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Abstract

In this paper relationships between Pareto points and saddle points in mul-
tiple objective programming are investigated. Convex and nonconvex prob-
lems are considered and the equivalence between Pareto points and saddle
points is proved in both cases. The results are based on scalarizations of
multiple objective programs and related linear and augmented Lagrangian
functions. Partitions of the index sets of objectives and constraints are in-
troduced to reduce the size of the problems. The relevance of the results in
the context of decision making is also discussed.
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1 Introduction

Many researchers have contributed to the theory and methodology of multiple
objective programming. In particular, a lot of attention has been given to the
development of various conditions for Pareto solutions. Among a great deal
of studies, one specific direction has been to relate Pareto solutions to saddle
points. Due to their distinctive features, for many years saddle points have
been of special interest in single objective nonlinear programming. Tanino [8]
was one of the pioneers who extended classical Lagrangian duality and related
saddle points to nonlinear convex programs with multiple objective functions.
Later, many researchers worked on vector-valued Lagrangian functions and
their saddle points. Valyi [13] developed saddle-point conditions for different
types of approximate Pareto solutions. Van Rooyen et al. [14] constructed a
Lagrangian function for scalarized multiple objective programs and developed
a saddle-point condition for Pareto solutions, which is both necessary and
sufficient. Saddle points for general multiple objective programs were studied
by Iacob [6]. Although the literature on various types of duality in multiple
objective programming is very rich, this review indicates that there are very
few papers dealing specifically with saddle points. Hence, it is desirable to
further examine relationships between Pareto solutions and saddle points,
which is the purpose of this article.

As we examine saddle points not only for convex but also for nonconvex
problems, we apply the augmented (quadratic) Lagrangian function origin-
ally proposed in single objective nonlinear programming. In fact, this aug-
mented function as well as more general Lagrangian functions have already
been used in multiple objective programming. TenHuisen and Wiecek [11]
proposed a framework for developing generalized Lagrangian-type scalariz-
ing functions for nonconvex programs. They used the augmented function
to develop solution approaches to finding Pareto points for bicriteria pro-
grams [12] and multiple criteria programs [10]. A vector-valued generalized
Lagrangian was recently constructed and analyzed by Singh et al. [9].

In this paper we consider the general multiple objective program (MOUP):

min f,(z) ¢=1,...,Q
subject to x € F|

(1)



where
F:={x€eR":gj(x) <0 j=1,...,m}

is the feasible set and the functions f,(z),¢ = 1,...,Q, and g;(z),j =
1,...,m, are all real-valued.

Let @ := {1,...,Q} denote the index set of the objective functions and
M :={1,...,m} denote the index set of the constraints. A feasible point
& € F is called a Pareto solution (or an efficient solution) for the (MOP),
if there is no other point z € F such that f;(z) < f;(Z) for all i € Q and
f(z) # f(z). If & is a Pareto point, the corresponding point f(z) in the
objective space is called nondominated.

We make extensive use of the scalarization of (1) introduced by Charnes and
Cooper [2] and formulated for z*, an arbitrary feasible point of the (MOP):

Q
mianq(x)
qg=1
s.t. fo(z) = fo(z") < 0 ¢=1,...,Q (2)
z € F.

As this scalarization depends on the point x*, we refer to this problem as
(CC(MOP,z*). It is also well known that problem (2) provides a method
for finding Pareto points.

Theorem 1 A point * € F is a Pareto solution for the (MOP) if and only
if * is an optimal solution for the problem (CC(MOP, x*)).

In Section 2, we partition the index set of the objective functions in order to
show how to reach a Pareto solution given a feasible point that is not Pareto.
We achieve this by minimizing over the objective functions whose values
can be still improved while the other objectives’ values do not deteriorate.
We propose two partitions, one for feasible points only while in the other
we allow infeasible points. The partitions of the index set of the objective
functions are complemented by a partition of the index set of the constraints.
These partitions determine a framework within which we study relationships
between Pareto points and saddle points of convex and nonconvex multiple
objective programs. In Section 3, we derive a saddle point characterization of



Pareto points for convex programs. Although in this section we follow upon
the results in [14], we introduce different index sets to define the Lagrangian
functions which makes our results easier to handle. In Section 4, we analyze
nonconvex programs and derive a saddle point characterization of Pareto
points applying the augmented Lagrangian function. Throughout the paper
we include comments on the usefulness of our results in multiple criteria
decision making. Final conclusions are contained in Section 5.

