted tree T and a positive integer d, we define a set of vertices CV (T, d) as follows. Set
v := rt(T ). If bd(v) = NULL, CV (T, d) is defined to be ∅. Otherwise,

CV (T, d) := {bd(v)} ∪





ch(bd(v))
⋃

i=1

CV (Tci(bd(v)), d)



 .

Let k be a positive integer. We define a set of vertices

CT :=

{

V (T ) if k ≥ n/2− 1,

CV (T, d) ∪ {l(T ), rt(T )} otherwise.

where d := n/k. (See Figure 1 for an example.) The spanner is constructed via the following
recursive procedure which takes as input a tree T and an integer parameter k ≥ 4. Initialize the
spanner as G = T . Compute the set CT , with respect to k, and add the edges of the complete
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Figure 1: A depiction of the set CT for a tree with n = 17 vertices and the parameter k set to
k = 5. The vertices of CT are inside the dashed circles. The vertices and edges of the forest T \CT

are shown in bold.

graph on CT to G. Denote by T \ CT the forest obtained by removing the vertices in CT , along
with all incident edges, from T . Recursively run the algorithm on all trees in the forest T \ CT

and add the resulting edges to G. Note that the parameter k is passed down to recursive calls of
the algorithm while the parameter d is recomputed based on the size of the subtree on which the
algorithm is called. The following lemmas are established by Solomon and Elkin [14]:

Lemma 3.1. For k ≥ 2, the set CT contains at most k + 1 vertices.

Lemma 3.2. Each tree in the forest T \ CT has size at most 2n/k.

In particular, Lemma 3.2 implies that the recursion depth of the spanner construction algorithm is
O(log n) for k ≥ 4.
Solomon and Elkin [14] show that the graph resulting from a slightly more elaborate version of this
shortcutting scheme has weight O(log n) ·wt(T ). Their scheme differs from what we have presented
in that instead of building the complete graph on the set of cut vertices CT , they build a certain
1-spanner with O(k) edges and diameter O(α(k)) where α is the inverse Ackermann function. Since
we consider the parameter k to be constant, this modification does not affect the weight bound of
the construction.

Theorem 3.1 ([14]). Let T be a weighted rooted tree and let k be a positive integer, 4 ≤ k ≤ n/2−1.
The graph G obtained by applying the algorithm described above to T using the parameter k is a
1-spanner for the tree metric induced by T . Moreover, G has diameter bounded by O(logk n), weight
bounded by O(k2 ·logk n)·wt(T ) and maximum degree bounded by ∆+O(k) where ∆ is the maximum
degree of T .

Let G be the spanner resulting from running the algorithm described above on some tree T with
respect to the parameter k. We define canonical subtrees of T with respect to k to be the subtrees
computed during the course of the construction of G. Canonical subtrees are defined recursively
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as follows. As a base for the recursive definition, the input tree T is considered to be a canonical
subtree with respect to T and k. Suppose T ′ is a canonical subtree with respect to T and k. Then
each tree in the forest T ′\CT ′ is a canonical subtree with respect to T and k. We speak of canonical
subtrees without reference to the parameters T and k when they are clear from the context. Given a
vertex v of T , we denote by T v the canonical subtree for which v ∈ CTv . When a canonical subtree
T ′ is small enough, CT ′ = V (T ′) and so it is clear that CTv is well defined for each v ∈ V (T ). We
say that T v is the canonical subtree of v and that v is a cut vertex of T v.
We establish some technical properties of canonical subtrees which will be of use in the following
section. We reword statement 4 in Corollary 2.17 from the paper of Solomon and Elkin [14] in
Lemma 3.3 and prove it using our terminology for completeness.

Lemma 3.3. Let T ′ be a canonical subtree of T and let T ′′ be the canonical subtree such that
T ′ ∈ T ′′ \CT ′′ . There are at most two edges in T with one endpoint in T ′ and the other outside T ′.
Moreover, any vertex of T ′ incident to a vertex outside T ′ must be rt(T ′) or l(T ′).

Proof. We first need to establish the following claim.

Claim: Let u, v ∈ CT ′ for some canonical subtree T ′. Suppose v is a descendant of u′ where u′ is
some child of u. If w is the first d-balanced vertex on the path from u′ to the left most vertex in
T ′

u′ , then v = w or v is a descendant of w.

Proof of claim: By definition of the cut vertex procedure, v is a member of the set CV (T ′

u′ , d). If
v = w, we are done so suppose v 6= w. Every cut vertex in CV (T ′

u′ , d) other than w is contained in
some T ′

w′ for some child w′ of w. The claim follows.

