Skip to main content
Log in

Competitive algorithm for scheduling of sharing machines with rental discount

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

This paper addresses the online parallel machine scheduling problem with machine leasing discount. Rental cost discount is a common phenomenon in the sharing manufacturing environment. In this problem, jobs arrive one by one over-list and must be allocated irrevocably upon their arrivals without knowing future jobs. Each job is with one unit of processing time. One manufacturer leases a limited number of identical machines over a manufacturing resource sharing platform, and pays a rental fee of \(\alpha \) per time unit for processing jobs. Especially, when the time duration of a leasing machine reaches the discount time point, the manufacturer will get a discount for further processing jobs on the machine, i.e., the unit time rental cost is \(\alpha \beta \), where \(\beta =1/2\) is the discount coefficient. The objective function is the sum of makespan and the rental cost of all the sharing machines. When the unit time rental cost \(\alpha \ge 2\), we first provide the lower bound of objective value of an optimal schedule in the offline version and prove a lower bound of 1.093 for the problem. Based on the analysis of the offline solution, we present a deterministic online algorithm LS-RD with a tight competitive ratio of 3/2. When \(1\le \alpha <2\), we prove that the competitive ratios of algorithm LIST are 1 and 2 for the case of \(m=2\) and \(m\rightarrow \infty \), respectively. For the general rental discount \(0<\beta \le 1\), we give the relevant results for offline and online solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhau S, Mittal ML, Mittal A (2013) A multi-agent system for decentralized multi-project scheduling with resource transfers. Int J Prod Econ 146(2):646–661

    Article  Google Scholar 

  • Akaria I, Epstein L (2020) An optimal online algorithm for scheduling with general machine cost functions. J Sched 23:155–162

    Article  MathSciNet  Google Scholar 

  • Argoneto P, Renna P (2016) Supporting capacity sharing in the cloud manufacturing environment based on game theory and fuzzy logic. Enterp Inf Syst-UK 10(2):193–210

    Article  Google Scholar 

  • Dai WQ, Dong YC, Zhang XT (2016) Competitive analysis of the online financial lease problem. Eur J Oper Res 250:865–873

    Article  MathSciNet  Google Scholar 

  • Ding LL, Liu XM, Xu YF (2010) Competitive risk management for online Bahncard problem. J Ind Manag Optim 6(1):1–14

    Article  MathSciNet  Google Scholar 

  • Dósa G, He Y (2004) Better online algorithms for scheduling with machine cost. SIAM J Comput 33:1035–1051

    Article  MathSciNet  Google Scholar 

  • Dósa G, He Y (2006) Scheduling with machine cost and rejection. J Comb Optim 12:337–350

    Article  MathSciNet  Google Scholar 

  • Dósa G, Tan Z (2010) New upper and lower bounds for online scheduling with machine cost. Discrete Optim 7(3):125–135

    Article  MathSciNet  Google Scholar 

  • Fang D, Wang JC (2020) Horizontal capacity sharing between asymmetric competitors. Omega-Int J Manage S 97:102109

    Article  Google Scholar 

  • Fleischer R (2001) On the Bahncard problem. Theor Comput Sci 268:161–174

    Article  MathSciNet  Google Scholar 

  • Fujiwara H, Satou S, Fujito T (2016) Competitive Analysis for the 3-Slope Ski-Rental Problem with the Discount Rate. IEICE T Fund Electr 99(6):1075–1083

    Article  Google Scholar 

  • Guo L, Wu XL (2018) Capacity sharing between competitors. Manage Sci 64(8):3554–3573

    Article  Google Scholar 

  • He JB, Zhang J, Gu XJ (2019) Research on sharing manufacturing in Chinese manufacturing industry. Int J Adv Manuf Tech 104:463–476

    Article  Google Scholar 

  • Imreh C (2009) Online scheduling with general machine cost functions. Discrete Appl Math 157:2070–2077

    Article  MathSciNet  Google Scholar 

  • Imreh C, Noga J (1999) Scheduling with Machine Cost. In: Proc. RANDOM-APPROX 99 Conf, Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York, 1671:168-176

  • Jiang Y, Hu J, Liu L, Zhu Y, Cheng TCE (2014) Competitive ratios for preemptive and non-preemptive online scheduling with nondecreasing concave machine cost. Inform Sci 269:128–141

    Article  MathSciNet  Google Scholar 

  • Karp R (1992) On-line algorithms versus off-line algorithms: how much is it worth to know the future? In: Proceedings of IFIP 12th world computer congress (1):416-429