2 Partitioning the Index Set of Objective
Functions

Given a feasible point z* of the problem (MOP) and the objective function
values at this point, one may be interested whether it is still possible to
improve the values of some criteria while the other criteria do not deteriorate.
To answer this question, it is convenient to introduce the set of feasible points
which allow improvement of some objective functions with respect to a given
point z*. Defining

F(z*) :={r € F: fi(z) < fi(=2*) Vi € Q},
and using the concept of level sets
L’S(m*) ={zx € F: fi(z) < fi(z")},

we have that F'<(z*) is equal to the intersection of all the level sets at the
point z* :
Q
F=(2") = ﬂl L (fi2).
In [5] it was shown that a point z* € F' is a Pareto point of the (MOP) if
and only if

Q Q
QLE(w*) = QLZ:(x*)’ (3)

where L' (z*) denotes the level curve of the objective f; passing through
x*. Clearly, if z* is not a Pareto point these intersections must be different.
As it is desirable to distinguish between these objective functions that allow



improvement and those that do not, we partition the index set Q with respect
to F<(x*):

Q™ (2") :=={i € Q:Vu € F=(s") fi(z) = filz")}
and
Q<(z*) := {i € Q: 3z € F=(z*) such that f;(z) < f;(z*)}.

Since only the feasible points are considered in the definition of Q= (z*) and
Q< (z*), this partition will be called the feasible point partition of the index
set of the objective functions.

Given a point z* € F which is not a Pareto point for the (M OP), we shall
show that one does not have to consider all the objective functions to find a
Pareto point and can restrict the optimization to the objective functions in
Q<(z*). We therefore formulate a multiple objective program with a smaller
number of objective functions and refer to it as (MOP(Q<(z*))), as this
problem depends on the point z*:

min f,(z) ¢ € 9Q%(z")
subject to z € F=(z*).

(4)

It turns out that every Pareto point of the smaller problem (4) is also Pareto
for the original problem (1).

Theorem 2 If T € F<(x*) is a Pareto point for problem (MOP(Q<(z*)))
then T is also a Pareto point for the (MOP).

Proof:
Let Z be a Pareto point of the problem (MOP(Q<(z*))). Assume that Z is
not a Pareto point for the (M OP). Then there is an 2’ € F such that

fil) < fi(z) VieQ
fr(@) < fi(z) for some k € Q.

Because T € F<(z*) we have also that f;(z) < f;(z*) and therefore 2’ €
F=<(z*). From fj(z') < fp(z*) we get k € @<(z*). In particular we conclude
that there exists an ' € F<(z*) such that

fi@) < fi@) Vie @%(a7)

fr(@) < fu(xz) for some k € Q<(z*).
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which contradicts the fact that T is a Pareto solution for the smaller problem

(MOP(Q<(z")))- O

Corollary 1 If z* is a Pareto solution for the problem (MOP) then the
problem (MOP(Q<(z*))) is not defined.

Proof:
If z* is a Pareto point for the (MOP), then F<(z*) = N, L% (z*) which
implies Q<(z*) = 0 (see [5]). O

An analogous partition, complementing the partition of objectives, can be
introduced for the index set of the constraints:

M=(z*):={j € M :Vxe€F(z*) g;(z) =0}
and
M<(z*):={j € M : 3z € F=(z*) such that g;(z) < 0}.

Here we simply distinguish between the active and inactive constraints with
respect to the set F'<(z*). This partition is called the feasible point partition
of the index set of the constraints.

We may ignore the feasibility requirement in the definition of F'<(z*), which
in some situations will lead to more useful results, as we will see later. Define

Fi(z*):={z € R": fi(z) < fi(z*) Vi€ Q}.
The partition of the index set Q is now defined by
Q(z*)y:={ie Q:Vze FOS(ac*) fi(z) = fi(z")}

and

QS (z*) :={i € Q: 3z € Fy(z*) such that f;(z) < fi(z*)}.
Due to the fact that Fj (z*) may contain infeasible points, this partition of
Q is called the infeasible point partition of the index set of the objective

functions. In the view of F(z*), we can now modify the smaller problem
(4) and formulate the problem (MOP(Qg (z*)):

min f,(z) ¢ € Of(z*)
subject to = € Fy(x*).

(5)

We then obtain the following result.



Theorem 3 Let x* be a feasible point of the (MOP), which is not a Pareto
point. Then if & € Fy (x*) is a Pareto point for the problem (MOP(Qg (z*))
and feasible for the (MOP) then it is also a Pareto solution for the (MOP).

The proof is analogous to the proof of Theorem 2.

We now define the corresponding infeasible point partition of the index set
of the constraints with respect to Fj=(z*) :

My (z*):={j € M :V z € Fg(z*) g;(x) = 0}
and
Mg (z*) :={j € M : 3z € F5(z*) such that g;(z*) < 0}.

Having established the foundation for further analysis, we turn our attention
to Pareto points and saddle points of convex and nonconvex problems.