We note that any edge with one endpoint in T ′ and the other outside T ′ must have its other
endpoint in CT ′′ . In particular, the parent of x := rt(T ′) must be an element of CT ′′ . Let v1 be the
parent of x. Suppose there is a second edge from a vertex v2 ∈ CT ′′ to a vertex w in V (T ′). Note
that v2 must be a child of w for otherwise T would contain a cycle. Then v2 is a descendant of x.
Let x′ be the first d-balanced vertex on the path from x to the left most vertex in T ′′

x . Note that
x′ ∈ CT ′′ . By the claim, v2 either coincides with, or is a descendant of, x′. If the latter holds, the
parent of v2 cannot be a vertex in T ′ and so v2 = x′. Suppose there exists a third vertex v3 ∈ CT ′′

which has a parent in T ′. Then v3 is a member of CT ′′ which is a descendant of x and neither
equal to, nor a descendant of, the vertex x′ which is impossible given the claim. Since v2 is the first
d-balanced vertex on the path from x to the left most vertex in T ′′

x , v2 must be the leftmost child
of its parent. It follows that the parent of v2 is l(T ′).

Lemma 3.4. Let T ′ and T ′′ be canonical subtrees such that T ′′ ∈ T ′ \CT ′ and let v be some vertex
of T ′′. Let X be the set of vertices in CT ′ which are ancestors of v. Let x be the element of X
deepest in T and let x′ be the child of x which is an ancestor of v. Then x′ = rt(T ′′). (See Figure
2.)

Proof. Consider the path P (rt(T ′), v). Note that all vertices in X lie on this path. It is easy to see
that this path enters T ′′ through rt(T ′′). The vertex on this path preceding rt(T ′′) is a member of
CT ′ , and an ancestor of v and therefore a member of X . Since the predecessor of rt(T ′′) is clearly
deeper than all other vertices in X , the lemma follows.
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T
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′

Figure 2: Lemma 3.4. The set X consists of the red vertices.

In the spanner, a vertex u is connected to all vertices in CTu . The following lemma ensures that
in the routing algorithm described in the next section, under certain conditions, it is safe to make
a ‘greedy’ choice from a subset of vertices in CTu .

Lemma 3.5. Let u and v be vertices in G such that v is not a vertex of T u. Let X be the set of
vertices in CTu which are ancestors of v. Suppose X 6= ∅ and let x be the last vertex on the path
from u to v which is contained in T u. Then x ∈ X. Moreover, x is the deepest vertex in X. (See
Figure 3.)

Proof. By Lemma 3.3, x is either rt(T u) or l(T u). Since X 6= ∅, rt(T u) is an ancestor v which also
implies l(T u) is an ancestor of v. Then x is an ancestor of v and it remains to be shown that x is
the deepest vertex in X . Let x∗ be the deepest vertex in X and suppose x∗ 6= x. The path from
x∗ to v must leave T u through either rt(T u) or l(T u). Since we also have that x ∈ {rt(T u), l(T u)}
and since x∗ 6= x, we must have x = rt(T u) and x∗ = l(T u). Then there would be two distinct
paths from rt(T u) to v, a contradiction since T is a tree. The lemma follows.

Lemma 3.6. Let u and v be vertices of T such that u is a descendant of v and T v is contained in
T u. Let T ′ be the canonical subtree in the forest T u \CTu which contains v and let X be the set of
vertices in CTu which are descendants of v and ancestors of u. Let x be the element of X which is
highest in T . Then either rt(T ′) or l(T ′) is the parent of x. (See Figure 4.)

Proof. Note that X = P (u, v) ∩ CTu . Let w be the first vertex on P (u, v) which is contained in
T ′. By Lemma 3.3, w ∈ {rt(T ′), l(T ′)}. Let x′ be the predecessor of w on P (u, v). Since v is
an ancestor of u, x′ is a child of w. Since x′ is a vertex outside T ′ connected to a vertex in T ′,
x′ ∈ CTu and hence x′ ∈ X . Clearly x′ is also the highest vertex in X and so x′ = x and the lemma
follows.
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Figure 3: Lemma 3.5. The set X consists of the red vertices.

T
u

T
′

u

v

x

Figure 4: Lemma 3.6. The set X consists of the red vertices.

3.2 Routing Algorithm

In this section, we describe a local routing algorithm for the spanner defined above. Throughout
what follows, let G denote the graph obtained when the algorithm of the previous section is applied
to a weighted, rooted tree T using a parameter k ≥ 4. We first define the labels label(v) for vertices
v ∈ V (G). We make use of the interval labelling scheme of Santaro and Khatib [13]. Let rank(v)
denote the rank of v in a post-order traversal of T . We define

L(v) := min{rank(w) : w ∈ V (Tv)}.