  • Li K, Zhou T, Liu BH, Li H (2018) A multi-agent system for sharing distributed manufacturing resources. Exp Syst Appl 99:32–43

    Article  Google Scholar 

  • Liu N, Li XP, Shen WM (2014) Multi-granularity resource virtualization and sharing strategies in cloud manufacturing. J Netw Comput Appl 46:72–82

    Article  Google Scholar 

  • Nagy-György J, Imreh C (2007) Online scheduling with machine cost and rejection. Discrete Appl Math 155:2546–2554

    Article  MathSciNet  Google Scholar 

  • Qin JJ, Wang K, Wang ZP, Xia LJ (2020) Revenue sharing contracts for horizontal capacity sharing under competition. Ann Oper Res 291:731–760

    Article  MathSciNet  Google Scholar 

  • Seok H, Nof SY (2014) Dynamic coalition reformation for adaptive demand and capacity sharing. Int J Prod Econ 147:136–146

    Article  Google Scholar 

  • Shao XF (2020) Capacity sharing: the impacts of agreement and contracting timing. J Oper Res Soc pp. 1-18

  • Yu CY, Xu X, Yu SQ, Sang ZQ, Yang C, Jiang XL (2020) Shared manufacturing in the sharing economy: concept, definition and service operations. Comput Ind Eng 146:106602

    Article  Google Scholar 

  • Zhang GQ, Ponn CK, Xu YF (2011) The ski-rental problem with multiple discount options. Inform Process Lett 111(18):903–906

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 71832001 and 71771048). This work was also supported by the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2020088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongteng Zhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof for Theorem 8. Similar to the proof of Theorem 3, according to Theorem 7 and Remark 2, we discuss the following six cases.

Case 1: \(1\le n\le \mu \).

$$\begin{aligned} \rho _1=\frac{C^{MLS}(I)}{C^*(I)}<\frac{n+\alpha n}{\alpha n}\le \frac{3}{2}. \end{aligned}$$

Case 2: \(\mu <n\le 2\alpha \mu (1-\beta )\). If \(\alpha (1-\beta )\le \sqrt{2}\), i.e., \(2\alpha \mu (1-\beta )\le 4\mu /(\alpha (1-\beta ))\), then

$$\begin{aligned} \rho _2=\frac{C^{MLS}(I)}{C^*(I)}<\frac{n+\alpha \mu +(n-\mu )\alpha \beta }{\alpha n}<\frac{\mu +\alpha \mu }{\alpha \mu }\le \frac{3}{2}. \end{aligned}$$

If \(\alpha (1-\beta )>\sqrt{2}\), i.e., \(2\alpha \mu (1-\beta )>4\mu /(\alpha (1-\beta ))\), then

$$\begin{aligned} \rho _3=\frac{C^{MLS}(I)}{C^*(I)}\le \frac{n+\alpha \mu +(n-\mu )\alpha \beta }{2\sqrt{n\mu \alpha (1-\beta )}+n\alpha \beta }. \end{aligned}$$
(7)

Because the rightmost part of (7) is monotonically decreasing when \(n\in (\mu , \alpha \mu (1-\beta ))\) and increasing when \(n\in [\alpha \mu (1-\beta ),2\alpha \mu (1-\beta )]\). Thus it achieves the maximum at \(2\alpha \mu (1-\beta )\). Hence, we have

$$\begin{aligned} \rho _3=\frac{C^{MLS}(I)}{C^*(I)}\le \frac{2\alpha \mu (1-\beta )+\alpha \mu +(2\alpha \mu (1-\beta )-\mu )\alpha \beta }{2\sqrt{2\alpha ^2\mu ^2(1-\beta )^2}+2\alpha ^2\mu \beta (1-\beta )}=\frac{3+2\alpha \beta }{2\sqrt{2}+2\alpha \beta }<\frac{11}{10} \end{aligned}$$

Case 3: \(\alpha \mu k(k-1)(1-\beta )<n\le \alpha \mu k(k-1)(1-\beta )+\mu \). If \(4\mu /(\alpha (1-\beta ))>\alpha \mu k(k-1)(1-\beta )\) then

$$\begin{aligned} \rho _4&=\frac{C^{MLS}(I)}{C^*(I)}<\frac{n\alpha +\alpha \mu (1-\beta )(2k-1)-(k^2-k)\alpha ^2(1-\beta )^2\mu }{\alpha n}\\ {}&<1+\frac{2k-1-(k^2-k)\alpha (1-\beta )}{\alpha k(k-1)}\le \frac{3}{2\alpha }+\beta \le \frac{5}{4} \end{aligned}$$

where the second inequality holds because \(n>\alpha \mu k(k-1)(1-\beta )\).

