Skip to main content
Log in

Convex Underestimation of Twice Continuously Differentiable Functions by Piecewise Quadratic Perturbation: Spline αBB Underestimators

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper describes the construction of convex underestimators for twice continuously differentiable functions over box domains through piecewise quadratic perturbation functions. A refinement of the classical α BB convex underestimator, the underestimators derived through this approach may be significantly tighter than the classical αBB underestimator. The convex underestimator is the difference of the nonconvex function f and a smooth, piecewise quadratic, perturbation function, q. The convexity of the underestimator is guaranteed through an analysis of the eigenvalues of the Hessian of f over all subdomains of a partition of the original box domain. Smoothness properties of the piecewise quadratic perturbation function are derived in a manner analogous to that of spline construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.S. Adjiman I.P. Androulakis C.A. Floudas (1998) ArticleTitleA global optimization method,α BB, for general twice differentiable NLPs-II. Implementation and computional results Computers & Chemical Engineering 22 1159–1179

    Google Scholar 

  2. C.S. Adjiman I.P. Androulakis C.D. Maranas C.A. Floudas (1996) ArticleTitleA global optimization method,α BB, for process design Computers & Chemical Engineering Supplement 20 S419–S424

    Google Scholar 

  3. C.S. Adjiman S Dallwig C.A. Floudas A. Neumaier (1998a) ArticleTitleA global optimization method,α BB, for general twice differentiable NLPs-I Theoretical advances. Computers & Chemical Engineering 22 1137–1158

    Google Scholar 

  4. A.S. Deif (1991) ArticleTitleThe interval eigenvalue problem Zeitschrift fur Angewandte Mathematik and Mechanik 71 IssueID1 61–64

    Google Scholar 

  5. Dixon L., Szegö G.P. (ed.) (1975). Towards Global Optimization. In: Proceedings of a Workshop at the University of Cagliari, Italy. North Holland

  6. Floudas, C.A. (2000). Deterministic Global Optimization: Theory, Alogorithms and Applications. Kluwer Academic Publishers

  7. S. Gerschgorin (1931) ArticleTitleÜber die Abgrenzung der Eigenwerte einer Matrix, Izvestiya Akademii Nauk Azerbaidzhanskoi SSSR Seriya Fiziko-tekhnicheskikh i Matematicheskikh Nauk 6 749–754

    Google Scholar 

  8. D. Hertz (1992) ArticleTitleThe extreme eigenvalues and stability of real symmetric interval matrices IEEE Transactions on Automatic Control 37 IssueID4 532–535 Occurrence Handle10.1109/9.126593

    Article  Google Scholar 

  9. Hiriart-Urruty, J., Lemaréchal, C. (1993). Convex analysis and minimization algorithms I. In: Grundlehren der Mathematischen Wissenschaften, Vol. 305. Springer Verlag

  10. V. Kharitonov (1979) ArticleTitleAsymptotic stability of an equilibrium position of a family of systems of linear differential equations Differential Equations 78 1483–1485

    Google Scholar 

  11. Krämer W., Geulig I. (2001). Interval Calculus in Maple. Wissenschaftliches Rechnen. Bergische Universität, GH Wuppertal

  12. C.D. Maranas C. Floudas (1994) ArticleTitleGlobal minimum potential energy conformations of small molecules Journal of Global Optimization 4 135–170 Occurrence Handle10.1007/BF01096720

    Article  Google Scholar 

  13. G.P. McCormick (1976) ArticleTitleComputability of global solutions to factorable non-convex programs: Part I – Convex underestimating problems Mathematical Programming 10 147–175 Occurrence Handle10.1007/BF01580665

    Article  Google Scholar 

  14. R.E. Moore (1966) Interval Analysis Prentice-Hall Englewood Cliffs, NJ

    Google Scholar 

  15. Mori T., Kokame H. (1994). Eigenvalue bounds for a certain class of interval matrices, IEICE Transactions on Fundamentals E77-A(10). 1707–1709

  16. Neumaier, A. (1990). Interval methods for systems of equations. In: Encyclopedia of Mathematics and its Applications. Cambridge University Press

  17. A. Neumaier (1992) ArticleTitleAn optimality criterion for global quadratic optimization Journal of Global Optimization 2 201–208 Occurrence Handle10.1007/BF00122055

    Article  Google Scholar 

  18. Ratschek, H., Rokne, J. (1984). Computer methods for the range of functions. In: Ellis Horwood Series in Mathematics and its Applications. Halsted Press

  19. Rockafellar, R.T. (1970). Convex Analysis. Princeton University Press

  20. Rohn, J. (1996). Bounds on Eigenvalues of Interval Matrices, Technical Report no. 688, Institute of Computer Science, Academy of Sciences, Prague

  21. Stephens, C. (1997). Interval and bounding Hessians. In: Bomze, I.M. (ed.). Developements in Global Optimization. Kluwer Academic Publishers, pp. 109–199

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christodoulos A. Floudas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, C.A., Floudas, C.A. Convex Underestimation of Twice Continuously Differentiable Functions by Piecewise Quadratic Perturbation: Spline αBB Underestimators. J Glob Optim 32, 221–258 (2005). https://doi.org/10.1007/s10898-004-2704-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-004-2704-9

Keywords

Navigation