We define the label of v to be label(v) = [L(v), rank(v)]. The observation used in the routing
algorithm of Santaro and Khatib [13] is that a vertex w is a descendant of v if and only if rank(w) ∈
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[L(v), rank(v)]. Note that the label of each vertex can be computed in linear time in a single
traversal of the tree.

Lemma 3.7. In the labelling scheme outlined above, each vertex of G stores O((∆ + k) log n) bits
of information.

Proof. Since G has n vertices, for each v ∈ V (G), rank(v) and L(v) are both integers in the interval
[1, ..., n] and therefore require O(log n) bits to be represented. By Theorem 3.1, each vertex of G
has at most ∆ + O(1) neighbours in G. Then, for any v ∈ V (G), we require O((∆ + k) logn) bits
to store rank(w) and L(w) for each neighbour w of v.

For our routing algorithm, no auxiliary data structure is required at each vertex and so the total
storage requirement per vertex is O((∆ + k) logn) bits. Our routing algorithm considers a number
of cases depending on the labels of the current vertex u and destination vertex v. For convenience
of analysis, in each case we specify two routing steps. For ease of exposition, we consider a vertex
to be both a descendant and ancestor of itself.
Case 0: If v is a neighbour of u, route to v.

Case 1: u is an ancestor of v in T . Let X be the set of vertices in CTu which are ancestors of v.
Let x be the deepest element of X . Route first to x and then to the child of x which is an ancestor
of u.

Case 2: u is a descendant of v in T . Let X be the set of vertices in CTu which are descendants of
v and ancestors of u. Let x be the highest vertex in X . Route first to X and then to its parent.

Case 3: u is not an ancestor or descendant of v. Let X be the set of vertices in CTu which are
ancestors of v and not ancestors of u. If X 6= ∅, we define x to be the deepest vertex in X and
define x′ to be the child of x which is an ancestor of v. Let Y be the set of vertices in CTu which
are ancestors of u but not ancestors of v. We define y to be the highest vertex in Y .

Case 3 a): X is empty. Route first to y and then to the parent of y.

Case 3 b): X is non-empty. Route first to x and then to x′.

The routing algorithm uses a greedy strategy. Given the destination vertex and neighbours due to
tree edges and shortcut edges, the algorithm simply selects the edge that appears to make the most
progress. It is not obvious that this strategy gives the desired O(log n) diameter of the routing
algorithm. Indeed, this bound would not hold if the shortcuts were arbitrary edges and hinges on
the particular structure of the 1-spanner.
The arguments we make in our analysis will make use of certain integer sequences we assign to
vertices of G. Note that these sequences are used only for the analysis of the algorithm and are
not part of the labelling scheme. We define a unique integer sequence for each canonical subtree
computed during the course of the spanner construction. Each vertex v will be assigned the sequence
corresponding to the tree T v.
The integer sequence for each canonical subtree is defined recursively as follows. The input tree T
is given the empty sequence. Suppose T ′ is a canonical subtree which has already been associated
with some sequence S. Consider the forest T ′ \ CT ′ = {T1, ..., Tp}. Each tree Tj ∈ T ′ \ CT ′ is

8



associated with the sequence obtained by appending j to S. It is clear that every vertex of T
appears in CT ′ for exactly one canonical subtree T ′. Let Sv denote the sequence assigned to the
vertex v. We refer to Sv as the canonical sequence of v.
Observe that if for two vertices u, v ∈ V (G) we have that Su = Sv, by definition of the spanner
construction algorithm, u and v must be cut vertices of the same canonical subtree of T and are
therefore connected by an edge in G. The routing algorithm works by choosing a successor vertex
so as to incrementally transform the canonical sequence of the current vertex into the canonical
sequence of the destination vertex.

Lemma 3.8. Let u and v be vertices of G such that u is an ancestor of v. Consider the two vertices
visited after executing the routing steps of Case 1 when routing from u to v. These vertices are on
the path from u to v in T . Moreover, these vertices are visited in the order they appear on this path.

Lemma 3.9. Let u and v be vertices of G such that u is a descendant of v. Consider the two
vertices visited after executing the routing steps of Case 2 when routing from u to v. These vertices
are on the path from u to v in T . Moreover, these vertices are visited in the order they appear on
this path.

Lemma 3.8 and Lemma 3.9 are immediate from the definition of the routing steps.

Lemma 3.10. Let u and v be vertices of G such that u is not an ancestor or a descendant of v.
Suppose the set X, as defined in Case 3 of the routing algorithm, is empty. Consider the vertices
visited after executing Case 3 a) of the routing algorithm. These vertices are on the path from u to
the v. Moreover, these vertices are visited by the routing algorithm in the order they appear on this
path.

