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Abstract

We study ellipsoid bounds for the solutions (x, µ) ∈ R
n×R

r of polyno-
mial systems of equalities and inequalities. The variable µ can be con-
sidered as parameters perturbing the solution x. For example, bound-
ing the zeros of a system of polynomials whose coefficients depend on
parameters is a special case of this problem. Our goal is to find min-
imum ellipsoid bounds just for x. Using theorems from real algebraic
geometry, the ellipsoid bound can be found by solving a particular poly-
nomial optimization problem with sums of squares (SOS) techniques.
Some numerical examples are also given.

Keywords: polynomial system, perturbation, ellipsoid, real algebraic
geometry, sum of squares(SOS), semidefinite programming(SDP).

1. Introduction

We propose a method to find guaranteed bounds on the real solutions
of a polynomial system of equalities and/or inequalities of the following

∗This paper was supported by NSF Grant No. EIA-0122599
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form:






































φ1(x1, · · · , xn;µ1, · · · , µr) = 0
...

φs(x1, · · · , xn;µ1, · · · , µr) = 0
ρ1(x1, · · · , xn;µ1, · · · , µr) ≤ 0

...
ρt(x1, · · · , xn;µ1, · · · , µr) ≤ 0

(1.1)

where x = (x1, · · · , xn)
T ∈ R

n and µ = (µ1, · · · , µr)
T ∈ R

r. For each
1 ≤ i ≤ s and 1 ≤ j ≤ t, φi and ρj are multivariate polynomials in
(x, µ) ∈ R

n+r. Throughout this paper, we partition the solution into
two parts: the first n components (x) and the last r components (µ).
µ can be thought of as parameters perturbing the solution x. We are
only interested in bounding x for all µ determined by (1.1). x can
be also be thought of as the projection of the solution (x, µ) ∈ R

n+r

of (1.1) into the subspace R
n. We consider only real solutions, since

many practical problems concern only real solutions.
Our goal is to bound the projected solution set defined as

S = {x ∈ R
n : ∃ µ ∈ R

r s.t. (x, µ) satisfies system (1.1)}.

For a given µ, there may be no real x satisfying (1.1), or one unique
such x, or several such x, or infinitely many such x. So S can be quite
complicated.

Here is an example (see example 2 in section 6)

(x1 − 1)(x2 − 1)(x3 − 1)− µ1 = 0

(x1 + x2 − 3)(x2 + x3 − 3)(x3 + x1 − 3)− µ2 = 0

(x1 + 2x2 − x3)(x2 + 2x3 − x1)(x3 + 2x1 − x2)− µ3 = 0

µ2
1 − .12 ≤ 0, µ2

2 − .12 ≤ 0, µ2
3 − .12 ≤ 0.

As the µis get smaller, the solution x approaches one of the solutions of
the 27 3-by-3 linear systems implicitly defined by the first 3 equations
when µi = 0(i = 1, 2, 3). This example defines the solution set S for
|µi| ≤ .1(i = 1, 2, 3).

The traditional approach in perturbation analysis of a system of
equations is to find the maximum distance of the perturbed solutions
to the unperturbed solution, i.e. to find a bounding ball of smallest
radius with the unperturbed solution at the center. This approach
works well when the solution set is almost a ball and the unperturbed
solution lies near the center. Unfortunately, this is often not the case
in practice, when the solution set is very elongated. Instead, we seek a
bounding ellipsoid of smallest volume (in a sense defined below), which
can more effectively bound many elongated sets.
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The particular idea for finding minimum ellipsoids was introduced
in [3, 4], where the authors try to find the minimum ellipsoids for
linear systems whose coefficients are rational functions of perturbing
parameters. In this paper, we generalize these results to polynomial
systems of equalities and/or inequalities.

The computational complexity of our approach may be described
as follows. Let D be the maximum degree of any polynomial in (1.1).
Then for fixed D our method can provide a guaranteed bounding el-
lipsoid in polynomial time in the number of variables n and r. But to
guarantee the minimum bounding ellipsoid, the complexity can poten-
tially grow much faster (see Section 5).