3 Convex Problems

In this section we investigate the special case of convex multiple objective
programs, i.e. we assume that all the functions f; and g; are convex in the
(MOP). In particular, the feasible set F'is convex. Note that if the (MOP) is
a convex problem then the problem (MOP(Q<(z*))) is also convex, because
F=<(z*) is the intersection of the (convex) level sets L% (z*).

In Section 3.1 we use the feasible point partitions and prove a saddle point
characterization of Pareto points for the convex (MOP) while in Section
3.2 we present a saddle-point result based on the infeasible point partitions.
Some of these results have first been obtained in [4].

3.1 A Saddle Point Characterization for the Feasible
Point Partition

Using the feasible point partition of the index set of the objective functions
defined in Section 2 the following result holds:

Lemma 1 A point x* € F is not a Pareto point for the (MOP) if and only
if 9<(z*) # 0 and there exists a point T € F such that

filz) < fila®) Vie Q(z7)
filz) = filz") Vie Q7(z).



Proof:

The condition of the lemma is sufficient for z* not to be a Pareto point.
We only show that it is necessary. Let x* be a point that is not Pareto.
Then Q<(z*) is not empty. For every i € Q<(z*) choose an z' € F<(z*)
with fi(z*) < fi(«*). Then the point Z := ¥ ,cg<(z+) @a’, where o; > 0 and
> «a; = 1, has the desired properties. Due to convexity, Z belongs to F<(z*).
Consequently, by the definition of =

fi(Z) < fi(z*) for all i € Q<(x*),
and by the definition of Q=(z*),
fi(@) = fi(z¥) for all i € Q™ (z¥).

O
If we think of the problem (MOP(Q<(z*))) in the context of convex prob-
lems, we can strengthen Theorem 2. If x* is not a Pareto point for the

(MOP), then by Lemma 1 there exists a Pareto point Z for the problem
(MOP(Q<(x*))) such that

filz) = fiz") Vie Q@ (a")

and furthermore, due to Theorem 2, Z is a Pareto point for the (MOP).

Example 1 In Figure 1 on the left hand side x* is not a Pareto solution,
Q= (z*) = 0 and Q<(z*) = Q. A convex combination of x',z* and z* yields
T dominating z*. On the right hand side, x* is a Pareto solution since

Q<(z*) =0 and Q= (z*) = Q.

From the geometrical characterization of Pareto solutions given by (3) we
could also conclude that a point z* € F' is Pareto if and only if Q<(z*) is
empty. (This is the same as saying that the intersection of all level sets of
the point z* is equal to the intersection of all level curves of this point.)
This conclusion is valid for general (nonconvex) problems and implies that
for a point that is not a Pareto solution, the point z' used in the proof of
Lemma 1 exists. However, the existence of the point Z which satisfies all
the conditions of this lemma simultaneously cannot be shown in general.
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Figure 1: Illustration of Lemma 1

The result of Lemma 1 for the convex (MOP) is stronger: the case that z*
is not a Pareto point implies the existence of a feasible point Z for which
fi(Z) < fi(z*) for all i € Q<(z*) simultaneously. This cannot be guaranteed
for nonconvex problems, i.e. in the general context of [5].

Including the feasible partition of the index set of the constraints, M<(z*)
and M= (z*), we extend Lemma 1 and obtain a more specific result concerning
the constraints.

Lemma 2 A point x* € F is not a Pareto point for the (MOP) if and only
if Q<(z*) # (0 and there exists a point T € F such that

fi(@) < filz") Vie Q%(a7) (6)
filz) = fi(z") Vie @ (z%) (7)
g;(Z) < 0 Vje M<(z") (8)
gi() = 0 Vje M (z"). (9)

Proof:

The ‘if’ part of the lemma is clear. To show the ‘only if’ part, let z* be a
feasible solution but not Pareto. First note that if M <(z*) is empty, the result
follows directly from the definition of M=(z*) and Lemma 1. Otherwise for
every 1 € Q<(z*) choose an ' € F<(z*) with f;(2*) < f;(z*) and for every
j € M<(z*) choose an 77 € F<(z*) with g;(z7) < 0.