Proof. Let w1 be the first vertex visited in Case 3 a) and let w2 be the second. Then w1 is the
vertex y and w2 is its parent. Since y is, by definition, not an ancestor of v, it lies on the path from
u to lca(u, v) and is not equal to lca(u, v). Since w2 is the parent of y, it is clearly the next vertex
on P (u, lca(u, v)).

Lemma 3.11. Let u and v be vertices of G such that u is not an ancestor or descendant of v.
Suppose the set X, as defined in Case 3 of the routing algorithm, is non-empty. Consider the
vertices visited after executing Case 3 b) of the routing algorithm. These vertices are on the path
from lca(u, v) to v. Moreover, these vertices are visited in the order they appear on this path.

Proof. Let w1 be the first vertex visited in Case 3 b) and let w2 be the second. w1 is an ancestor
of v which is not an ancestor of u. It follows that w1 is a descendant of lca(u, v). By definition of
Case 3 b), w2 is the child of w1 which is an ancestor of v. It is clear that w2 is the successor to w1

on the path P (lca(u, v), v). The lemma follows.

Lemmas 3.8, 3.9, 3.10 and 3.11 imply the following:

Lemma 3.12. Let u and v be vertices of G and let P (u, v) = (u = x1, ..., xp = v). Suppose the
routing steps of a single case of the routing algorithm are executed and vertices w1 and w2 are
visited. Then there are indices 1 ≤ i1 ≤ i2 ≤ p such that w1 = xi1 and w2 = xi2 .

Using Lemma 3.12, we can show the routing algorithm has a routing ratio of 1.
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Theorem 3.2. Let u and v be vertices of G. Let δT (u, v) denote the length of the path from u to
v in T . The routing algorithm described above is guaranteed to terminate after a finite number of
steps and the length of the path traversed is exactly δT (u, v).

Proof. Lemma 3.12 implies that the vertices visited when any case of the routing algorithm is
executed are on the path from the current vertex to the destination and they are explored in the
order they appear on the path. Each case leads to at least one new vertex being explored. If
P = (u = x1, x2, ..., xp = v) is the path from u to v in T , the arguments made above imply that
the path traversed by the routing algorithm is of the form P ′ = (xi1 , xi2 , ..., xil) where 1 ≤ i1 <
i2 < ... < il ≤ p, i.e., P ′ is a sub-sequence of P . In the tree metric MT , the weight of the edge
(xij , xij+1

) is by definition equal to the weight of the path (xij , xij+1, ..., xij+1
) and so the theorem

follows.

We now argue that the routing algorithm is guaranteed to terminate after traversing O(log n) edges.
To this end, we first prove the following lemma.

Lemma 3.13. Let u and v be vertices of T such that u is either an ancestor or a descendant of
v. Let u′ be the vertex reached after executing the routing steps of either Case 1 or Case 2 when
routing from u to v. Then the following statements hold:

1. If Su is a prefix of Sv, then |Su′ | > |Su|. Moreover, either Su′ = Sv or S′

u is a prefix of Sv.

2. If Sv is a prefix of Su, then |Su′ | < |Su|. Moreover, either Su′ = Sv or Sv is a prefix of Su′ .

3. Suppose Su and Sv share a common prefix S of length m < min{|Su|, |Sv|}. Then |Su′ | < |Su|.
Moreover, either Su′ = S or S is a prefix of Su′

Proof. We begin with the first statement. Suppose Su is a prefix of Sv. Then T u contains T v. Let
T ′ be the canonical subtree in the forest T u \CTu which contains T v. By definition, the canonical
sequence of any cut vertex of T ′ can be obtained by appending some integer to Su. Since T v is
contained in T ′, the canonical sequence associated to T ′ is a prefix of Sv. Then it is sufficient to
show that u′ ∈ CT ′ . Suppose u is an ancestor of v so that the algorithm executes the routing
steps of Case 1. Recall that in Case 1 the set X is defined as the set of vertices in CTu which are
ancestors of v and the vertex x is defined as the deepest vertex in X . Then by definition of Case
1, u′ is the child of x which is an ancestor of v. By Lemma 3.4, u′ = rt(T ′). Since rt(T ′) ∈ CT ′ ,
the statement of the lemma follows in this case. Now suppose u is a descendant of v so that the
algorithm executes the routing steps of Case 2. Recall that in Case 2, X is defined to be the set
of vertices in CTu which are descendants of v and ancestors of u and x is defined to be the highest
vertex in X . By definition of Case 2, the algorithm routes to x and then to the parent of x. Then
u′ is the parent of x. By Lemma 3.6, u′ ∈ {l(T ′), rt(T ′)}. Since {l(T ′), rt(T ′)} ⊆ CT ′ , the first
statement of the lemma holds in this case.
We now address the second and third statements of the lemma. Suppose Su is not a prefix of Sv.
Let S be the longest common prefix of Su and Sv. Then either S = Sv or S is a prefix of Sv. Let
T ′′ be the canonical subtree corresponding to the canonical sequence S. Observe that T ′′ contains
T u. Let T ′ be the canonical subtree such that T u ∈ T ′ \ CT ′ . Then either T ′′ = T ′ or T ′′ contains
T ′. Note that the canonical sequence of any cut vertex of T ′ is a prefix of Su. Moreover, for any
canonical sequence S′ of a cut vertex in T ′, either S = S′ or S is a prefix of S′. We claim that
u′ ∈ CT ′ . When Sv is a prefix of Su, we see this implies the second statement. When Su and Sv