Throughout this paper, we will use the following notation. All
variables are real. XT is the transpose of a matrix X . In is the
standard n-by-n identity matrix. Sn

+(S
n
++) denotes the set of all the

n-by-n symmetric positive semidefinite (definite) matrices. A � 0(A ≻
0) means that the matrix A is positive semidefinite (definite). The
polynomial inequality f �sos g means that f − g can be written as a
sum of squares of polynomials, which will be discussed in Section 3.

This paper is organized as follows. Section 2 introduces ellip-
soid bounds for the solution of (1.1). Section 3 introduces “sum of
squares” polynomials and their connection with semidefinite program-
ming (SDP). Section 4 introduces results we need from real algebraic
geometry. In section 5, we discuss how to find the ellipsoid bound by
solving a particular SDP. Section 6 will show two numerical examples.

2. Ellipsoid bounds for Polynomial Systems

In this section, we formulate the ellipsoid bound for the projected
solution set S. This idea of finding an ellipsoid bound is from [3, 4],
where the authors consider the special case where each polynomial
φi(x;µ) is affine in x and rational in µ, and the ρj = ρj(µ) are quadratic
in µ.

An ellipsoid in R
n may be defined as

E(P, z) =
{

x ∈ R
n : (x − z)TP−1(x − z) < 1

}

(2.1)

where P ∈ Sn
++ is the shape matrix, and z ∈ R

n is the center of the
ellipsoid. By taking a Schur complement, the ellipsoid can also be
defined as

E(P, z) =
{

x ∈ R
n :

[

P x− z
(x− z)T 1

]

≻ 0

}

. (2.2)

For example, the ellipsoid in the 2D plane given by

(x1 − z1)
2

a2
+

(x2 − z2)
2

b2
< 1
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has the shape matrix P =

[

a2 0
0 b2

]

.

How do we measure the “size” of an ellipsoid? The “best” mea-
sure would appear to be its volume, which is proportional to

√
detP .

However, we will instead choose trace(P ) to measure the size, for two
reasons: 1) trace(P ) is an affine function, whereas

√
detP is not, which

makes the optimization problem tractable. 2) trace(P ) is zero if and
only if all the axes are zero, but

√
detP is zero if any one axis is zero.

Now we can formulate the minimum ellipsoid problem as the fol-
lowing optimization:

inf
P∈Sn

++
,z∈Rn

trace(P ) (2.3)

s.t.
(x − z)TP−1(x − z) < 1
for all (x, µ) satisfying

φi(x, µ) = 0, ρj(x, µ) ≤ 0







. (2.4)

What we will do in the following sections is to replace the constraint
(2.4) by certain matrix inequalities that can be solved by SDP.

3. Polynomials that are sums of squares

In this section, we briefly introduce sum of squares polynomials, and
their connection with SDP; see [10, 8] for more details. For notational
convenience we assume throughout this section that all polynomials
are in x ∈ R

n, i.e. x is not necessarily a solution of (1.1).
First, every polynomial p(x) can be written as vTAv for some sym-

metric matrix A, where v is the vector of monomials

v = [1, x1, · · · , xn, x
2
1, x1x2, · · · ]T .

Since the entries in vector v depends on each other, the matrix A is not
unique. It can be shown [10] that all possible As satisfying p = vTAv
form an affine set

A =

{

A0 +
∑

i

αiAi : αi ∈ R

}

where A0, A1, · · · are constant symmetric matrices.
For example, consider the following polynomial from [10]

F (x, y) = 2x4 + 2x3y − x2y2 + 5y4.

After some algebra, we can show that

F (x, y) =





x2

y2

xy





T 



2 −α 1
−α 5 0
1 0 2α− 1









x2

y2

xy



 ,

where α is arbitrary.
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Definition 3.1 A polynomial p(x) is a sum of squares (SOS) polyno-
mial if it can be expressed as a finite sum of squares of other polyno-
mials, i.e., p(x) =

∑ℓ
i=1 p

2
i (x).