Define Z as a strict convex combination of these points,

= Z O,/Z'.’i'i =+ Z ﬂja_jj,

i€Q<(z*) jeM<(z¥)

8l

where a;, 3; > 0 for every i € Q<(z*),j € M<(z*) and ¥;co<(p) i +
Yjem<(z+) Bj = 1. Then, due to convexity of f; and the choice of #* and 77,
we have

@) < Y afe@)+ Y Bifu(@) < fila")

iEM<(z*) JjEQ<(z*)

for all k € Q<(z*), i.e. (6). Furthermore, by analogous arguments for g, we
have

a@ < Y wg@E)+ Y BiaE) <0

i€ M<(z*) JjEQ<(z*)
for all I € M<(z*), i.e. (8). Due to convexity of F’<(z*), Z € F<(z*). Then
by the definitions of Q= (z*) and M=(z*) we obtain (7) and (9). O

Corollary 2 If a point * € F is a Pareto point for the (MOP) and M #
M=(z*), then there exists a point & € F<(x*) such that (7), (8) and (9) hold.

Proof:
Observe that for every j € M<(z*) there exists an 2/ € F<(z*) such that
g;(x7) < 0. Define & := > jeM<(z*) a;z!, where a; > 0 and 3 a; = 1. Then

a(@) < > agi(z*) <0

JEM<(z*)

for all [ € M<(x*). Since the set F<(z*) is convex, & € F<(x*). Therefore
g;(2) =0 for j € M=(z*) and f;(Z) = fi(z*) for i € Q= (a*). a

Define now the set

Fs(z*) = {zeR": fi(z) < fi(z*) Vie Q (z%)}
N {zeR" :gj(x)<0Vje M (z")}

and the Lagrangian function

Lz, \p) = 3 Xfilz)+ D pg(a). (10)

i€ Q< (z*) JEM<(z*)



We now present the main result of this section showing that the existence
of a saddle point of the Lagrangian function L(x, A, ) is a necessary and
sufficient condition for a point x* to be Pareto. Lemma 2 and Corollary 2
provide the foundation for the proof of Theorem 4 which follows upon the
proof of the main result in [14].

Theorem 4 A point z* € F is a Pareto solution for the (MOP) if and only
iof there exist multipliers \* > 0, \* # 0 and p* > 0 such that

L(z*, X, p) < L(z*, X", u*) < L(z, A", u*) (11)
holds for all ;1 > 0 and for all z € F<(z*).

Proof:

We first show that (11) is necessary for a point z* to be a Pareto point.
Suppose z* € F is a Pareto point. Then z* € F<(z*) that is a convex set.
Assume that Q<(z*) = {1,...,7} and M<(z*) = {1,...,s} and define the
following two sets:

( fi(z) )
— r+s . fr(x) < (%
Ky =¢yeR™:y> for at least one z € F=(z") »
91(z)
\ gS(‘/L‘) 7
and )
fl(x*) )
Ky =Sye R :y << fr(g) >
\ 0 Vs
where K, is convex. To show that K is convex is straightforward since all
the functions f;, ¢ =1,...,r and g;, j =1,..., s are convex. We now prove

10



that K, N Ky = (0. Otherwise there exists some y° € K; N K, such that

fi(z”) fi(2°)
fr(x*) 0 fr(xo)
I S A
0 gs(x%)

for some z° € F<(x*) which implies that z° € F. Therefore due to Lemma
2, x* is not a Pareto point, which is a contradiction. As the sets K; and K,
are convex, there exist a separating hyperplane for K; and K, with a normal
vector (A*, u*) # 0, \* € IR", u* € IR, and a scalar « € IR such that

T S T S
SN Yy Za> Y Ny + Y wy; (12)
j=1 j=1

i=1 =1

for all y' € cl(K}) and all y? € cl(K3), where cl(S) denotes the closure of a
set S. To prove (11), we choose several points y' € cl(K;) and y* € cl(K>)
and examine (12) in each of the following steps.

Step 1: Let

yl = (fulz®),.., [r(@"), g1(z7), . .., gs(27))
and y* = (fi(z"),..., f(z*),0,...,0).

Then (12) yields L(z*,\*, pu*) > « > Y01, Al fi(z*) = L(z*,A\*,0) >

=1 "%

L(z*, \*, p) for all > 0 since >75_; p;g;(z*) < 0.

Step 2: Let

y' = (fi@),..., fr(2),01(2),.. ., 95(x))
and y* = (fi(a*),..., fr(2%), q(z"), ..., gs(x"))

where € F<(z*). Then (12) yields L(x, \*, u*) > L(z*, \*, u*).
Step 3: Let

vt = (fula"),..., f-(2),0,...,0)
a’ndy2 = (f1($*)7"'7f7‘(x*)ﬂy1;'"7y5)



where y; < Oforall j=1,...,s.

From (12) we get oy A fi(w") 4 S5s 150 2 Sy A fila)+ Xy 450
Hence 0 > >77_; pjy; for all such y? and we conclude that p; = 0 for
all j € M<(z*).

Step 4: Let

yl = (yla"'ay’raoa""o)

and 3y = (fi(z"),..., f(z*),0,...,0)

where y; > fi(xz*) for i = 1,...,r. Therefore >>7_; Afy; > >0 A fi(x*).