share a prefix of length m < min{|Su|, |Sv|}, we see that our claim implies the third statement.

10



We now prove the claim. Suppose that u is an ancestor of v so that the algorithm executes the
routing steps of Case 1. Let X and x be as defined in Case 1. Then u′ is the child of x which is an
ancestor of v. By Lemma 3.5, x is the last vertex on the path from u to v which is contained in T .
Since x is an ancestor of v and u′ is both a child of x and ancestor of v, it is clear that u′ is the next
vertex on P (u, v). Since u is a vertex outside T ′ connected to a vertex in T u, we see that u′ ∈ CT ′

and so the claim holds in this case. Suppose now that u is a descendant of v so that the algorithm
executes the routing steps of Case 2. Let X and x be as defined in Case 2. Note that since u is a
descendant of v, rt(T u) must also be a descendant of v. Then rt(T u) ∈ X . Since rt(T u) must be
the highest vertex in X , we see that x = rt(T u). Since the parent of rt(T u) is clearly a member of
CT ′ , the claim holds. This completes the proof of the lemma.

Note that if u is an ancestor (resp. descendant) of v, then by Lemma 3.12 the vertex reached after
executing the steps of Case 1 (resp. Case 2) will also be an ancestor (resp. descendant) of v.

Lemma 3.14. Suppose u and v in G are such that u is an ancestor or descendant of v in T . Then,
when routing from u to v, the routing algorithm reaches v after traversing O(log n) edges.

Proof. Suppose that u is an ancestor of v (the argument in the case where u is a descendant of v is
symmetric) and let K be the maximum length of the canonical sequence of any vertex of G. Note
that by Lemma 3.2, each canonical subtree is at most 2/k times the size of its smallest containing
canonical subtree and so the recursion depth is at most O(log n) which, by definition of canonical
sequences, implies K = O(log n). If Su is a prefix of Sv, by Lemma 3.13, the routing steps executed
in a single iteration of Case 1 traverse at most two edges and lead to a vertex u′ which is an ancestor
of v and for which Su′ is a prefix of Sv strictly longer than Su. Then after traversing at most 2 ·K
edges, the routing algorithm will reach v. An analogous argument can be made in the case where
Sv is a prefix of Su.
Assume that Su and Sv have a common prefix of length m < min{|Su|, |Sv|}. By Lemma 3.13, after
traversing at most 2 ·K edges, the algorithm reaches a vertex u′ which is an ancestor of v and is
such that Su′ is a prefix of Sv. By the argument made above, after traversing at most another 2 ·K
edges, the routing algorithm reaches v. Then in all cases, after traversing at most 4 ·K edges, the
algorithm reaches its destination. This completes the proof of the lemma.

Consider the case where u is neither an ancestor nor a descendant of v. The following lemma shows
that in this case, the algorithm either routes to a vertex on the path P (lca(u, v), v) or it follows the
routing steps that would be executed if the algorithm were routing from u to lca(u, v).

Lemma 3.15. Let u and v be vertices of G such that lca(u, v) /∈ {u, v}. Suppose that the set X
as defined in Case 3 is empty so that the algorithm executes the routing steps of Case 3 a) when
routing from u to v. The same steps would be performed when routing from u to lca(u, v).

Proof. Recall the set Y in Case 3 is defined as the set of ancestors of u which are not ancestors of
v. Consider Case 2 when routing from u to lca(u, v). The set X in Case 2 is defined as the set of
ancestors of u which are descendants of lca(u, v). Since an ancestor of u is a descendant of lca(u, v)
if and only if it is not an ancestor of v, we see that X = Y . In Case 3 a) the algorithm routes to
the highest vertex in Y and then its parent. In Case 2 the algorithm routes to the highest vertex
in X and then its parent. We see the algorithm executes the same routing steps in both cases and
so the lemma follows.
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Using Lemmas 3.14 and 3.15, we establish the main result of this section.

Theorem 3.3. Let u and v be vertices in G. The routing algorithm reaches v when routing from
u after traversing at most O(log n) edges.