One good property of SOS polynomials is that they are closely
related to SDP. If a polynomial p(x) =

∑

i p
2
i (x), then we can find

a particular A satisfying 0 � A ∈ A. In fact, we can write pi(x) =
vT ai for some constant vector ai, then p(x) = vT (

∑

i aia
T
i )v, and

so A =
∑

i aia
T
i � 0 is such a choice. Conversely, if we can find

some A satisfying 0 � A ∈ A, then the spectral decomposition of
A =

∑

i λ
2
i qiq

T
i provides the ai = λiqi defining the pi(x) = vTai in

the SOS expression. Since A is affine, we can determine whether A
contains an A � 0 by solving an SDP, as described in the following
theorem:

Theorem 3.2 (Parrilo, [10]) A polynomial is SOS if and only if we
can find some A ∈ A such that A is positive semidefinite. This can be
confirmed by solving an SDP feasibility problem.

The computational complexity of this problem will depend on the
size of the corresponding SDP: a polynomial p(x) of degree d and n
variables can be represented as vTAv, where v is the monomial vector
up to degree d/2. The number of coefficients of p(x) is at most

(

n+d
d

)

,

and the dimension of matrix A is
(n+d/2

d/2

)

. We return to the complexity

issue in Section 5.

4. Some theorems in real algebraic geometry

This section will introduce some results about positive semidefinite
(PSD) polynomials, the positivstellensatz, and other theorems about
infeasibility of semi-algebraic sets(the subsets in Euclidean space that
can be described by polynomial equalities and/or inequalities). For a
more detailed introduction to real algebra, see [1].

In this section, to comply with the traditional notation in multi-
variate polynomial algebra, we will denote by x ∈ R

n the variable of
a multivariate polynomial, not the solution to (1.1), unless explicitly
stated otherwise.

Definition 4.1 A polynomial p(x) is said to be positive semidefinite
(PSD) if p(x) ≥ 0, ∀ x ∈ R

n.

PSD polynomials appear frequently in practice. Unfortunately, testing
whether a polynomial is PSD or not is an NP-hard problem if the
polynomial has degree at least four [7]. Therefore (unless P=NP) any
algorithm guaranteed to test the nonnegativity of a polynomial in every
possible case will run too slowly when the number of variables is large

5



[8]. However, one obvious sufficient condition for a polynomial to be
PSD is that it be SOS.

As we saw in section 3, testing whether a polynomial is SOS is
tractable, i.e. can be done in polynomial time. Thus, unless P=NP,
some PSD polynomials are not SOS. Indeed, this is consistent with
the solution to Hilbert’s 17th problem; see [12] for a good introduc-
tion. Now let Pn,d denote the set of PSD polynomials of degree d in
n variables, and let Σn,d denote the set of polynomials of degree d in
n variables which are SOS. Clearly Σn,d ⊆ Pn,d, but the equality may
not hold. Hilbert (1888, [2, 12]) showed that Σn,d = Pn,d if and only if
(n, d) ∈ {(1,≥ 1), (≥ 1, 2), (2, 4)}. However, the first explicit polyno-
mial that is PSD but not SOS appeared in 1967 [11, 12], which is the fa-
mous Motzkin polynomial M(x1, x2, x3) = x4

1x
2
2+x2

1x
4
2+x6

3−3x2
1x

2
2x

2
3.

The nonnegativity of M(x1, x2, x3) is obtained immediately from the
arithmetic-geometric mean inequality. The proof that M(x1, x2, x3) is
not SOS can be found in [12].

Given polynomials q1, · · · , qm ⊆ R[x1, · · · , xn], let P (q1, · · · , qm)
denote the preorder cone generated by the qi’s, i.e.,

P (q1, · · · , qm) =







∑

I⊂{1,2,··· ,m}

σI(x)
∏

j∈I

qj(x)

∣

∣

∣

∣

∣

∣

σI SOS







.

Define the basic closed semi-algebraic set generated by the qi’s as

S(q1, · · · , qm) = {x ∈ R
n : qi(x) ≥ 0, for all 1 ≤ i ≤ m}.

Theorem 4.2 (Stengle, [14]) Let (fi)i=1,··· ,s, (hi)k=1,··· ,t be a set
of polynomials in R[x1, · · · , xn]. Then the following two properties are
equivalent:

1. The following set is empty

{

x ∈ R
n

∣

∣

∣

∣

fi(x) = 0, i = 1, · · · , s
hk(x) ≥ 0, k = 1, · · · , t

}

; (4.1)

2. There exist polynomials λi and σK such that

s
∑

i=1

λifi +
∑

K⊂{1,2,··· ,t}

σK

∏

k∈K

hk + 1 = 0.