Hence Y7_; A\j(y; — fi(z*)) > 0 for all such y' and we conclude that
A >0 for all i € Q<(z*).

Step 5: Assume that \* = 0. From (12) we have >5_, ui(y; — y3) > 0 for
all y* € cl(K;) and all 4% € cl(K>). Let

y'o= (f1(@), .., [(2), 01(2), ..., 95(T))
and y* = (fi(z"),..., f-(2z),0,...,0)

where Z is chosen as in Corollary 2, i.e. g;(Z) < 0 for all j € M<(x*).
As (X, p*) # 0, p* cannot be zero, and Y5_; p}(g;(7) — 0) < 0, which
contradicts the expression produced by (12). Therefore \* # 0.

We now prove that (11) is also sufficient for z* to be a Pareto point. The
left hand side of equation (11)

DNSi(@") + 2o pigi(a7) < 3N fila) + D igs(a)

i=1 j=1 i=1 j=1
is equivalent to >-7_;(u; — p5)g;(z*) < 0 for all g > 0. This can only be
true if g;(z*) < 0 for all j € M<(x*). Since by assumption z* € F<(z*) and
therefore g;(z*) <0 for all j € M=(z*), we conclude that z* is feasible.
Suppose x* is not a Pareto point. Then by Lemma 2, there exists a point
T € F such that (6) - (9) hold. Therefore Z € F<(z*) and z € F<(z*).
From equation (11) and since A\* > 0, \* # 0, u* > 0 we have

Lz, A ) = S Nf(2) + D wig;(z)
i=1 j=1

12



>N fi(@)
i=1

< L AAE)
=1

On the other hand,

SN fi(z*) = L(z*,\,0)
i=1
< L A%, u')
S L(-’Z‘, )\*7 /’L*)7
which contradicts the observation above and completes the proof. O

We remark that Theorem 4 is of theoretical interest since no constraint qual-
ification, for example such as the Slater condition, is imposed. Interestingly,
condition (11) is still necessary for a point z* to be Pareto even if Q<(z*) is
replaced by any nonempty subset Q(z*) of Q.

Corollary 3 Let a point z* € F be a Pareto point for the (MOP) and
assume that Q(z*) C Q is a nonempty set. Then there erist 0 # \* >
0, u* > 0 such that (11) holds for

Lz, \p)= > Nfile)+ D pigi(e) (13)

i€Q(z*) JjeM<(z¥)
for all u >0 and x € F<(z*) defined as

F(z*) = {zeR": fi(z) < filz*) Vie Q\ Q(z")}
N {zeR":gj(x) <0Vje M (z%)}

Proof:

Follow the only if part of the proof of Theorem 4, replacing Q<(z*) by Q(z*).
O

Corollary 4 Under the assumptions of Corollary 3 there ezists an i € Q(z*)
such that f;(z*) < fi(z) for allz € F<(z*) N F.

13



Proof:
Based on Corollary 3, the left hand side inequality of (11) with (13) yields

S (wj—1)gi(z") <0 VYu > 0.
jEM<(z*)

Let u = 0, then we obtain

JEM<(z7)
which, due to the feasibility of * and p* > 0, results in
1595(z") =0 Vj € M=(z"). (14)
Applying (14) to the right hand side of (11) with (13), we obtain
Y. Nl - fite) = Y wgi(x) <0 Vze F3(a%). (1)

i€eQ(z*) JEM<(z*)

Since x € F<(z*) N F then g;(x) < 0, which makes the right hand side term
of (15) nonpositive. In order that (15) holds it must be that

Ji € Q(z*) : fi(a*) < fi(x) for all z € FS(z*) N F.
O

Example 2 We illustrate the corollaries by a graphical example in Figure
2. Here we have three objective functions and two constraints. Figure 2
displays the feasible set F' as the shaded region and the rectangular level sets
of the three objective functions. The boundaries of the level sets determine
the corresponding level curves.

Consider first x* = B that is Pareto and its level curve of f3 (the broken-line
rectangle). We have Q<(z*) = 0 and M<(z*) = {2}. Let f3 be of special
interest, i.e. Q(z*) = {3}. Then F<(z*) is the line segment AB connecting
points A and B. The corresponding Lagrangian function is L = A3 fs + pogs
and it is easy to check that for point B both inequalities in (11) hold, as
Corollary 3 states. On the other hand, let x* = A that is not Pareto. We
have Q<(z*) = {3} and M<(z*) = {2}. The Lagrangian function is again
L = A3 f3+ p2ge. The left hand side inequality of (11) holds but checking the
right hand side inequality yields

f3(z*) < f3(z) Vz € AB,

14
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Figure 2: Illustration of Corollaries 3 and 4

which does not hold. Observe in Figure 2 that moving from A to B decreases
the value of f3 while the values of the other two objective functions remain
unchanged.