If \(4\mu /(\alpha (1-\beta ))<\alpha \mu k(k-1)(1-\beta )+\mu \) then

$$\begin{aligned} \rho _5&=\frac{C^{MLS}(I)}{C^*(I)}\le \frac{n\alpha +\alpha \mu (1-\beta )(2k-1)-(k^2-k)\alpha ^2(1-\beta )^2\mu }{2\sqrt{n\mu \alpha (1-\beta )}+n\alpha \beta }\\&<\frac{n\alpha (1-\beta )+\alpha \mu (1-\beta )(2k-1)-(k^2-k)\alpha ^2(1-\beta )^2\mu }{2\sqrt{n\mu \alpha (1-\beta )}}\\&\le \frac{k\alpha (1-\beta )}{\sqrt{\alpha ^2k(k-1)(1-\beta )^2+(1-\beta )\alpha }}\le \frac{k}{\sqrt{k(k-1)}}\le \sqrt{2} \end{aligned}$$

where the third inequality holds because \(n\le \alpha \mu k(k-1)(1-\beta )+\mu \).

Case 4: \(\alpha \mu k(k-1)(1-\beta )+\mu <n\le \alpha \mu k^2(1-\beta )\). If \(4\mu /(\alpha (1-\beta ))>\alpha \mu k(k-1)(1-\beta )+\mu \). Then

$$\begin{aligned} \rho _6&=\frac{C^{MLS}(I)}{C^*(I)}<\frac{2\alpha \mu k(1-\beta )+n\alpha \beta }{\alpha n}<\beta +\frac{2\mu k(1-\beta )}{\alpha \mu k(k-1)(1-\beta )+\mu }\\&\le \beta +\frac{2k(1-\beta )}{2k(k-1)(1-\beta )+1}\le \beta +\frac{4(1-\beta )}{4(1-\beta )+1}\le \frac{7}{6}. \end{aligned}$$

If \(4\mu /(\alpha (1-\beta ))\le \alpha \mu k(k-1)(1-\beta )+\mu \). Then

$$\begin{aligned} \rho _7=\frac{C^{MLS}(I)}{C^*(I)}\le \frac{2\alpha \mu k(1-\beta )+n\alpha \beta }{2\sqrt{n\alpha \mu (1-\beta )}+n\alpha \beta }<\frac{k\alpha (1-\beta )}{\sqrt{\alpha ^2k(k-1)(1-\beta )^2+(1-\beta )\alpha }}\le \sqrt{2} \end{aligned}$$

Case 5: \(\alpha \mu k^2(1-\beta )<n\le \alpha \mu k(k+1)(1-\beta )\).

$$\begin{aligned} \rho _8&=\frac{C^{MLS}(I)}{C^*(I)}<\frac{n/k+1+\alpha \mu k(1-\beta )+n\alpha \beta }{2\sqrt{n\mu \alpha (1-\beta )}+n\alpha \beta }<\frac{n/k+1+\alpha \mu k(1-\beta )}{2\sqrt{n\mu \alpha (1-\beta )}}\\&\le \frac{\alpha \mu (k+1)(1-\beta )+1+\alpha \mu k(1-\beta )}{2\sqrt{\mu ^2\alpha ^2 k(k+1)(1-\beta )^2}}\le \frac{2k(1-\beta )+(1-\beta )+1/4}{2(1-\beta )\sqrt{k(k+1)}}\\&\le \frac{4k+3}{4\sqrt{k(k+1)}}<\frac{11}{9} \end{aligned}$$

where the third inequality holds since \(\frac{n/k+1+\alpha \mu k(1-\beta )}{2\sqrt{n\mu \alpha (1-\beta )}}\) is monotonically decreasing when \(n\in (\alpha \mu k^2(1-\beta ), k+\alpha \mu k^2(1-\beta ))\) and monotonically increasing when \(n\in [k+\alpha \mu k^2(1-\beta ), \alpha \mu k(k+1)(1-\beta )]\), and achieves the maximum at \(\alpha \mu k(k+1)(1-\beta )\).

Case 6: \(\alpha \mu m^2(1-\beta )< n\). \(\rho _9=\frac{C^{MLS}(I)}{C^*(I)}=1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhi, R., Zheng, F. et al. Competitive algorithm for scheduling of sharing machines with rental discount. J Comb Optim 44, 414–434 (2022). https://doi.org/10.1007/s10878-021-00836-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-021-00836-9

Keywords

Navigation