This theorem is the so-called positivstellensatz in real algebraic geom-
etry. It is a powerful tool to testify the infeasibility of a polynomial
system of equalities and inequalities.

However, the positivstellensatz involves cross products among dif-
ferent hk’s, which makes the computation more expensive. To avoid
this expense, we will introduce other theorems which do not involve the
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cross products of hk’s, i.e., just the linear part of preorder cone. The
following assumption and theorem are due to Jacobi [5] and Putinar
[11], and used by Lasserre [6].

Assumption 4.3 Let h1, · · · , hℓ ∈ R[x1, · · · , xn] be polynomials such
that S(h1, · · · , hℓ) is compact. Assume that there exists a polynomial
u(x) ∈ R[x1, · · · , xn] such that S(u) is compact and

u(x) = u0(x) +
ℓ

∑

i=1

ui(x)hi(x)

where u0, u1, · · · , uℓ are all SOS, i.e., u(x) is just the linear part of the
preorder cone P (h1, · · · , hℓ).

In fact, Assumption 4.3 is often satisfied [6]. For example, if there
is one polynomial hj(x) such that S(hj) is compact, or if all hi’s are
linear, then Assumption 4.3 is satisfied. Another way to ensure As-
sumption 4.3 is true is to add one more inequality hℓ+1 = a2 − ‖x‖22
for sufficiently large a.

Theorem 4.4 ([5, 11]) Let h1, · · · , hℓ ∈ R[x1, · · · , xn] be a set of
polynomials satisfing Assumption 4.3. Then every polynomial p(x),
strictly positive on S(h1, · · · , hℓ), can be represented as

p(x) = p0(x) +
ℓ

∑

i=1

pi(x)hi(x)

where p0, p1, · · · , pℓ are all SOS.

If Assumption 4.3 is not satisfied, we have another theorem, due to
Schmüdgen, which is a simplified version of the positivstellensatz.

Theorem 4.5 ([13]) Let h1, · · · , hℓ ∈ R[x1, · · · , xn] be polynomials
such that S(h1, · · · , hℓ) is compact. Then every polynomial p(x), strictly
positive on S(h1, · · · , hℓ), must belong to P (h1, · · · , hℓ), i.e.,

p(x) =
∑

K⊂{1,2,··· ,ℓ}

pK(x)
∏

i∈K

hi(x)

for some SOS polynomials pK(K ⊂ {1, 2, · · · , ℓ}).
In the rest of this section, x and µ will again denote the solutions to

polynomial system (1.1). All polynomials are in (x, µ) unless explicitly
stated otherwise.

Now return to the constraint (2.4). It holds if and only if

1−(x−z)TP−1(x−z) > 0 for all

{

x ∈ R
n

∣

∣

∣

∣

φi(x, µ) = 0, i = 1, · · · , s
ρj(x, µ) ≤ 0, j = 1, · · · , t

}

.
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Replacing one equality with two inequalities with opposite directions,
we can see that (1.1) is the same as



































































φ1(x1, · · · , xn;µ1, · · · , µr) ≥ 0
...

φs(x1, · · · , xn;µ1, · · · , µr) ≥ 0
− φ1(x1, · · · , xn;µ1, · · · , µr) ≥ 0

...
− φs(x1, · · · , xn;µ1, · · · , µr) ≥ 0
− ρ1(x1, · · · , xn;µ1, · · · , µr) ≥ 0

...
− ρt(x1, · · · , xn;µ1, · · · , µr) ≥ 0

(4.2)

Theorem 4.6 Suppose the set of polynomials {±φ1, · · · ,±φs, ρ1, · · · , ρt}
satisfies Assumption 4.3. Then if constraint (2.4) holds, there exist
polynomials λi = λi(x, µ), σj = σj(x, µ) such that

1− (x− z)TP−1(x − z) +

s
∑

i=1

λiφi −
t

∑

j=1

σjρj �sos 0

σ1, · · · , σt �sos 0.