Our main results of this section show that if z* is a Pareto point, then
both Q@<(z*) = @ and the saddle point condition (11) holds. However, in
a general decision making situation, given a solution £ € F', we may not
know whether it is a Pareto point. Assuming that it is not, we may want
to improve some objective functions that are of special importance to us. In
this context, Corollaries 3 and 4 become significant as they can support the
decision process. Let Q(z) be the set of indices of the objective functions we
would like to improve. We define F'<() as:

F=(2) = {zeR": fi(zx) < fi(z)Vie Q\ Q(2)}
N {zeR":g;(zx) <0Vje M (2)}.

and check whether the Lagrangian function L(z, A, ) has a saddle point for
all © > 0 and for all x € F<(%). If it does not, then Z is not Pareto and we
can in fact improve the chosen objective functions.

On the other hand, if  is a Pareto point, then based on Corollary 4, we
can always find at least one objective function such that its value at & is

15



the smallest for all z € F<(%) N F, which indicates that at least one of the
objective functions we have chosen cannot be improved and therefore should
leave Q(Z).

3.2 A Saddle Point Result for the Infeasible Point
Partition

In this section we consider the infeasible point partitions rather than feasible
point partitions, that is we use the index set Qg (z*) and Mg (z*) instead of
Q<(z*) and M<(z*), and examine whether the saddle point characterization
still holds. As we follow upon the results of the previous section, we present
new results without proofs. We start with a result similar to Lemma 1, which
is only a sufficient condition for a point not to be Pareto.

Lemma 3 A point z* € F is not a Pareto point for the (MOP) if both
Q5 (z*) # 0 and there exists a point T € F such that

filz) < fi(z*) Vie Qf(z")
fi(z) = fi(z") Vie Qy(z).

The lemma follows from the definition of Pareto solutions. For the converse
it is only possible to show that if z* is not a Pareto point then QF (z*) is not
empty and there exists a point z € IR" for which the two conditions above
hold, however the feasibility of Z does not follow, due to the definition of
ES(z%).

Including the infeasible point partition of the index set of constraints leads us
to Lemma 4 that corresponds to Lemma 2. Similarly to the previous lemma,
Lemma 4 is only a sufficient condition.

Lemma 4 A point z* € F is not a Pareto point for the (MOP) if both
Q5 (z*) # 0 and there erists a point T € IR™ such that

[i(@) < fi(z") Vie 95 (z") (16)
filz) = filz") Vie Qy(z") (17)
g;(Z) < 0 VjEM(f(x*) (18)
g9j(®) = 0 Vj€ My (z") (19)
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We remark that in the context of Lemma 4, it is equivalent to say that if
x* € F is a Pareto point, there does not exist a point Z satisfying conditions
(16) to (19) or Qg5 (z*) = 0.

Using the definition of QF (z*) we obtain a result analogous to Corollary 2.

Corollary 5 If a point * € F is a Pareto point for the (MOP) and M #
Mg (x*), then there exists a point & € IR™ such that (17), (18) and (19) hold.

The proof follows the proof of Corollary 2. Note that Corollary 5 implies
that the point Z used in that proof is feasible, due to (18) and (19).

We now again define the Lagrangian function

Lo(z, A p) = 30 Nfil@)+ Do pig;(2).
i€Q5 (z*) JEMS (z*)
and show that if z* is a Pareto point then there exist \* and p* such that
(z*,\*, u*) is a saddle point of this function. Let F(z*) denote the set
F=<(z*) defined in Section 3.1 with Q<(z*) and M<(z*) replaced by Q5 (z*)
and M (z*), respectively.

Theorem 5 If 2* € Fy (x*) is a Pareto point for the (MOP) then there
exist \* > 0, \* # 0 and p* > 0 such that

Lo(z", A", ) < Lo(a", A", ") < Lo(z, A", pi") (20)
holds for all u > 0 and for all x € Fy (z*).
The proof is identical to the ‘only if’ part of the proof of Theorem 4.