Proof. Lemma 3.14 implies the theorem when u is an ancestor or descendant of v. Then we need
only consider the case where u is neither an ancestor nor descendant of v. Suppose the algorithm
executes the steps of Case 3 a) at some point when routing from u to v. Let u′ be the current vertex
after the steps of Case 3 a) are executed. Then u′ is an ancestor of v and so the algorithm will reach
v after traversing another O(log n) edges. It remains to argue that O(log n) edges are traversed
before the current vertex is an ancestor of v. By Lemma 3.15 and Lemma 3.14, the algorithm either
executes the steps of Case 3 a) or reaches lca(u, v) after traversing O(log n) edges. This completes
the proof of the theorem.

4 Routing in a Doubling Metric Spanner

The 1-spanner of the previous section was designed to be a tool for reducing the diameter of
Euclidean spanners without compromising bounds on degree and weight. It has been applied in a
series of papers on various constructions of spanners of doubling metrics. The doubling dimension
of a metric (M,d) is the smallest number λ such that, for any r > 0, any ball of radius r can be
covered by at most 2λ balls of radius r/2. An n-point metric is said to be doubling if the doubling
dimension is constant in n. The class of doubling metrics contains the class of Euclidean metrics as
m-dimensional Euclidean metrics can be shown to have doubling dimension Θ(m). The spanners
for doubling and Euclidean metrics to which the 1-spanner shortcutting scheme has been applied
are all based on some variety of hierarchical decomposition of the input point set. In particular,
spanners based on the dumbbell trees of Arya et al. [2] and the net tree approach [10, 12] have
been proposed. We will show that the routing algorithm described in the previous section can be
extended to a routing algorithm on a low diameter doubling metric (1 + ǫ)-spanner based on the
net tree.

4.1 A net tree based spanner

The spanner we describe here is a simplified version of the spanner described by Chan et al. [7].
The starting point of their construction is based on the spanner of Gao et al. [10].

In this section, (M,d) will denote an n-point doubling metric. Let dim(M) denote the doubling
dimension of M . We assume without loss of generality that the distance between the closest pair
of points in M is 1.

Definition 4.1. For r > 0, a subset N ⊆ M is said to be an r-net for M if

• d(x1, x2) > r for all distinct pairs of points x1, x2 ∈ N .

• For all y ∈ M , there exists x ∈ N such that d(x, y) ≤ r.

The first step of the construction is to compute a certain sequence of nets. Specifically, we compute
a nested sequence of sets M = N0 ⊇ N1 ⊇ ... ⊇ NlogD where Ni is a 2i-net of Ni−1 and D
is the largest inter-point distance among pairs of points in M . Note that NlogD consists of a

12



single point. An efficient method for computing such a sequence of nets is given by Har-Peled and
Mendel [12]. Next, we describe the so-called net tree which we denote T . The net tree has a node
at level-i for each point in the set Ni. If a level-i node corresponds to a point p ∈ Ni, we say
that p is the representative of v and write rep(v) = p. Note that a given point in p can be the
representative of multiple nodes in T . The root of the tree corresponds to the singleton set NlogD

and the leaves of T are in one-to-one correspondence with the points of M . The parent of each
node v at level-i is a node w at level-(i + 1) for which d(rep(v), rep(w)) ≤ 2i+1. The constant
doubling dimension of M immediately implies that nodes in T have a constant number of children.
The tree induces a graph H on M in the natural way, i.e., each edge (u, v) ∈ E(T ) corresponds
to the edge (rep(u), rep(v)) ∈ E(H). For a point p ∈ M , we also use p to denote the leaf of T
which has p as its representative. Given a leaf p, we denote by p(i) the level-i ancestor of p in T .
Given two nodes u, v ∈ V (T ), we define d(u, v) := d(rep(u), rep(v)). The graph H as currently
defined is not a (1 + ǫ)-spanner for M . To guarantee a 1+ ǫ spanning ratio, certain cross edges are
added at each level. Fix a constant γ > 4. For each pair of level-i points u, v ∈ V (T ) for which
d(rep(u), rep(v)) ≤ γ ·2i, we add the cross edge (u, v) to T . If we make a sufficiently large choice of
γ = O(1/ǫ), the graph H resulting from the addition of these cross edges to T can be shown to be
a (1 + ǫ)-spanner for M . The following theorem is established in the proof of Theorem 3.2 in [10].

Theorem 4.1. Let p, q be points in M and let i be the smallest integer such that the level-i ancestors
of p and q are connected by a cross edge. Consider the path in T obtained by climbing from p to
its level-i ancestor, taking the cross edge to the level-i ancestor of q and descending to q. Then the
path in H corresponding to this path has total length (1 + ǫ) · d(p, q).