Proof Let p = 1−(x−z)TP−1(x−z) and {±φ1, · · · ,±φs,−ρ1, · · · ,−ρt}
be the polynomials defining the semi-algebraic set in Theorem 4.4. No-
tice that p(x) is strictly positive on S(±φ1, · · · ,±φs,−ρ1, · · · ,−ρt).
Then by Theorem 4.4, there exist SOS polynomials ϕ, τi, νi(i =
1, · · · , s), and σj(j = 1, · · · , t) such that

1− (x− z)TP−1(x− z) = ϕ+

s
∑

i=1

(τi − νi)φi +

t
∑

j=1

σjρj .

Let λi = νi − τi. Then we get the result in the theorem. �

Remark: (i) By Theorem 4.2, the SOS inequalities in Theorem 4.6 are
also sufficient, in the sense that we can get only a weak instead of
strict inequality in (2.4). But this does not affect much in the opti-
mization. (ii) However, if {±φ1, · · · ,±φs,−ρ1, · · · ,−ρt} does not sat-
isfy Assumption 4.3, but S(±φ1, · · · ,±φs,−ρ1, · · · ,−ρt) is compact,
we can use Schmüdgen’s theorem 4.5 to get another similar equivalent
formulation of constraint (2.4), by adding those items involving cross
products.

We can also get a certificate of feasibility for (2.4) via the posi-
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tivstellensatz. Notice that (2.4) is valid if and only the following set














































(x − z)TP−1(x − z)− 1 ≥ 0
φ1(x1, · · · , xn;µ1, · · · , µr) = 0

...
φs(x1, · · · , xn;µ1, · · · , µr) = 0

− ρ1(x1, · · · , xn;µ1, · · · , µr) ≥ 0
...

− ρt(x1, · · · , xn;µ1, · · · , µr) ≥ 0

is empty. By Theorem 4.2, we obtain that

Theorem 4.7 The constraint (2.4) holds if and only if there exist
polynomials γ = γ(x, µ) 6= 0, λi = λi(x, µ), σI = σI(x, µ) such that

((x− z)TP−1(x− z)− 1)γ +

s
∑

i=1

λiφi −
∑

I⊂{1,··· ,t}

σI

∏

j∈I

ρj + 1 = 0

γ �sos 0, σI �sos 0, ∀I ⊂ {1, · · · , t}.
Proof Verify directly by Theorem 4.2. �

Remark: i) In Theorems 4.6 and 4.7, the polynomials λi, σj and others
may depend on P and z. ii) The degree bounds and structures of λi

and σj are not clear yet, as far as the authors know. There are some
exponential degree bounds [15]. The bound may be as high as O(1ǫ )
where ǫ is the minimum value of 1−(x−z)TP−1(x−z) over the solution
set. iii) For arbitrary fixed degrees, any ellipsoid satisfying Theorem 4.6
or 4.7 is an upper bound for the solution set S. iv) However, as the
readers will see in the next section, the found ellipsoids will converge
the minimum one when the degrees of λi and σj go to infinity.

5. Finding the ellipsoids

In this section, we will show how to solve the problem (2.3)-(2.4) by
formulating it as an optimization with SOS polynomials. Denote by
RN [x, µ] all the real polynomials in (x, µ) with degrees less than or
equal to N .

By Theorem 4.6-4.7 and the remarks afterwards, the problem (2.3)-
(2.4) can be relaxed as

ÊN : min
P∈Sn

++,z∈R
n

λi,σj∈RN [x,µ]

trace(P ) subject to

1− (x − z)TP−1(x − z) +

s
∑

i=1

λi(x, µ)φi −
t

∑

j=1

σj(x, µ)ρj �sos 0

σ1, · · · , σt �sos 0

9



which can be rewritten as

min
P∈Sn

++,z∈R
n

λi,σj∈RN [x,µ]

trace(P )

s.t. 1−
[

x
1

]T
[

I −z
]T

P−1
[

I −z
]

[

x
1

]

+

s
∑

i=1

λi(x, µ)φi −
t

∑

j=1

σj(x, µ)ρj �sos 0

σ1, · · · , σt �sos 0.