We emphasize that the the Lagrangian function defined above is much easier
to handle than the one given in [14]. The sets Qg (z*) and M (z*) can be
easily determined by just comparing the objective functions’ values at x* with
these functions’ global minima while the index sets used in [14] require much
more complicated calculations. According to our result, to check whether
a point z* is possibly a Pareto point one has to find the index sets QF (z*)
and My (z*), which is relatively easy due to the convexity assumption, and
check whether for an appropriate A* and p* the saddle point condition (20)
is satisfied. Furthermore, all possible candidate points for Pareto solutions
can be found by means of condition (20). When formulated for the infeasible
point partitions, Corollaries 3 and 4 remain valid and, consequently, all the
resulting conclusions supporting decision making remain valid, too.
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4 Nonconvex Problems

In this section we drop the convexity assumptions of the previous section,
consider the general (nonconvex) (MOP) and discuss again the relation-
ships between Pareto points and saddle points. As the linear Lagrangian
(10) cannot be used for nonconvex problems, we associate with the problem
(CC(MOP, z*)) the augmented Lagrangian defined for x € F, y € IR? and
7> 0:

Lo(z,y,r) = z:fq(x) + f: [yq max {fq(x) — fq(z"), —_yq}

—l 2r

(21)
+7 (max{fq(x) — fo(z), —2_'(:’/:1}>2‘| | 21

where z* € F.

In order to prove the main results of this section, following Rockafellar, see
[7], we make some assumptions about the problem (CC(MOP,z*)).

Assumption 1

Let the problem (CC(MOP,z*)) satisfy the quadratic growth condition
(QGC), i.e. there exists an r > 0 such that L,(z,0,r) is bounded below
as a function of z, x € F'.

The QGC is certainly satisfied if all the functions f, are bounded below on
F' and thus in particular, if F' is compact and all the functions are lower
semicontinuous on F'. For more details we refer to Rockafellar, [7].

Assumption 2
Let the problem (CC(MOP,z*)) be (lower) stable of degree 2 (SoD2), i.e.
there exist

1. an open neighbourhood U of the origin in IR?, and

2. a function 7 : U — IR! of class C? such that
p(u) > 7(u) for all u € U

and



where p(u) : R? — IR! is the perturbation function associated with
the problem (CC(MOP, z*)) and defined as

Q
p(u) = min {Z ful@) s fu(@) = fy(a") Sugq € Q ue RQ} .

We emphasize that Assumption 1 is rather technical and not constraining
while Assumption 2 is stronger and related to the curvature of the original
objective functions, which should allow that the perturbation function p(u)
of the problem (CC(MOP,z*)) be supported by a function 7. With these
assumptions we can prove the existence of a Pareto-related saddle point.

Theorem 6 Let the problem (CC(MOP,z*)) satisfy QGC and be SoD2.
Then x* € F is a Pareto point for the (MOP) if and only if there exist
(y*,r*),r* > 0 such that

Lo(a*,y,7) < Lo(2", 4", 1") < La(z,y", 1) (22)
holds for all x € F and y € IR?,r > 0.

Proof:

According to Theorem 1, z* € F is a Pareto solution of the (M OP) if and
only if it is an optimal solution of the problem (CC(MOP,z*)). Applying
to this problem the results by Rockafellar, [7, Corollary 5.2], we obtain the
desired result. |

Now we are going to proceed as in the convex case. If a point z* is feasible
but not Pareto for the (MOP), using Theorem 2 we can restrict ourselves
to the problem (MOP(Q<(z*))) in order to find a Pareto point dominating
z*. If a Pareto point Z for the problem (MOP(Q<(z*))) has been found,
we know that this point is also Pareto for the original (MOP). In order to
find a Pareto point for the smaller problem we investigate its scalarization

(CC(MOP(Q<(x%)),%)):
min Z fq(2)

g€Q<(z~)
s.t. fo(z) — fo(2)

x



where & € F<(z*) is an arbitrary feasible point of (MOP(Q<(z*))). Again,
by Theorem 1, there is a one-to-one correspondence between Pareto points
of the smaller problem (MOP(Q<(z*))) and optimal solutions of its scalar-
ization.

Because & € F<(z*) we have

fo(@) < fo(a™) Vie Q. (25)
From (23) and (24) we get
fol@) = fo(2) < 0 <[k
1o e = o preeee)

and
fo(@) = fo(a™) <0 Vie Q (z"),
which, together with (25), yields

fo@) = fo(8) < 0 Vge Q%(z")
fol@) = fo(z*) < 0 Vge Q@ (zY).

Now the problem (CC(MOP(Q<(z*)),Z)) becomes

0
0

min Z fq(2)

q€Q<(z*)
fo@) = fo(8) < 0 Vg€ Q™(a7) (26)
fo@) = fo(z") < 0 VgeQ(z")

x € F.

Let p*(u) be the perturbation function associated with problem (26):

ps(u)Zmin{ 2 fq<x):[fz<w>—fq<fc1 Vg € Q<(a")

fulw) = fola") Vg€ @=(a") | ="M € IRQ}'

We show that problem (26) is SoD2 if the same is true for the original problem
(CC(MOP, %)).

