Skip to main content
Log in

Optimization of Algorithmic Parameters using a Meta-Control Approach*

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Optimization algorithms usually rely on the setting of parameters, such as barrier coefficients. We have developed a generic meta-control procedure to optimize the behavior of given iterative optimization algorithms. In this procedure, an optimal continuous control problem is defined to compute the parameters of an iterative algorithm as control variables to achieve a desired behavior of the algorithm (e.g., convergence time, memory resources, and quality of solution). The procedure is illustrated with an interior point algorithm to control barrier coefficients for constrained nonlinear optimization. Three numerical examples are included to demonstrate the enhanced performance of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Athans P.L. Falb (1966) Optimal Control McGraw-Hill Book Company New York

    Google Scholar 

  2. J.C. Butcher (2003) Numerical Methods for Ordinary Differential Equations EditionNumber2 John Wiley, Hoboken New Jersey

    Google Scholar 

  3. J.E. Dennis R.B. Schnabel (1996) Numerical Methods for Unconstrained Optimization and Nonlinear Equations Society for Industrial and Applied Mathematics (SIAM) Philadelphia

    Google Scholar 

  4. K. Eriksson D. Estep P. Hansbo C. Johnson (1996) Computational Differential Equations Cambridge University Press Lund, Sweden

    Google Scholar 

  5. L. C. Evans (1998) Partial Differential Equations American Mathematical Society Providence, Rhode Island

    Google Scholar 

  6. A.V. Fiacco G.P. McCormick (1990) Nonlinear Programming Society for Industrial and Applied Mathematics (SIAM) Philadelphia

    Google Scholar 

  7. A. Forsgren P.E. Gill M.H. Wright (2002) ArticleTitleInterior methods for nonlinear optimization SIAM Review 44 IssueID4 525–597 Occurrence Handle10.1137/S0036144502414942

    Article  Google Scholar 

  8. T. Frankel (1997) The Geometry of Physics Cambridge University Press New York

    Google Scholar 

  9. X. Ge W. Kohn A. Nerode J.B. Remmel (1996) Hybrid systems: chattering approximations to relaxed controls R. Alur T.A. Henzinger E.D. Sontag (Eds) Hybrid Systems III. number 1066 in Lecture Notes in Computer Science Springer New York 76

    Google Scholar 

  10. I.M. Gelfand S.V. Fomin (1963) Calculus of variations Prentice-Hall Inc. Englewood Cliffs, N.J

    Google Scholar 

  11. Kohn W. and Brayman V. (2003). Convergence analysis of the hynomics incremental optimizer, Technical report, Hynomics Corporation.

  12. Kohn W., Brayman V., Cholewinski P. and Nerode A. (2004). Control in hybrid systems, International Journal of Hybrid Systems.

  13. Kohn, W., Nerode, A. and Remmel, J.B. (1996), Continualization: A hybrid systems control technique for computing, Proceedings of CESA’96 IMACS Multiconference. 517–521.

  14. H.J. Kushner D.S. Clark (1978) Stochastic Approximation Methods for Constrained and Unconstrained Systems Springer-Verlag New York

    Google Scholar 

  15. H.J. Kushner G.G. Yin (1997) Stochastic Approximation Algorithms and Applications Springer-Verlag New York

    Google Scholar 

  16. H. Kwakernaak R. Sivan (1972) Linear Optimal Control Systems John Wiley and Sons New York

    Google Scholar 

  17. G.P. McCormick (1983) Nonlinear Programming: Theory, Algorithms, and Applications John Wiley and Sons New York

    Google Scholar 

  18. R.D.C. Monteiro I. Adler (1989) ArticleTitleInterior path following primal-dual algorithms Part I: Linear programming Mathematical Programming 44 27–41

    Google Scholar 

  19. R.D.C. Monteiro I. Adler (1989) ArticleTitleInterior path following primal-dual algorithms. Part II: Convex quadratic programming Mathematical Programming 44 43–66

    Google Scholar 

  20. Y. Nesterov Nemirovskii (1994) Interior-point polynomial algorithms in convex programming Society for Industrial and Applied Mathematics Philadelphia

    Google Scholar 

  21. Olver P.J. (1993). Applications of Lie Groups to Differential Equations, Springer-Verlag, second edition.

  22. L.S. Pontryagin V.G. Boltyanskii R.V. Gamkrelidze E.F. Mischenko (1962) The Mathematical Theory of Optimal Processes Interscience New York

    Google Scholar 

  23. K. Schittkowski (1987) More Test Examples for Nonlinear Programming Codes Springer-Verlag Berlin, Heidelberg

    Google Scholar 

  24. H.D. Sherali B.O. Skarpness B. Kim (1988) ArticleTitleAn assumption-free convergence analysis for a perturbation of the scaling algorithm for linear programs, with application to the L1 estimation problem Naval Research Logistics 35 473–492

    Google Scholar 

  25. P. Tseng Y. Ye (2002) ArticleTitleOn some interior-point algorithms for nonconvex quadratic optimization Mathematical Programming 93 217–225 Occurrence Handle10.1007/s10107-002-0310-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf Kohn.

Additional information

This work was primarily done when Z. Zabinsky was visiting Clearsight Systems Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohn, W., Zabinsky, Z.B. & Brayman, V. Optimization of Algorithmic Parameters using a Meta-Control Approach*. J Glob Optim 34, 293–316 (2006). https://doi.org/10.1007/s10898-005-1655-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-005-1655-0

Keywords

Navigation