The maximum degree of the spanner as described above is O(ǫ− dim(M) logD) as some points in
M may represent many nodes in T . Gottlieb and Roddity [11] devised a technique to reduce the
degree bound to O(ǫ−dim(M)) by carefully reassigning representatives.
The depth of the net tree is O(logD). In particular, if D is not bounded by a polynomial in n, the
net tree may have linear depth and so the diameter of the spanner may be linear. We say a subtree of
T is light if it has height log(D

n
). Chan et al. [7] show that by applying the tree metric construction

of the previous section to all light subtrees of T , it is possible to reduce the diameter of the spanner
to O(log n) without increasing the asymptotic bound on the weight. Chan et al. [7] show that
the weight of the spanner, after shortcuts are added, is at most O(ǫ−dim(M) logn) · wt(MST (M)),
where MST (M) is a minimum spanning tree of M . Chan et al. [7] make additional modifications
to ensure fault tolerance although we will not work with this version of the spanner.
To summarise, the spanner we work with has (1+ǫ)-stretch, O(ǫ− dim(M)) degree, O(ǫ−dim(M) logn)·
wt(MST (M)) weight and O(log n) diameter.
For the remainder of this section, T ∗ will denote the net tree with cross edges and shortcuts. H
denotes the constant degree spanner of (M,d) induced by T ∗. Our routing algorithm will make use
of the following property of the spanner H .

Lemma 4.1. For p, q ∈ M , the smallest integer i such that the level-i ancestors of p and q are
guaranteed to be joined by a cross edge lies in the interval

[⌊

log

(

d(p, q)

γ + 4

)⌋

,

⌈

log

(

d(p, q)

γ − 4

)⌉]

.

Proof. Lemma 4.1 in the paper of Gao et al. [10] implies that if (p(i), q(i)) is a cross edge, then
(p(j), q(j)) is a cross edge for all j ≥ i. Then i is the unique integer for which (p(i), q(i)) is a cross
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edge and (p(i−1), q(i−1)) is not. Observe that for j < log
(

d(p,q)
γ+4

)

, we have d(p, q) > (γ +4) · 2j . By

definition of the net tree, d(p(j), p) ≤
∑j

k=1 2
k ≤ 2 · 2j. By the triangle inequality we have d(p, q) ≤

d(p(j), q(j))+ d(p, p(j))+ d(q, q(j)) ≤ d(p(j), q(j))+ 4 · 2j and so d(p(j), q(j)) ≥ d(p, q)− 4 · 2j > γ · 2j.
Then by the construction of the spanner, there is no cross edge between p(j) and q(j). A similar

argument shows that for j >
⌈

log
(

d(p,q)
γ−4

)⌉

, d(p(j), q(j)) ≤ γ · 2j and so there is guaranteed to be a

cross edge between p(j) and q(j). Then since (p(j), q(j)) is not a cross edge for j =
⌊

log
(

d(p,q)
γ+4

)⌋

−1

and is guaranteed to be a cross edge for j =
⌈

log
(

d(p,q)
γ−4

)⌉

, the lemma follows.

Note that the length of the interval computed in Lemma 4.1 is log
(

γ+4
γ−4

)

= O(1). This fact

is needed to establish a bound on the diameter of the routing algorithm we present in the next
section.

4.2 Labelling Scheme and Routing Algorithm

Gottlieb and Roddity [11] show it is possible to route in the net tree in their construction while
taking care to use the first available cross edge. This algorithm has a routing ratio of 1+ ǫ and the
required labels are short as a result of the degree bound. We apply their method to the version of
the spanner have described although we make use of our 1-spanner routing algorithm whenever the
message passes through short subtrees so as to take advantage of the available shortcuts. We first
describe the labels of T ∗. Since each point in p ∈ M is the representative of multiple nodes in T ∗,
the label of p will contain the labels of all nodes v ∈ V (T ∗) for which p = rep(v). Note that there
is a constant number of such nodes in T ∗ for each p ∈ M .
Initially, each node v ∈ V (T ∗) is labelled with the interval [L(v), rank(v)], the same labelling
scheme used in our 1-spanner routing algorithm. Next, for each light subtree T ′ of T , we label the
vertices of T ′ with the labels required for the 1-spanner routing algorithm on T ′.
When routing from a point p to a point q in M , in order to obtain a (1 + ǫ) routing ratio, the
algorithm must make use of the first cross edge connecting ancestors of p and q. Since we make
use of shortcuts, there is a danger the algorithm may ‘overshoot’ the correct level. Therefore, the
algorithm requires a means to estimate the level of the tree containing a viable cross edge, i.e., the
algorithm should be able to locally compute the interval of Lemma 4.1. If M is a Euclidean metric,
the distance d(p, q) can be computed if the labels of the points store their coordinates. However, if
M is an arbitrary doubling metric, it is not obvious how to achieve this goal. For δ > 0, a (1 + δ)-
ADLS is a labeling of points in a metric space that allows approximation of pairwise distances to
within a factor of 1 + δ. That is, given the labels of points x and y in a (1 + δ)-ADLS, we are able
to compute a value d̃(x, y) such that

d(x, y) ≤ d̃(x, y) ≤ (1 + δ)d(x, y).