Lemma 5 Let z* € F be not a Pareto point for the (MOP). Then for
all points & € F<(x*) such that the problem (CC(MOP,%)) is SoD2, the
problem (CC(MOP(Q<(z*)),)) is also SoD2.
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Proof:
Let p(u) be the perturbation function associated with the problem
(CC(MOP, z)) and let

mw)=m(u) = D> (fo(@)+uyg) (27)

qeQ=(z*)

where 7(u) is defined as in Assumption 2 for the problem (CC(MOP, 1))
and

p(u) > m(u) YueU. (28)
From (27) and (28) we get
p(u) = D (fol@) +ug) > 7°(u). (29)
qeQ=(z*)
Now we shall show that
Z ) +ug) < p(u), (30)

where p®(u) is the perturbation function associated with the scalarized prob-
lem (CC(MOP(Q<(z*)),%)). By definition,

plu) = gnellf}{qu (z) — fq()<“qVq€Q}

= 151611];1{ Z fqlz) + Z fq(z) -
qeQ<(z*) qeQ=(z*)
lfq(ﬂc)—fq(fﬁ) Vg € Q<(z*)
fa(@) — fo(&) Vg€ Q=(a¥)

<uf.

Observe that
fq(&) = fy(a®) for all g € Q™ (z¥).
Therefore

p(u) = ggg{ Yo fl@+ Y fole):

qeQ<(z*) geQ=(z*)
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&
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+
5

= P+ D (fe(@) +ug (31)

q€Q=(z*)

The inequality above results from the condition f,(z) — f,(z*) < u, Vg €
Q=(z*), after which the expression under the second sum becomes constant
and the minimization is carried out with respect to the first sum. Clearly,
(31) proves (30). Furthermore we shall show that p*(0) = 7°(0).

p(0) = ml}}{ Z fo() + Z folz)
TN | ge< (@) 4€Q=(z")

lﬂ@—h@)WEQﬂﬂ)
fo(z) = f4(2) Vg€ Q=(z%)

2

=  min { Z fo@) : folz) — fo(2) < 0Vq € Q<(x*)}

zEF<(z*) q€Q< (a*)

+ Y fol®@)

qeQ=(z*)
- | fa@) = fo(2) Vg e Q<(a)
T wr {2 S EO TR eg i < 0}

+ Z fo(&)

qeQ=(z*)

= p(0)+ Z fo(#).

qeQ=(z*)
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The second equality follows from the definition of F'<(z*) and f,(z) = f,(z*)
for allz € F<(z*) and all ¢ € Q= (z*). Now we apply the definition of F'<(z*)
again and get the third equality.

Since p(0) = 7(0) = 7°(0) + X4e0=(s+) f¢(Z) we obtain the desired result. O
With Lemma 5 we can prove the main theorem of this section.

Theorem 7 Let z* € F be not a Pareto solution for the (MOP). Let
the problem (CC(MOP, %)) satisfy the QGC and be SoD2. If (Z,9y,7) is
a saddle point of the augmented Lagrangian function associated with the
problem (CC(MOP(Q<(z*)), %)), then there exist (y*,r*),r* > 0, such that
(Z,y*,r*) is a saddle point of the augmented Lagrangian function associated
with the problem (CC(MOP, t)).

Proof:

Since the problem (CC(MOP,z)) satisfies the QGC so does the problem
(CC(MOP(Q<(z*),2))). From Lemma 5, problem (CC(MOP(Q<(z*),Z)))
is SoD2. From Theorem 6, & is a Pareto point for problem (MOP(Q<(z*)),
and from Theorem 2, % is also Pareto for the (MOP). Therefore, due to
Theorem 6 again, the result follows. a

5 Conclusions

In this paper, Pareto solutions of multiple objective programs (MOPs) are
related to saddle points of some Lagrangian-type scalarizing functions. The
common foundation for all the results is determined by Charnes and Cooper’s
scalarization of MOPs as well as by the partitions of the set of objective func-
tions and the set of constraints introduced in this paper. As the partitions
distinguish the objective functions whose values can be still improved, they
are of special significance in decision making. Saddle point characterizations
of Pareto points for convex and nonconvex MOPs are derived and their use-
fulness in decision making is discussed.

The results could be extended in several directions. First of all, other scal-
arizations of MOPs, such as the e-constraint scalarization (see [1]) or the
weighted Tchebycheff scalarization (see [3]) could be used and lead to other
Lagrangian functions whose saddle points would be checked. Furthermore,
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assuming that the scalarized version of the original (M OP) takes the form
of a nonlinear program with equality constraints, a simpler augmented Lag-
rangian function could be applied (see [7]).
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