Now by introducing a new matrix variable Q, this becomes

min
Q,P∈Sn

++,z∈R
n

λi,σj∈RN [x,µ]

trace(P ) subject to

1−
[

x
1

]T

Q

[

x
1

]

+

s
∑

i=1

λi(x, µ)φi −
t

∑

j=1

σj(x, µ)ρj �sos 0

[

I −z
]T

P−1
[

I −z
]

� Q

σ1, · · · , σt �sos 0.

Taking a Schur complement, this is equivalent to

EN : p∗N = min
Q,P∈Sn,z∈R

n

λi,σj∈RN [x,µ]

trace(P ) subject to (5.1)

1−
[

x
1

]T

Q

[

x
1

]

+

s
∑

i=1

λi(x, µ)φi −
t

∑

j=1

σj(x, µ)ρj �sos 0 (5.2)

[

P
(

I −z
)

(

I −z
)T

Q

]

� 0 (5.3)

σ1, · · · , σt �sos 0. (5.4)

The objective function is an affine function of P , and the constraints are
either linear matrix inequality (LMIs) or SOS inequalities, which are
also essentially LMIs ([10]). Therefore it can be solved by a standard
SDP routine.

Now we consider the complexity of problem EN . Let D be the
maximum degree of polynomials defining system (1.1). From the dis-
cussion at the end of Section 3, we can see that the LMI correspond-
ing to (5.2) has size

(n+r+(N+D)/2
(N+D)/2

)

, LMI (5.3) has size 2n + 1, and

LMIs corresponding to (5.4) have size
(n+r+N/2

N/2

)

. Therefore, the to-

tal cost for solving problem (5.1)-(5.4) via SDP is O(M3+1/2), where

10



M =
(n+r+(N+D)/2

(N+D)/2

)

. When D and N are fixed, this is a polynomial

function of n and r.
As we pointed out in the remark after Theorem 4.7, for any fixed

degree N , the ellipsoid EN found in EN is a bound for the solution set
S. When the degree N is higher, the ellipsoid bound by solving EN is
tighter. The convergence of EN is described as follows.

Theorem 5.1 Suppose Assumption 4.3 is satisfied for polynomial sys-
tem (4.2). Then the trace p∗N of the ellipsoid EN found in EN converges
to trace p∗ of the minimum ellipsoid containing the solution set S when
the degree N tends to infinity.

Proof Let E∗ = {x ∈ R
n : (x − z∗)T (P ∗)−1(x − z∗) ≤ 1} be the

minimum ellipsoid containing the solution set S, with trace(P ∗) =
p∗. Then for arbitrary ǫ > 0, the polynomial 1 − (x − z∗)T (P ∗ +
ǫIn)

−1(x− z∗) is strictly positive on the set of (x, µ) defined by (4.2).
By Theorem 4.4, there exist some general polynomials λi(x, µ)(i =
1, · · · , s) and SOS polynomials σj(x, µ)(j = 1, · · · , t) such that

1− (x − z∗)T (P ∗ + ǫIn)
−1(x− z∗) +

s
∑

i=1

λiφi −
t

∑

j=1

σjρj �sos 0.

As we showed in this section, problems ÊN and EN are equivalent
formulations. So they have the same optimal objective values. WhenN
is large enough, then in ÊN we find one feasible solution with objective
value p∗ + nǫ. Thus it must be true that p∗N ≤ p∗ + nǫ. Here n is the
dimension of x, which is a constant. Since E∗ is minimum, it holds
that p∗N ≥ p∗. Therefore we have that limN→∞ p∗N = p∗. �

5.1. Alternative formulation

We can obtain another formulation like (5.1)-(5.4) starting from
Theorem 4.7 instead of Theorem 4.6. The new optimization is

min
Q,P∈Sn,z∈R

n

λi,σj∈RN [x,µ]

trace(P )

s.t. (1 −
[

x
1

]T

Q

[

x
1

]

)γ +

s
∑

i=1

λi(x, µ)φi

−
∑

I⊂{1,··· ,t}

σI

∏

j∈I

ρj �sos 0

σI �sos 0, ∀I ⊂ {1, · · · , t}
[

P
(

I −z
)

(

I −z
)T

Q

]