Har-Peled and Mendel [12] give a (1 + δ)-ADLS for doubling metrics in which each label consists
of at most min{δ−O(dim(M)) · logD, δ−O(dim(M)) · logn(log n + log logD)} bits. If we work with a
(1 + δ)-ADLS rather than exact distances, the interval of Lemma 4.1 becomes

[⌊

log

(

d̃(p, q)

(γ + 4)(1 + δ)

)⌋

,

⌈

log

(

d̃(p, q)

(γ − 4)

)⌉]

.
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Note that the length of this interval is still O(1).
To summarize, the label of each point p ∈ M contains:

• The label of p in a (1 + δ)-ADLS for M .

• The label of each node v ∈ V (T ∗) for which p = rep(v).

Since the degree of the spanner is bounded by O(ǫ−dim(M)), we obtain the following bound on the
storage of our labelling scheme.

Lemma 4.2. In the labelling scheme for the spanner H defined above, each label requires at most
O(ǫ−dim(M) logn)+ η bits of storage, where η = min{δ−O(dim(M)) · logD, δ−O(dim(M)) · logn(logn+
log logD)}.

We now describe the routing algorithm for the spanner H . Let p be the current vertex and q be
the destination. Since each point of H is the representative of multiple vertices in T ∗, the message
header stores a O(log n) bit variable to keep track of the current position in T ∗. Suppose the current
position is a vertex v ∈ T ∗ with representative p. When we say the algorithm routes to a neighbour
w of v, we mean the message is forwarded to a neighbour p′ of p in H such that rep(w) = p′.
Throughout the following, u will denote the current position of the algorithm in T ∗ and v will
denote the leaf in T ∗ corresponding to the destination vertex in H .
The algorithm operates in the following distinct states.
Initialization: Using the ADLS labels stored in the labels of p and q, a (1 + δ)-approximation of

d(p, q) is computed. Let d̃(p, q) denote this approximation. The integer i :=
⌊

log
(

d̃(p,q)
(1+δ)(γ+4)

)⌋

is

stored in the message header as the cross edge target level.

Ascending: In this state, the current position u of the message in T ∗ is at a level lower than i.
Suppose u is in a light subtree. Then we use our 1-spanner routing algorithm to route towards the
level-i ancestor of u. Otherwise, we simply route to the parent of u.

Searching for a cross edge: In this state, u is at level i or higher in T ∗. If u is connected by
a cross edge to an ancestor of v, the algorithm routes to this ancestor. Otherwise, the algorithm
routes to the parent of u.

Descending: In this state, u is an ancestor of v in T ∗. If u is in a light subtree, the algorithm
routes towards v using our 1-spanner routing algorithm. Otherwise, the algorithm routes to the
child of u which is an ancestor of v.

Theorem 4.2. The routing ratio of the algorithm defined above has routing ratio 1+ǫ and diameter
O(log n).

Proof. Observe that the path traversed when routing from p to q by the algorithm differs from the
(1+ ǫ) spanning path described in Theorem 4.1 only by the shortcuts taken on sections of the path
which pass through light subtrees. Since these shortcuts cannot increase the length of the path, the
first statement of the theorem follows.
To prove the second statement, we bound the number of vertices visited in each state. In the
ascending state, at most O(log n) vertices are visited in a light subtree since the 1-spanner routing
algorithm has O(log n) diameter. Since there are at most O(log n) levels of the net tree higher than
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level log(D
n
), at most O(log n) vertices are visited by the algorithm outside a light subtree. The

same arguments hold for the descending state. Note that the level at which to begin the search for
a cross edge determined in the initialization state is at most a constant number of levels lower that
the lower endpoint of the interval of Lemma 4.1. Since the length of the interval in Lemma 4.1 has
constant length, the second statement of the theorem follows.

5 Conclusion

We have shown that a simplified version of the logarithmic diameter tree metric 1-spanner of
Solomon and Elkin [14] supports a local routing algorithm of routing ratio 1 and logarithmic di-
ameter. We have also shown that this algorithm can be used to route in a spanner for doubling
metrics which uses the shortcutting scheme to achieve a low diameter while maintaining low weight
and low degree.
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