Skip to main content
Log in

Hausdorff Matching and Lipschitz Optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we prove the Lipschitz continuity with respect to the Hausdorff metric of some parametrized families of sets in R3. This implies that many Hausdorff approximation (Hausdorff matching) problems can be reduced to searching a global minimum of a real Lipschitz function of real variables. Practical methods are presented for obtaining reduced search spaces for these minimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Aichholzer H. Alt G. Rote (1997) ArticleTitleMatching shapes with a reference point International Journal of Computational Geometry and Applications 7 349–363 Occurrence Handle10.1142/S0218195997000211

    Article  Google Scholar 

  2. Alt, H., Behrends, B. and Blömer, J. (1991), Approximate matching of polygonal shapes, In: Proceedings of the 7th Annual ACM Symposium on Computational Geometry 186–193

  3. H. Alt B. Behrends J. Blömer (1995) ArticleTitleApproximate matching of polygonal shapes Annals of Mathematics and Artificial Intelligence 13 251–266 Occurrence Handle10.1007/BF01530830

    Article  Google Scholar 

  4. Alt, H. and Guibas L.J. (2000), Discrete geometric shapes: matching, interpolation and approximation-a survey, In: Sack, J.R. and Urrutia, J. (eds.), Handbook of Computational Geometry, North-Holland, Amsterdam.

  5. A.V. Balakrishnan (1981) Applied Functional Analysis Springer Verlag Berlin

    Google Scholar 

  6. M. Barnsley (1993) Fractals Everywhere Academic Press New York

    Google Scholar 

  7. L.P. Chew M.T. Goodrich D.P. Huttenlocher K. Kedem J.M. Kleinberg D. Kravets (1997) ArticleTitleGeometric pattern matching under Euclidean motion Computational Geometry Theory and Applications 7 113–124

    Google Scholar 

  8. L.P. Chew D. Dor A. Efrat K. Kedem (1999) ArticleTitleGeometric pattern matching in d-dimensional space Discrete and Computational Geometry 10 257–274

    Google Scholar 

  9. A. Efrat A. Itai M.J. Katz (2001) ArticleTitleGeometry helps in bottleneck matching and related problems Algorithmica 31 1–28 Occurrence Handle10.1007/s00453-001-0016-8

    Article  Google Scholar 

  10. M. Gavrilov P. Indyk R. Motwani S. Venkatasubramanian (2004) ArticleTitleCombinatorial and experimental methods for approximate point pattern matching Algorithmica 38 59–90 Occurrence Handle10.1007/s00453-003-1043-4

    Article  Google Scholar 

  11. M.T. Goodrich J.S.B. Mitchell M.W. Orletsky (1999) ArticleTitleApproximate geometric pattern matching under rigid motions IEEE Transactions on Pattern Analysis and Machine Intelligence 21 371–379 Occurrence Handle10.1109/34.761267

    Article  Google Scholar 

  12. S. Har-Peled S. Mazumdar (2005) ArticleTitleFast algorithms for computing the smallest k-enclosing circle Algorithmica 41 147–157 Occurrence Handle10.1007/s00453-004-1123-0

    Article  Google Scholar 

  13. Hagedoorn, M. (2000), Pattern Matching Using Similarity Measures, Thesis, Universiteit Utrecht.

  14. Hansen, P. and Jaumard, B. (1995), Lipschitz optimization, In: Horst, R. and Pardalos, P.M. (eds.), Handbook of Global Optimization, Kluwer Academic Publishers, Dordrecht.

  15. Hopp, T.H. and Reeve, C.P. (1996), An algorithm for computing the minimum covering sphere in any dimension, NISTIR 5831, Gaithersburg.

  16. R. Horst P.M. Pardalos N.V. Thoai (1995) Introduction to Global Optimization Kluwer Academic Publishers Dordrecht

    Google Scholar 

  17. D.P. Huttenlocher K. Kedem M. Sharir (1993) ArticleTitleThe upper envelope of Voronoi surfaces and its applications Discrete and Computational Geometry 9 267–291 Occurrence Handle10.1007/BF02189323

    Article  Google Scholar 

  18. V. Koltun C. Wenk (2005) ArticleTitleMatching polyhedral terrains using overlays of envelopes Algorithmica 41 159–183 Occurrence Handle10.1007/s00453-004-1107-0

    Article  Google Scholar 

  19. C.L. Lawson (1965) ArticleTitleThe smallest covering cone or sphere SIAM Review 7 415–417 Occurrence Handle10.1137/1007084

    Article  Google Scholar 

  20. S.R. Lay (1982) Convex Sets and their Applications Wiley New York

    Google Scholar 

  21. Lenz, R. (1990), Group Theoretical Methods in Image Processing, Lecture Notes in Computer Science vol. 413, Springer Verlag, Berlin.

  22. Lin, M. (1993), Efficient Collision Detection for Animation and Robotics, Ph.D. Thesis, University of California at Berkeley.

  23. B. Llanas C. Moreno (1996) ArticleTitleFinding the projection on a polytope: an iterative method Computers and Mathematics with Applications 32 33–39 Occurrence Handle10.1016/0898-1221(96)00164-2

    Article  Google Scholar 

  24. B. Llanas M. Fernández de Sevilla V. Feliú (2000) ArticleTitleAn iterative algorithm for finding a nearest pair of points in two convex subsets of Rn Computers and Mathematics with Applications 40 971–983 Occurrence Handle10.1016/S0898-1221(00)85008-7

    Article  Google Scholar 

  25. B. Llanas (2005) ArticleTitleEfficient computation of the Hausdorff distance between polytopes by exterior random covering Computational Optimization and Applications 30 161–194 Occurrence Handle10.1007/s10589-005-4560-z

    Article  Google Scholar 

  26. N. Megiddo (1984) ArticleTitleLinear programming in linear time when the dimension is fixed Journal of the Association for Computing Machinery 31 114–127

    Google Scholar 

  27. F.P. Preparata M.I. Shamos (1990) Computational Geometry Springer Verlag Berlin

    Google Scholar 

  28. H. Ratschek J. Rokne (1995) Interval methods R. Horst P.M. Pardalos (Eds) Handbook of Global Optimization Kluwer Academic Publishers Dordrecht

    Google Scholar 

  29. K. Sekitani Y. Yamamoto (1993) ArticleTitleA recursive algorithm for finding the minimum norm point in a polytope and a pair of closest points in two polytopes. Mathematical Programming 61 233–249 Occurrence Handle10.1007/BF01582149

    Article  Google Scholar 

  30. Wenk, C. (2002), Shape Matching in Higher Dimensions, Ph.D. Thesis, Free University Berlin, Berlin.

  31. B. Zhu (1997) ArticleTitleApproximating convex polyhedra with axis-parallel boxes International Journal of Computational Geometry and Applications 7 253–267 Occurrence Handle10.1142/S0218195997000168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Llanas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llanas, B., Sainz, F.J. Hausdorff Matching and Lipschitz Optimization. J Glob Optim 35, 493–519 (2006). https://doi.org/10.1007/s10898-005-6017-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-005-6017-4

Keywords

Navigation