� 0
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Here the SOS polynomial γ must be specified before hand to preserve
the convexity of the problem. In practice, we usually choose γ = 1
and the subsets I ⊂ {1, · · · , t} with cardinality |I| = 1. As the readers
may see, formulation (5.1)-(5.4) is a special case of this one (with
γ = 1). One might expect that this new formulation would give us
better ellipsoid bounds. However, as the authors discovered in practice,
choosing other γ (like x2

1+x2
2+ · · · ) or choosing subsets I ⊂ {1, · · · , t}

with |I| > 1 does not help much in general, and on the other hand it
could increase the complexity greatly and cause numerical convergence
difficulties in SOSTOOLS.

6. Numerical examples

In this section, we will illustrate how the algorithm works for two
examples. All of them are solved via SOSTOOLS [9].

Example 1. Consider the following polynomial system of two equa-
tions and two inequalities.

(1 + µ2
1)x

2 + µ2xy + (1− µ2
2)y

2 + (µ1 + µ2)x + (µ1 − µ2)y − 1 = 0

(1− µ2
1)x

2 + µ1xy + (1 + µ2
2)y

2 + (µ1 − µ2)x + (µ1 + µ2)y − 1 = 0

ǫ2 − µ2
1 ≥ 0, ǫ2 − µ2

2 ≥ 0

where ǫ = 0.1. Formulate the optimization (5.1)-(5.4) for this poly-
nomial system, and then solve it by SOSTOOLS. In this problem,
n = 2, r = 2, D = 4. We choose N = 2 since any nonconstant SOS
polynomials have degree at least 2. The resulting 2D-ellipsoid is at the
top of Figure 1. The asterisks are the solutions (x, y) when (µ1, µ2)
are chosen randomly according to the two inequalities. As you can
see, the found ellipsoid is much larger than the set of real solutions.
This is because the solution set is not connected. However, if we want
more information about one branch, we can add one more inequality
of the form (x − a)2 + (y − b)2 ≤ r2, where a, b, r are chosen accord-
ing to the user’s interests for the solution region, and then solve the
optimization problem again. The role of this new inequality is that it
can help to find the ellipsoid bound for just one solution component,
and it also assures that Assumption 4.3 is satisfied. The middle and
bottom pictures are obtained by adding two such different polynomials
respectively, leading to much tighter bounds.
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Figure 1: The top one is ellipsoid for the original system without adding
any inequalities; the middle picture is obtained by adding inequality (x +
0.6)2+(y+0.6)2 ≤ 0.62; the bottom picture is obtained by adding inequality
(x− 0.9)2 + (y − 0.8)2 ≤ 0.82.
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Figure 2: This is the ellipsoid found for Example 2.

Example 2. Consider the 3D problem introduced in Section 1:

(x1 − 1)(x2 − 1)(x3 − 1)− µ1 = 0

(x1 + x2 − 3)(x2 + x3 − 3)(x3 + x1 − 3)− µ2 = 0

(x1 + 2x2 − x− 3)(x2 + 2x3 − x1)(x3 + 2x1 − x2)− µ3 = 0

µ2
1 − .12 ≤ 0, µ2

2 − .12 ≤ 0, µ2
3 − .12 ≤ 0.

In this example, n = 3, r = 3, D = 3. We also choose N = 2 as in
Example 1. The found 3D ellipsoid is in figure 2. We randomly chose
(µ1, µ2, µ3) satisfying the inequality constraints, solve the equations
for (x1, x2, x3) using Matlab symbolic toolbox, and also plot all these
solutions (x1, x2, x3) as asterisks in figure 2. As we can be see, most
asterisks that stand for solutions are contained inside the ellipsoid and
a few are near the boundary. The back side of the ellipsoid, which
is not shown, also has a number of asterisks appearing at its surface.
This means that ellipsoid cannot be made any smaller while containing
all the solutions. Adding constraint inequalities to focus on a partic-
ular solution component would lead to much smaller ellipsoids as in
Example 1.

Acknowledgements: The authors would like to thank professors L.
El Ghaoui, M. Gu, J. Lassare, P. Parrilo and B. Sturmfels for their
fruitful suggestions which helped improve this paper.
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